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Abstract:

One of the most common tools for evaluating data is regression. This technique, widely used by

industrial engineers, explores linear relationships between predictors and the response. Each

observation of the response is a fixed linear combination of the predictors with an added error element.

The method is built on the assumption that this error is normally distributed across all observations and

has a mean of zero. In some cases, it has been found that the inherent variation is not the result of a

random variable, but is instead the result of self-symmetric properties of the observations. For data with

these characteristics, fractal analysis can be used to explain the variation. There has been evidence from

previous work that musical pieces have to some degree a fractal structure, but there remains to be more

work done on performing fractal analysis to musical pieces. In this research, a computationally efficient

method of performing fractal analysis on time-series data is applied to a musical recording. It is then

determined whether this fractal dimension is a suitable measure to distinguish between musical genres.
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1. INTRODUCTION TO FRACTALS

In most engineering applications of mathematics, systems are created for sets with some type of regu-

larity. This means that many sets are not included, nor can they be classified and studied in similar ways

to the regular ones. This may mean studying differentiable functions, or systems with error that can be

modeled with a normal distribution. In contrast with systems and tools considering variation to be the

result of known variables and random variables, some systems exhibit chaotic properties and are best

studied with tools that consider self-symmetry. Objects that are completely chaotic in this way are called

fractals, and while a true fractal only a mathematical object, using fractals to estimate other systems can

often be much more effective than traditional tool. For sets that resemble fractals, a value can be ex-

tracted from the set called the fractal dimension. This dimension serves as a fingerprint of the system,

revealing the nature of the self-symmetry present [7]. In 2012, Tong and Chimka used fractal analysis

of time-series temperature data to develop a fractal-based statistical quality control methodology [13].

This brings the notion of a system fingerprint into a useful light, as changes in the fractal dimension may

indicate changes or failures in the system.

There are varying ways to define fractals. Here, we will use the list of common fractal properties

provided by Falconer [6].

A fractal is some object F with the following properties

(1) F has a fine structure, i.e. detail on arbitrarily small scales.

(2) F is too irregular to be described in traditional geometric language, both locally and globally.

(3) Often F has some form of self-symmetry, perhaps approximate or statistical.

(4) Usually, the ’fractal dimension’ of F (defined in some way) is greater than the topological di-

mension.

(5) In most cases of interest F is defined in a simple say, perhaps recursively.

While this list provides a basic framework for understanding fractals, it does not provide a precise

mathematical definition. Part of the definition relies on the ’fractal dimension’ which is not yet clearly

defined. Many mathematicians have held more specific definitions, which often rule out sets other math-

ematicians consider fractal. This definition is much closer to a biologists definition of life. We have a list

of properties that applies to most living things, but there are certain living objects that do not conform to

every requirement [6]. It is easiest to understand these characteristics in geometric figures, where fractals

were first recognized. Here are a few examples:
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1.1. The Cantor Set. The Cantor set F is constructed by taking the interval [0, 1] ∈ R and performing

subsequent deletions. This deletion is the open middle third of all segments in the set. Let E0 be the

starting segment, [0, 1]. We define Ek as Ek−1 with the inner third of all segments removed. This means

Ek consists of 2k segments, each of length 3−k.

FIGURE 1. A graphic representation of creating the Cantor set. At each level, the middle
third of each segment is removed. Notice that if the set is divided into two, each half is
similar to the whole, although a third of the size [6].

Altogether, we have that F = ∩∞k=0Ek or F = lim
k→∞

Ek. A visual representation of the Cantor set

is shown in Figure 1. The Cantor set has some interesting properties. For instance, while there are

uncountably many real numbers in F , it has a length of 0 using most conventional measures. Consider

the five properties used to define a fractal where the set F is now the Cantor set.

• F has a fine structure, i.e. detail on arbitrarily small scales.

For the Cantor set, it is impossible to ”zoom in” enough to observe the finest level of detail. There

is not a final level of Ek.

• F is too irregular to be described in traditional geometric language, both locally and globally.

As mentioned prior, the segments of the Cantor set have no measurable length. This is true for

the length of individual segments as well as their sum.

• Often F has some form of self-symmetry, perhaps approximate or statistical.

Each level of the Cantor set has the same structure. Consider a segment on any level, say [0, 1
9
]

from E2. The subsequent deletions behave identically to the deletions from the original segment

[0, 1], forming geometrically identical set.

• The ’fractal dimension’ of F (defined in some way) is greater than the topological dimension.

This will be considered in following sections.
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• The set F is defined in a simple, recursive way.

This is apparent as removing the inner third is a recursive and straight-forward process.

1.2. The Koch Curve. The second example of a common fractal is the Koch curve, now becoming F .

This figure is remarkably similar to the Cantor set, but instead of deleting the middle third of each seg-

ment, the middle third is replaced with two segments that would form an equilateral triangle with the

removed segment. In a similar way to defining the Cantor set, we will define each level of the fractal’s

creation as Ek and the final set F = lim
k→∞

Ek. In Figure 2 there is graphic representation of this process.

FIGURE 2. A graphic representation of creating the creating the Koch curve. With each
level, the middle third is replaced with two lines that would form an equilateral triangle
point upward from the missing segment [6].

As can be seen, the Koch curve resembles a snowflake. As k becomes larger, each level begins to

affect only finer and finer detail. The polygonal curve Ek begins to approach the limiting curve, F [6].

This limiting curve cannot be analyzed by conventional means, however, as it is too irregular to construct

traditional tangent lines. The length of any of the polygonal curves, Ek can be found to be (4
3
)k. This

clearly shows that F has infinite length. Let us again consider how this set is related to the definition of

a fractal.

• F has a fine structure, i.e. detail on arbitrarily small scales.

With each new level, the curve gains finer and finer detail and complexity. This continues to

arbitrarily small scales.

• F is too irregular to be described in traditional geometric language, both locally and globally.

While F is a curve, it is impossible to find tangent lines. Furthermore, the curve has endpoints

and yet has infinite length.
5



• The set F is self-symmetric.

The segment at any level of the curve produces it’s own Koch curve as the levels progress to

infinity.

• The set F is defined in a simple, recursive way.

The definition is geometrically straight forward and is the product of recursive iterations.

The Koch curve holds these properties is a very similar way to the Cantor set. They are both perfectly

self-symmetric, meaning that each small section of the set is geometrically symmetric to the full set. In

the definition of a fractal, only statistical or approximate self-symmetry is required. In the traditional

Koch curve construction, the added segments are always added in the same direction (either up from the

original line or down). Consider the curve formed when this direction is determined by an independent

random event at each level, say the tossing of a coin. In Figure 3 there is an image of a curve formed in

this manner.

FIGURE 3. An example of a Koch curve where instead of always replacing the missing
segment with two on the top. Approximately half of the time it is replaced on the bottom,
making a fractal which is not completely self-symmetric [6].

This curve, like the first two fractals, has arbitrarily small complexity, cannot be studied by conven-

tional methods, and is simply and recursively defined. The only difference is that it is not completely

self-symmetric. This is why the definition is expanded to contain objects with statistical self-symmetry,

as object like this curve clearly belong in the set of fractals.

1.3. The Sierpinski Triangle. The Sierpinski Triangle starts with an equilateral triangle. Similar to the

Cantor set, subsequent deletions will be taken at each level to arrive at the final object. At each level, the

triangle formed by the midpoints of each edge is removed for each triangle present as seen in Figure 4.

This creates three triangles, each is one fourth the area of the starting triangle. Let Ei be the i-th iteration

of this process. Similar to previous examples we have that F = lim
i→∞

Ei. In this case Ei is composed of

3i triangles of area 1
2
· 4−i assuming the original side length is 1.
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FIGURE 4. This graphic representation of creating the Sierpinski triangle shows the steps
to create the figure. Notice each triangle of E1 is a Sierpinski triangle itself, scaled to one
half the original size[6].

The area of the starting triangle is 1
2
. For each iteration, the area is 3

4
times the area of the previous

figure. This means the area is equal to lim
i→∞

1
2
∗ (3

4
)i or 0.

At this point it should be clear that the Sierpinski triangle is irregular in the same ways as the previous

two examples.
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FIGURE 8. Here we see the box plot of the Suleymanov dimensions for each recording
analyzed separated by genre.

While each genre seems to contain a different distribution, they do not seem to all have separate fractal

dimensions. From here, one-way ANOVA testing was performed to test whether genre was significant

with regard to the Suleymanov dimension. The results of this test are shown in the next table.

SS DF MS F p

Model 8.80 9 0.98 69.29 0.0001

Error 13.98 990 0.01

Total 22.78 999

Because the p-value is very low, we see evidence that FD is not independent of genre. A Tukey grouping

was then applied to determine the significance of the differences between genres. The least significant

difference of FD was found to be 0.0533 and thus there were 6 groupings of genres with no statistical

difference in Suleymanov dimension. These can be further broken down into 3 divisible groups. These

results are seen in Figure 9. Metal was the only genre in which the mean Suleymanov dimension was

statistically different from all other genres. The testing was also applied to the adjusted Suleymanov

dimension, which is seen on the right of the figure.
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FIGURE 9. On the left side, we see the mean FD for each genre. Genres connected by
a bar indicate there is not statistical difference between them. On the right, we see the
adjusted FD where observations with zero slope are removed.

Additionally, the six values recorded in the raw data table were used in MATLAB’s ”Classification

Learner” add-in to predict genre with machine learning methodology. An array of techniques were em-

ployed with 5-fold validation to determine how valuable these six measures are for predicting the genre

of an audio recording. The best results came from a k-nearest neighbor algorithm, reaching an accuracy

of 35.8%. In Figure 10 there is a confusion matrix showing the true-positive rates across genres.

FIGURE 10. This is the confusion Matrix from the medium K-Nearest Neighbor (KNN)
model. Each value represents the percent of songs predicted to belong to a specific genre
given the real genre, so they sum to 100% across the rows. The best performer was
classical. Out of the 100 classical songs, 65 were correctly predicted based on the fractal
qualities.
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7. ANALYSIS

7.1. Lag Selection. One of the most important decisions while using the Suleymanov dimension is the

selection of lag intervals, or j when the Suleymanov dimension is described in Section 3. This value is an

integer as small as 1, and can increase such that it remains small compared to the length of the time series.

It was discovered that the selection of j is very relevant to the calculation of the Suleymanov dimension.

In Figure 11 we see this with the familiar example, classical piece number 61. Here, ln(L) is plotted

versus ln(k) with lag intervals at different orders of magnitudes. The ten right-most points increase in

lag intervals by 1. Then the lag intervals from 10 to 100 are represented at steps of 10. Finally, the lag

intervals from 100 to 1,000 are represented by steps of 100. There are 28 total lag intervals represented.

FIGURE 11. The plot of ln(L) vs. ln(k) for many lag intervals. The slope between lag
interval 10 and 100 is very similar to the slope between lag intervals 100 and 1,000. This
slope begins to approach zero as the lag interval gets closer to 1.

Notice that after the first few observations (on the top right corner) the slope becomes very stable.

This shows consistency in the fractal dimension of the time-series until the granularity becomes too fine.

This means that the complexity of the time series diminishes at a certain precision. This raises questions

on the appropriate approach to measure the fractal dimension. Should these observations be considered

or ignored? Furthermore, what type of characteristics could be measured by this decrease in slope? In

response to these questions, the data was collected in a manner that attempted to balance the affects of
22



including or excluding the data. First, the lag intervals were chosen to increase by 1’s from 1 to 20. For

almost all files, the slope of the regression began to converge well for lags greater than 10. Furthermore,

using methodology discussed earlier, the lowest lags were considered for removal for a second fractal

dimension calculation. It is important to remember that the number of large lags included affects the

number of cutoff lags. While this research chose to include twenty total lag intervals, the results are

affected by this decision. Choosing more lags or lags of greater value would likely affect the cutoff se-

lected for excluding observations. The number of excluded lags was recorded as well as the modified

Suleymanov dimension. These measures work together to provide a more rounded view of a recording’s

fractal qualities.

7.2. Fractal Dimension Distribution by Genre. In the results section, we saw that average fractal di-

mension within a genre ranges from 1.44 for classical recordings to 1.75 for metal recordings. In the

adjusted Suleymanov dimension, FD2, we see in increase in the fractal dimension of anywhere between

0.03 to 0.21 with an average difference of 0.08. This tells us that not only is the decision of lag intervals

important, but that the affects of the lag decisions vary across genres. The genre with the most change

was classical, where on average recordings lag intervals up to 3.64 excluded due to their decreased slope.

This placed classical music as the sixth largest adjusted fractal dimension, even though it had the smallest

fractal dimension before the exclusions.

The results show that after exclusions classical recordings have a statistically larger Suleymanov di-

mension than country, jazz, or blues recordings. This means the curve of ln(L) vs. ln(k) for classical

music begins steeper, but has a sharper drop-off as the lag intervals become small. This means the time

series has more self-symmetric complexity, but it is not continued at the fine level.

The genre with the largest average Suleymanov dimension, both before and after the adjustment, was

found to be metal. This is expected to be because of the nature of the audio content. The metal genre is

characterized by having a very full sound space and heavy distortion. While other genres may have more

space between sounds and have limited frequencies present, metal is more likely to have sustained sound

with many frequencies present from the distortion. These create a more complex wave-form of the audio.

For these reasons, it is not surprising that metal music would have a larger fractal dimension than other

recordings.
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7.3. Predicting Genre by Fractal Analysis. Because it was found that the distinguishing features be-

tween genre included not only one measurement of slope, but the more complex relationship between

ln(L) vs. ln(k), each of the six features recorded in the results section were included for predicting

genre. Overall, the performance of the classification were poor, only achieving 35.8% accuracy. This is

much less than the classifications that can be obtained as a result of audio signal processing. The same

dataset was classified by these means with 61% accuracy by Tzanetakis in 2002 [14].

There is not data available about the performance of the Tzanetakis model at the song-specific level in

order to assess the affects of adding in the fractal predictors. Because the data used for the classifications

vary significantly, it is very likely that the inclusion of the fractal information would benefit a model

using other audio features. In addition, the audio transformations used by Tzanetakis likely produces

time-series with fractal characteristics that could additionally aid classification even more. Considering

the results of the Tukey grouping, the classification rate makes sense. On average, a genre belongs to a

group of 3.4 genres where there is not statistical difference, as seen in the following table:

Genre Count of Genres with Statistically Similar FD

Metal 1

Disco 3

Pop 4

Hip Hop 5

Rock 4

Reggae 3

Country 3

Blues 4

Jazz 4

Classical 3

Average 3.4
Using only the FD, it would be unlikely for a model to discriminate between genres where there is no

statistical difference, leading to an expected performance of 1
3.4

or about 28% accuracy. This assumes it

can perfected discriminate between statistically different genres and not at all between those with no sta-

tistical difference. Because these are not completely true observations and there is additional information

available to the models, the accuracy was able to be increased to almost 36%.
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8. CONCLUSIONS AND FUTURE WORK

8.1. Conclusions. The goal of this research was to extend the work on fractal analysis in the field of

musical study. It applied a method by Suleymanov for finding the fractal dimension of a time series to

the raw audio variable contained in a digital recording. Functions were successfully created in MATLAB

to extract the Suleymanov dimension from audio files with the ability to alter the desired lag intervals.

The methodology was then adapted to further distinguish the fractal qualities of the recordings when

the lag intervals are small. The functions created were then applied to a database of 1,000 audio files,

which held 100 30-second clips from ten different genres. The data was recorded for statistical analysis

and genre prediction from fractal qualities.

One-way analysis of variance testing was performed and further Tukey grouping revealed three dis-

joint groups across the ten genres for statistically different fractal dimensions.

The full data was then used in MATLAB’s ”Classification Learner” to investigate the ability of the

fractal analysis to predict genre. While the accuracy was only 35.8%, this avenue seems to be a profitable

addition to current work on musical classification.

8.2. Future Work. This work has helped developed several questions across its domains. For the anal-

ysis of time-series fractal objects, the Suleymanov dimension was found to approach zero as lag intervals

decreased in size. Further work could investigate other ways to characterize this curve rather the steps

taken in this paper, linear regression and a piece-wise regression where the one component has no slope.

Perhaps other parameters better characterize the relationship between ln(L) and ln(k). These other pa-

rameters may contain more identifying fractal characteristics than the parameters used in this research.

In the domain of musical genre classification, fractal analysis should be combined with other types of

audio analysis to further improve the classification methods. Additionally, the fractal qualities of genres

provide additional information to incorporate in algorithmic approaches to music generation. It is rec-

ommended that using the Suleymanov dimension could be further investigated in conjunction with other

tools.
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Finally, it is recommended that the Suleymanov dimension could be applied to a transformed version

of the original audio files. In most other approaches to musical classification, methodology includes

the decomposition and filtering of the raw audio, creating more meaningful data. These transformations

likely hold information that also has fractal qualities, likely with more distinct values across genres.
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