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Abstract 

 

Climate change is a result of greenhouse gases released into the atmosphere.  These 

changes are expected to cause extreme weather conditions, including severe storms.  Large 

amounts of rain will fall in shorter periods of time, leading to heavy runoff, and increasing the 

severity of drought conditions within the soil (Zeglin et al. 2013). 

 Native grasslands occupy almost a quarter of the earth’s land surface and are valuable 

ecological resources.  They contain soils with high concentrations of organic matter and play a 

key role in mitigating greenhouse gas emissions through carbon sequestration.  There are a 

variety of grassland management techniques including annual burning, patch burning, and 

cattle grazing.  These management techniques can be beneficial for ecosystems, but can also 

alter soil compositions (Jerome et al. 2014).  Microbial communities in the soil influence many 

ecosystem processes such as nutrient acquisition, carbon and nitrogen cycling, and soil 

formation (Heijden et al. 2008).  Changes in precipitation patterns can effect microbes in these 

grasslands by causing shifts in community composition, and changes in nutrient cycling and 

decomposition processes.  Many microbial activities can be directly correlated with water 

availability, and drought conditions may be detrimental to these grazed grassland ecosystems 

(Gray et al. 2011).  Summer months and differences in time lead to changes in temperatures 

and rainfall patters, similarly having the potential to alter activity and structure of microbial 

communities.   

This study was conducted at the Konza Prairie Biological Station in eastern Kansas, USA.  

Soil samples were collected to compare June versus July and moist versus dry treatments.  

Findings from this study concluded that seasonal changes through June and July alter microbial 

communities in Konza Prairie soil.  Total PLFA concentrations significantly increased, with the 

largest increase occurring in fungi.  This change caused a decrease in relative abundance of 

gram positive and gram negative bacteria, and also an increase in the ratio of fungi to bacteria.  

Drought conditions caused no significant change in microbial communities, suggesting the 

microbes in the soil have a high tolerance for lack of moisture. 



Introduction 

 Climate change is a result of greenhouse gases released into the atmosphere.  The 

current changes are expected to worsen in the future and are predicted to significantly alter the 

water cycle.  Extreme weather conditions, including severe storms, are also expected to occur.  

Large amounts of rain will fall in shorter periods of time with longer dry periods in between 

(Zeglin et al. 2013).  This will lead to heavy runoff, leaching, and an increase in the severity of 

drought conditions within the soil (Cregger et al. 2014).  Trends have shown that higher 

precipitation and water availability correlates with higher productivity (Hartmann et al. 2012).  

Changes in precipitation patterns are predicted to decrease plant photosynthetic rates and 

aboveground productivity (Zeglin et al. 2013).  Water availability is a major abiotic factor 

influencing gas exchange, soil respiration, nutrient cycling, and the ability for ecosystems to 

thrive (Jumpponen et al. 2014).   

 Grasslands occupy almost a quarter of the earth’s land surface and are valuable 

ecological resources.  These lands are used for livestock production and largely contribute to 

biodiversity.  Grassland soils are known for their high content of organic matter (Jerome et al. 

2014), containing nearly 37% of the terrestrial organic carbon (Jumpponen et al. 2014).  With 

such high concentrations, they play a key role in mitigating greenhouse gas emissions through 

carbon sequestration (Jerome et al. 2014).  Grassland functions can be altered using 

management techniques such as burning and grazing. Burning, as a management technique, 

can consist of annual burning or patch burning. Annual and patch burning of grasslands can be 

beneficial for ecosystems by stimulating photosynthesis, increasing stem density, and creating 

higher aboveground productivity (Toma et al. 2010).  Cattle grazing can have similar effects, but 

both grazing and burning have been observed to alter physical properties of soil such as carbon 

and nitrogen content and plant community composition (Jerome et al. 2014).  These aspects of 

grazing management along with climate changes could alter grassland ecosystems.  Plant 

function and composition in grasslands are sensitive to changing climate conditions.  

Precipitation patterns, which determine soil moisture levels, control the structure and function 

of soil communities (Jumpponen et al. 2014).  With higher rain intensity and increased dry 

periods, stressful conditions will be imposed to these grassland ecosystems (Zeglin et al. 2013). 



 Microbial communities in the soil of grasslands play an important role in determining 

the diversity, richness, and abundance of plant life.  Microbes influence many ecosystem 

processes such as nutrient acquisition, carbon and nitrogen cycling, and soil formation.  A 

diverse and abundant microbial community is vital in performing these many different 

processes which make up an ecosystem (Heijden et al. 2008).  Moisture levels in the soil can 

greatly affect these microbial communities.  Different taxonomic and functional groups of 

microorganisms have different drought tolerance levels.  For example, fungi typically benefit 

from drought conditions while Gram-negative bacteria usually decrease in abundance.  This can 

lead to a shift in community composition, causing changes in nutrient cycling and 

decomposition processes (Gray et al. 2011).  Direct correlations can be seen between soil 

microbial respiration and water availability (Zeglin et al. 2013).  Diffusion rates and activity of 

microbes have been shown to slow when less moisture is available (Hartmann et al. 2012).  

Drought conditions can potentially restrict microbial community activities and alter vital 

ecological processes (Fernandez et al. 2012).   

 Seasonal changes throughout the year will correlate to different temperatures, amounts 

of rainfall, vegetation growth rates, and grazing habits.  These differences can cause changes 

within microbial communities.  High temperatures have been known to slow growth and 

activity rate of microbes (Sheik et al. 2011).  During high rates of plant growth, microbial activity 

and abundance is expected to significantly increase.  When more grazing occurs, aboveground 

biomass decreases and root contents increase (Pineiro et al. 2009).  This can alter the transfer 

of nutrients and in turn effect the microbial communities within the soil.     

 Knowing the effects of drought conditions and time on microbial communities in native 

grasslands will help prepare for the climate changes predicted to occur.  The grassland’s rich 

soil and ability to mitigate greenhouse gases is motivation to better understand these 

correlations.   



Materials and Methods 

 

Site Description and Sampling 

 The study was conducted in native tall-grass prairie located at the Konza Prairie 

Biological Station (39°05’N, 96°35’W), a Long-Term Ecological Research site, in the Flint Hills of 

eastern Kansas, USA.  The primary vegetation includes native big bluestem (Andropogon 

gerardii Vitman), indiangrass (Sorghastrum nutans (L.) Nash.), little bluestem (Schizachyrium 

scoparium (Michx.) Nash.), and switchgrass (Panicum virgatum L.) (Zeglin et al. 2013).  The 

landscape is characterized by shallow limestone soils. Both soil type and depth vary by 

landscape position.  In general, the soils are silty clay loams. 

 

 

 

On June 9, 2015, a total of 15 samples were taken from plots C1A, C3A, and C3B within 

the cattle grazed Konza Prairie Biological Station.  Plot C1A is burned annually while plots C3A 

and C3B are patch burned every three years. Random auger cores were taken from within a 5 

foot radius of each sample location. The top 5 cm of soil from each core was placed into a bag 

and homogenized. Each sample consisted of approximately 500g of soil.  These samples were 

analyzed for pH, extractable nitrogen, gravimetric soil water content, CO2 respiration, and 

phospholipid fatty acids (PLFA). 

Figure 1: Konza Prairie Map 



 On July 7, 2015, four soil samples were taken from within the C1A plot of Konza Prairie 

Biological Station.  Samples were collected as described above, and each sample consisted of 

approximately 500g of soil.  The samples were divided into three treatment groups: time zero, 

moist, and dry.  Time zero samples were immediately analyzed for gravimetric water content 

and PLFA.  The moist samples were placed in mason jars and covered while dry samples were 

spread on a tray and left to dry in open air.  All moist and dry samples were left in the incubator 

for 6 days.  At the conclusion of the 6 day period, samples were analyzed for gravimetric water 

content and phospholipid fatty acids (PLFA).   

 

 

 

Soil Sample Diagnostics 

 To determine the gravimetric soil water content, approximately 10g of soil was 

measured into a foil tin and placed in the oven for drying.  Samples were dried for 48 hours at a 

temperature of 105°C and then weighed again to determine the amount water lost.  Extractable 

inorganic nitrogen (N) and pH were determined by the soil testing lab at Kansas State 

University.  Carbon dioxide (CO2) respiration was analyzed by placing 25g of fresh soil into a 

sealed mason jar and storing in the incubator for 24 hours.  At the conclusion of the 24 hour 

period, the amount of CO2 respired was analyzed using gas chromatography.   
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Figure 2: A) Dry treatment. B) Moist treatment. C) Soil sample collection.  



Phospholipid Fatty Acid Analysis 

 The total lipids were extracted from the frozen, lyophilized soil using a modification of 

the Bligh and Dyer (1959) extraction (White and Ringelberg, 1998). The phospholipid fatty acids 

(PLFA) were then separated from the total lipid extract using silicic acid chromatography, the 

fatty acids cleaved from the glycerol backbone using KOH saponification, and the harvested 

fatty acids methylated to form fatty acid methyl esters (FAME) (White and Ringelberg, 1998; 

Allison and Miller, 2005).  The resulting FAME were analyzed using a Thermo Scientific Trace 

GC-ISQ mass spectrometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA) equipped 

with a DB5-MS column (30m x 250 µm i.d. x 0.25 µm film thickness; Agilent Technologies, Santa 

Clara, California, USA). FAME peaks were identified by comparison with the bacterial acid 

methyl esters mix (BAME; Matreya 1114; Matreya LLC, Pleasant Gap, Pennsylvania, USA). 

Tentative assignments of FAME peaks not present in the BAME mix were made by mass spectral 

interpretation. Peak concentration was quantified using the internal standard nonadecanoate. 

The nomenclature used to describe the identified fatty acids is as follows (Bossio and 

Scow, 1998): total number of C atoms : number of double bonds, the position of the double 

bonds, cis or trans isomers identified by c or t. Prefixes of a, i, and Me indicate anteiso 

branching, iso branching, and methylation, respectively. Fatty acids were grouped into Gram 

positive (Gm+) bacteria (i15:0, a15:0, i15:0, i17:0, and a17:0), Gram negative (Gm−) bacteria 

(19:0:delta9,10, 17:0:delta9,10, C10:0:2-OH, C12:0:2-OH, C12:0:3-OH, C14:0:2-OH, C14:0:3-OH, 

C16:1:0:cis, C16:0:2-OH), actinomycetes (10Me16:0 and 10Me18:0), AMF (C16:1:11), and fungi 

(C18:2:9,12) (McKinley et al., 2005) (White et al. 2009). 



 

 

Statistical Analysis 

 Results from plot C1A in June and July were compared to determine if time would affect 

microbial communities.  Results from treatment groups, time zero, moist, and dry, were 

compared to determine how drought conditions would affect microbial communities.  

Statistical Analysis System (SAS) was used to analyze results using an analysis of variance 

(ANOVA) method.  The remaining data, taken from plots C1A, C3A, and C3B, was averaged and 

used to classify soil properties of Konza Prairie. 

 

 

 

 

A 

D C 

B 

Figure 3: A) Extraction of lipids (lipids in top layer). B) Silicic Acid Chromatography. C) Resulting 

FAME from lipid methylation. D) Thermo Scientific Trace GC-ISQ Mass Spectrometer  



Results 

 

Plot C1A, C3A, and C3B Soil Properties 

 

 

 

 

Study 1- Time (June VS. July) 

 

 

Konza Prairie Plots Average % Moisture

C1A 26.45

C3A 24.55

C3B 32.95

Konza Prairie Plot Average pH Average NH4-N (ppm) Average N03-N (ppm) Average CO2 (ppm)

C1A 6.20 0.57 0.09 4036.48144

C3A 6.31 0.41 0.06 3951.69974

C3B 6.47 0.57 0.05 4942.49312

Time Average % Moisture

June 26.45

July 24.55

Table 1: Gravimetric soil water Content from Plots C1A, C3A, and C3B 

within the Konza Prairie Biological Station. 

Table 2: Average pH, Ammonium (NH4-N), Nitrates (NO3-N), and Carbon Dioxide (CO2) from 

Plots C1A, C3A, and C3B within the Konza Prairie Biological Station. 

Table 3: Average % moisture content from plot C1A in June and July.  



 

 

 

 

  

Figure 4: Microbial biomarker concentrations for June and July.  Error bars represent standard error 
of concentration.  Different letters (A and B) above bars indicate significant differences (p<.05).  NS 
indicates no significant difference (p>.05).  

B 

A 

Figure 5: Total PLFA concentration for June and July.  Error bars represent standard error of 
concentration.  Different letters (A and B) above bars indicate significant differences (p<.05).  



 

 

 

 

 

  

Figure 6: Microbial biomarker relative abundance for June and July.  Error bars represent standard 
error of concentration.  Different letters (A and B) above bars indicate significant differences 
(p<.05).  NS indicates no significant difference (p>.05).  

Figure 7: Ratio of bacteria to fungi and gram+ to gram- for June and July.  Error bars represent 
standard error of concentration.  Different letters (A and B) above bars indicate significant 
differences (p<.05).   



Treatment Groups 

 

 

 

 

  

 

 

  

Biomarker Concentration Relative Abundance

Gram- Bacteria 0.31 0.28

Gram+ Bacteria 0.62 0.51

Actinomycete 0.29 0.77

AMF 0.50 0.59

Fungi 0.74 0.18

Treatments Average % Moisture

Time Zero 24.55

Moist 28.34

Dry 5.07

Table 4: ANOVA p values of concentration and relative abundance of microbial group biomarkers.  
P values greater than .05 mean no significant difference.   

Table 5: Gravimetric Soil Water Content of Treatment Groups (Time Zero, Moist, and 

Dry) from Plot C1A within the Konza Prairie Biological Station.  



Discussion 

 The data collected from plots C1A, C3A, and C3B, shown in Tables 1 and 2, was not 

significantly different between each plot.  This gives general information on the soil type and 

topography at Konza Prairie Biological Station.   

 Comparing data between times June and July, the average % moisture was not 

significantly different.  PLFA biomarkers did show a significant difference between June and 

July.  Total PLFA concentration more than doubled in July, with a significant increase in every 

microbial biomarker except actinomycete (Fig. 4 and 5).  Fungi showed the largest increase 

between June and July, which in turn altered the relative abundance of each biomarker (Fig. 6).  

With a massive increase in concentration of fungi, gram positive and gram negative bacteria 

decreased in relative abundance.  In June, the ratio of fungi to bacteria and the ratio of gram 

positive bacteria to gram negative bacteria was significantly smaller.  Since moisture 

calculations were taken on the day of soil collections and have no significant difference, 

moisture does not account for the changes in microbial biomarkers shown.  There was no major 

difference in the average amount of precipitation in the 28 days preceding collections.  

However, the dates preceding the June collection had several small rain events spread 

throughout the duration.  The dates preceding the July collection had few rain events but one 

large rain event the date prior to collection.  The large rain event preceding the July collection 

may account for the higher PLFA concentration within the sample.  An increase in plant growth 

between June and July could also contribute to the increase in PLFA concentration.  

The treatment groups, time zero, moist, and dry, were analyzed to show how microbial 

communities may change with drought conditions.  As expected, the gravimetric soil water 

content of the dry treatment group had significantly less moisture than both of the other 

treatment groups (Fig. 8). Comparing the time zero and moist samples, data shows moist 

samples having a slightly higher moisture content than time zero samples.  This could be due to 

the moisture levels in the incubation room, where the moist samples were placed for 6 days 

after sampling.  The analysis of PLFA data displayed no significant difference between any 

microbial biomarker in wet and dry treatments (Fig. 9).  This implies that the drying of the soil 



may not affect the microbial community abundance and concentrations in samples taken from 

within this field.  The bacteria to fungi ratio (not shown in results) from this study showed no 

significant difference between wet and dry treatments.  These findings were similar to a study 

by Bachar et al. 2010 who found that bacteria richness did not change based on precipitation.  

However, a study conducted by Zeglin et al. 2012 found fungal to bacteria ratios to be higher at 

low soil water contents.  The same study also found microbial biomass to increase after 

rewetting dry soil, meaning moist soil would have a higher abundance of microbes. On the date 

of sample collection, the high temperature was 22.2°C and the low was 15.92°C. The average 

temperature for July is 26.6°C.  These lower temperatures observed may have influenced our 

results.  

Though pH, CO2 respiration, and extractable nitrogen were not analyzed for the 

treatment groups, the changes within these variables under drought conditions can be 

predicted.  Soil nitrogen (in forms of ammonium and nitrate) at the Sevilleta National Wildlife 

Refuge in New Mexico has been observed to be highest in low moisture soil, with nitrogen 

content decreasing as water availability increases.  This suggest that precipitation changes will 

have a direct effect on levels of extractable nitrogen in the soil (Cregger et al. 2014).  Another 

study on the Canterbury Plains of New Zealand found that nitrogen mineralization was lower 

under dry conditions, meaning less ammonium and nitrates would be found in the dry soil 

(Harrison-Kirk et al. 2014).  This shows the complexity of drought conditions on nitrogen in the 

soil, and proves there could be many factors affecting this variable including soil type, 

temperatures, and geographic location.  Several studies have concluded that CO2 flux is 

reduced under decreased amounts of rainfall.  Additionally, carbon cycling has been observed 

to slow when there is an increase in variability of soil moisture.  The reduction of carbon cycling 

and CO2 respiration is likely mediated by a decrease in root and soil respiration due to a lack of 

water availability (Harper et al. 2005).  Another study, conducted at the Konza Prairie Biological 

Station, measured CO2 flux over a period of time and identified respiration decreasing as the 

duration of low-moisture in the soil increased (Zeglin et al. 2013).  These studies indicate that 

CO2 respiration will decrease when precipitation patterns change and drought conditions occur.  

Acidification caused by drought was observed in a study by Xiang et al. 2012 where pH values 



decreased from an average of 5.67 to 4.84 as moisture decreased.  This suggests that drought 

conditions will alter pH levels found in soil.  It is generally understood that soil water content is 

positively correlated with microbial activity, but correlations can be extremely complex and 

many factors can contribute to these results (Zeglin et al. 2013).   



Conclusion 

 

In Konza Prairie soil, seasonal changes through June and July alter microbial 

communities.  Total PLFA concentrations significantly increase, with the largest increase 

occurring in fungi.  This change causes a decrease in relative abundance of gram positive and 

gram negative bacteria, and also an increase in the ratio of fungi to bacteria.  Drought 

conditions were observed to cause no significant change in microbial communities, suggesting 

the microbes in the soil have a high tolerance for lack of soil moisture. 
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