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ABSTRACT

ESTIMATING POTENTIAL GROUND AND SURFACE WATER POLLUTION 
FROM LAND APPLICATION OF POULTRY LITTER

In 1985, more than 750 million broiler chickens were produced 
in Arkansas. During the same year over 15 million laying chickens 
produced 3.6 million eggs. The waste products of these agricul­
tural production systems, poultry litter and manure, were about 1 
million metric tons. As a result of land application of these 
wastes, about 5,000 metric tons of ammonium N and 12,000 metric 
tons of mineralized nitrogen were applied to Arkansas pastures in 
1985. Manures contributed about 2-3 percent of the total. The 
objective of this research was to quantify major components of 
the nitrogen cycle which influence the ground and surface water 
pollution potential and the proper use of poultry or hen manure 
in a land application program. Both decomposition and N mineral­
ization of representative samples of surface applied hen manure 
were evaluated. During the decomposition, N mineralization fol­
lowed two patterns. Initially, N mineralization was rapid and the 
mineralized N plus initial inorganic N was converted to volatile 
ammonia and lost to the atmosphere. Later, one of two scenarios 
appeared to be operative. If nitrification and denitrification 
were small, then N immobilization likely occurred at a rate near 
that of N mineralization resulting in only small increases in 
inorganic N. Undigested feed was suggested as the immobilizing 
agent. If nitrification and denitrification were large, then N 
mineralization could have proceeded at expected rates and would 
not be measured by the methods employed herein. In a practical 
vein, the initial inorganic N and mineralized N in surface 
applied hen manure has a low N fertilizer value and water pollu­
tion potential due to volatilization of N. If the manure is 
incorporated or a rainfall event occurs soon after surface addi­
tion, more than 50 percent of the manure N could be available for 
plant uptake and contamination of ground and surface waters.

J.T. Gilmour, D.C. Wolf, and P.M. Gale

Completion Report to the U.S. Department of the Interior, Geological 
Survey, Reston, VA, June, 1987.

Keywords -- Nitrogen/Nitrate/N Mi neralization/Nitrification/ 
N Volatilization
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INTRODUCTION

In 1985, more than 750 million broiler chickens were produced 

in Arkansas. During the same year over 15 million laying chickens 

produced 3.6 million eggs. The waste products of these agricul­

tural production systems, poultry litter and manure, were about 1 

million metric tons. Most of the litter was applied to pasture 

land directly as fertilizer or indirectly through cattle feeding 

programs. Since a typical litter contains 0.5% ammonium N and 4% 

organic N and about 30% of the organic N is mineralized during 

the first month after application, about 5,000 metric tons of 

ammonium N and 12,000 metric tons of mineralized nitrogen were 

applied to Arkansas pastures in 1985. Manures contributed about 

2-3 percent of the total mineralized N as they contain similar 

amounts of organic N and approximately 4 times the amount of 

ammonium N.

The nitrogen applied to pastures can be nitrified and enter 

both ground and surface water supplies as the mobile and poten­

tially harmful form of nitrogen, nitrate N. In situations where 

the amount of litter or manure applied is higher than pasture 

requirements and weather patterns facilitate runoff and leaching, 

nitrate contamination of ground and surface waters is possible. 

In addition, high rates of poultry litter or manure can be toxic 

to pasture grasses. An understanding of the components of the 

nitrogen cycle which are operative in a land application program
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is a prerequisite to proper management of these valuable 

resources.

A. Purpose and Objectives

The objective of this research was to quantify major compo­

nents of the nitrogen cycle which influence the ground and sur­

face water pollution potential and the proper use of poultry or 

hen manure in a land application program. Three subobjectives 

were to determine: a) the amount of inorganic N released from 

manure by decomposition, b) the proportion of the inorganic N 

volatilized or lost to the atmosphere, and c) the proportion of 

the inorganic N nitrified or converted to nitrate N.

B. Related Research and Activities

Poultry litter has long been recognized as a valuable ferti­

lizer source. Hileman (1973) conducted extensive work in Arkansas 

comparing broiler litter to commercial fertilizers. Perkins et 

al. (1964), working in Georgia, evaluated the composition and 

fertilizer value of poultry litter. Both studies concluded that 

poultry litter was an important source of plant nutrients which 

included N, P, and K. Siegal et al. (1975) also pointed out the 

fertilizer value of poultry litter, but cautioned that the appli­

cation rate should be such that uric acid toxicity to pasture 

plants does not occur. Hileman (1965) verified this toxicity as 

fescue yields were reduced at high rates of poultry litter appli­

cation.
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Other studies have characterized the mineralization of N from 

poultry manure or litter. Castellanos and Pratt (1981) found a 

relationship between the N released during 10 weeks incubation 

and the CO2 evolved during 4 weeks for poultry manure. Gale and 

Gilmour (1986) extended this relationship between N mineraliza­

tion and C mineralization for poultry litter over the entire 

decomposition period. Hadas et al. (1983) reported N mineraliza­

tion from poultry litter as a two phase, first order kinetic pro­

cess. Both Castellanos and Pratt (1981) and Hadas et al. (1983) 

found a majority of N mineralization occurred during the first 

day of decomposition. Gale and Gilmour (1986) substantiated this 

rapid conversion of organic N to ammonium N. Schefferle (1965) 

found that decomposition of uric acid in poultry manure was rapid 

and likely contributed to volatile losses of ammonia.

Data from Castellanos and Pratt (1981) showed 33% in the 

first or rapid phase of N mineralization. Hadas et al. (1983) 

reported from 30 to 47 percent of mineralizable N in the rapid 

phase. Gale and Gilmour (1986) found that about 40 percent of 

the litter organic N was mineralized over a 34 d period.

Castellanos and Pratt (1981) presented data from which first 

order rate constants were calculated for chicken manure decompo­

sition. In their study at 30 C k values were 0.06, 0.01, and 

0.005 d-1 for 0-7, 7-14, and 14-28 d periods, respectively. Gale 

and Gilmour (1986) reported first order rate constants of 0.046
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and 0.019 d-1 for rapid and intermediate fractions of poultry 

litter, respectively. Hadas et al. (1983) reported rate constants 

for a two phase N mineralization process for ground poultry lit­

ter at 25 C. The first phase rate constant was computed prior to 

the first data point and appeared to be an unreasonably large 

value. The second, slower phase rate constant ranged from 0.013 

to 0.78 d-1.

Nitrification has been shown to depend upon the availability 

of substrate, O2, CO2, soil water and adequate temperature 

(Schmidt, 1982), while conditions for loss of nitrate are usually 

dependent upon periods of high soil moisture where nitrate leach­

ing and/or denitrification occur (Tanji, 1982). Gilmour (1984) 

presented a model of the nitrification process which used zero 

order kinetics and corrected rate for temperature, moisture and 

initial ammonium concentration.

Nitrification has been shown to occur in poultry manure. Gid­

dens and Rao (1975) found nitrate in both surface applied and 

incorporated manure. The nitrate concentrations were higher in 

the incorporated case. Hadas et al. (1983) also found nitrifica­

tion when pelleted poultry manure was incorporated into soil. 

Nitrification occurred over the 90 d period of their study and 

followed zero order kinetics during the first month after an ini­

tial lag period of a few days. After the first month, a second 

slower zero rate of nitrification was reported. Gale and Gilmour 
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(1986) found nitrification to be small for poultry litter applied 

to the surface of the soil.

When soil is amended with poultry litter or manure and sub­

jected to excessive rainfall, losses of nitrogen likely occur via 

denitrification. Meek et al. (1974) reported that annual addi­

tions of feedlot manure appeared to result in substantial deni­

trification which was caused by higher levels of soluble organic 

carbon being added to the soil. Their data indicated that as the 

nitrate and soluble organic carbon moved to a depth of 80 cm in 

the soil, conditions were favorable for reduction of the nitrate 

to nitrogen gas. Gilbertson and Norstadt (1979) indicated that 

denitrification losses from poultry manure were 35, 20, 10, and 0 

percent for clay, clay loam, silt loam, and sandy soil textures, 

respectively, and suggested that manure application rates should 

be increased to compensate for denitrification losses.

In addition to loss of nitrogen in the form of nitrate, the 

nitrogen contained in poultry litter may be lost in the form of 

ammonia which can be volatilized and lost to the atmosphere. Gid­

dens and Rao (1975) reported that poultry manure lost 47.6% of 

the total nitrogen upon air-drying for 10 days. They suggested 

that hydrolysis of uric acid in the manure played a major role in 

determining the rate of ammonia volatilization and that rapid 

drying of the poultry manure would reduce the amount of ammonia 

lost by volatilization but would increase the amount of nitrate 
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formed in the soil. Adriano et al. (1974) suggested that ammonia 

volatilization from surface-applied manure represented a signifi­

cant avenue of nitrogen loss. Their results indicated that ammo­

nia loss was greater in a saturated soil at 25 C than in the same 

soil at 10 C and -a lower moisture content. In a series of five 

field experiments, Lauer et al. (1976) measured the amount of 

ammonia volatilization from surface-applied dairy manure and 

reported that 61 to 99 percent of the total ammoniacal nitrogen 

in the manure was lost as ammonia volatilized. They also noted 

that ammonia volatilization was greatest when the environmental 

conditions led to sustained drying of the manure.

Various soil conditions would also be expected to be impor­

tant in determining the amount and rate of ammonia volatilization 

from poultry manure or litter. Increased pH has been shown to 

increase ammonia volatilization from sewage sludge (Donovan and 

Logan, 1983). Fenn and Kissel (1976) showed decreased ammonia 

volatilization with increased soil cation exchange capacity. Ryan 

and Keeney (1975) reported ammonia volatilized from wastewater 

sludge ranged from 20 to 56 percent of the applied ammoniacal 

nitrogen on a clay loam with a cation exchange capacity of 41.1 

cmol H+ kg-1 and a sand with a cation exchange capacity of 4.2 

cmol H+ kg-1, respectively. Recently, Ferguson et al. (1984) 

concluded that ammonia volatilization from urea was related more 

directly to the hydrogen ion buffering capacity of a soil rather 
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than to the initial soil pH.

No studies on the decomposition and N mineralization charac­

teristics for hen manure from a laying operation were found in 

the literature.

METHODS AND PROCEDURES

Twenty samples of fresh hen manure were collected at Hope, 

Arkansas and frozen. Subsamples of each were dried and analyzed 

for total N using a modified Kjeldahl technique. From these data 

six of the manures were selected to give a range in TKN values. 

These six manure samples were then used for all subsequent ana­

lyses. Soil was collected from the Ap horizon of a Bowie fine 

sandy loam (fine-loamy, siliceous, thermic Fragic Paleudult). 

The soil was wet sieved through a 2-mm sieve to remove small 

stones and plant material. The sieved soil was kept in a closed 

container at field moisture content (0.11 g kg-1) prior to the 

incubations.

Selected physical and chemical properties of the soil 

and manures were determined and these data are presented in 

Table 1. The methods used for these analyses included total 

C by dry combustion (Nelson and Sommers, 1982) and total 

Kjeldahl N using the salicylic acid modification of Bremner 

and Mulvaney (1982). Inorganic-N was determined following 

the procedures of Keeney and Nelson (1982) by steam distil­

lation of a 2 M KC1 extract of the soil or manure. Total

7



Table 1. Selected physical and chemical properties of 
soil and hen manure.

Property Soil Manure

Total C 7.8 (0.071) 328 (5.43)

Organic N 0.8 (0.003) 38 (2.22)

nh 4-n 0.005 (0.003) 19 (1.27)

no 3-n 0.045 (0.005) 0 (0.06)

Water content 83.0 (2.47) 670 (10.9)
**

C/N 9.8 8.4

pH (1:1) 5.9 8.1

★
Standard error

Organic fraction

8



organic N was obtained by subtracting the initial inorganic 

N from the total Kjeldahl N. The pH of the soil and manure 

was measured in a 1:2 mixture with water. Mechanical analy­

sis of the soil was accomplished by the hydrometer method 

(Day, 1965), and the particle size distribution was 63% 

sand, 26% silt, and 11% clay.

The experimental design was based on that of Clark and 

Gilmour (1983). The equivalent of 100 g air dry soil was 

added to 500 mL soil respiration vessels. The bottles were
2 placed on their sides. The soil surface area was 80 cm and 

the depth of the soil was < 1 cm. The wet manure, 13.7 g, 

was spread over the soil surface as evenly as possible. 

This rate of addition was approximately equal to 5.5 Mg dry 

manure ha-1. The soil moisture potential was adjusted to 

-34 kPa, which corresponded to 50% of the water holding 

capacity (Pramer and Schmidt, 1964). Controls consisted of 

vessels containing soil only. All incubations were conducted 

at 25 C for 60 d and replicated 3 times.

A flow-through system was used to collect CO2 and NH3 

evolved during decomposition. A flow meter regulated the 

air flow through the system at 0.8 mL s-1. Inlet air passed 

through a scrubber containing 4 L of 4 M NaOH, into a 

distilled water scrubber, and into manifolds which distrib­

uted the air over the samples. Traps at the outlet of the 
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vessels contained 10 mL of 2 M NaOH or 10 mL of 1 M H2SO4 to 

absorb CO2 or NH3, respectively. Carbon dioxide absorbed by 

the traps was determined by precipitation of carbonates with 

BaCl2 and then titration of remaining base with standard HCl 

(Stotzky, 1965). Ammonia traps were analyzed by steam dis­

tillation with 10 M NaOH (Bremner and Mulvaney, 1982).

In an attempt to determine the amount of N mineralized 

from the manures a static incubation experiment was con­

ducted. Twenty g soil plus or minus 2.7 g wet manure were 

added to small 50 mL glass jars. The soil moisture was 

adjusted as above and the sample containers were then cov­

ered with saran wrap. Periodically replicate samples were 

removed and extracted with 50 mL 2 M KCl. The extracts were 

then analyzed for inorganic N as described above.

The computer model, DECOMPOSITION, was used to simulate the 

decomposition and N mineralization characteristics of the litter. 

The model used as inputs the data presented below for first 

order rate constants and C:N ratio of the manure. Microbial 

efficiency was set at 0.4. The loading rate was similar to that 

employed in the analytical portion of the study.
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PRINCIPAL FINDINGS AND SIGNIFICANCE

A. Sample Variability

Six hen manures, each replicated three times were used in 

this study. Table 1 presents the mean analytical data with stan­

dard errors, while Table 2 presents the statistics associated 

with analytical variability. Total C and total N (wet sample) 

values were not significantly different among manures. Inorganic 

N (wet sample), inorganic N (dry sample), total N (dry sample), 

and % solids were significantly different attesting to the vari­

able nature of hen manure. This variability was not present 

within manures as replication differences were not significant.

In order to simplify data presentation, only the mean 

results with appropriate statistics will be given. Where 

variability appears to be large it is due in large part to the 

inherent variability of the hen manure.

B. Decomposition

The evolution of carbon dioxide from the hen manure during 

decomposition is presented in Figure 1. The final value of 640 g 

C (kg manure C)-1 represented 64 percent conversion of the manure 

to carbon dioxide during the 60 d period. Castellanos and Pratt 

(1981) found about 45 % conversion of poultry manure to CO2 over 

a 4 week period as compared to approximately 53 percent in Figure 

1. Gale and Gilmour (1986) reported 40 percent conversion of 

poultry litter to CO2 in 34 d.
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Table 2. Variability components of the chemical properties 
of the manures.

Parameter df MSE F significance

MANURES

total C 5 7.722 1.57 NS
total N (wet) 11 1.095 2.13 NS
inorganic N (wet) 11 1.019 446 S
% solids 11 8.548 22.2 S
total N (dry) 11 0.992 24.7 S
inorganic N (dry) 11 0.002 31.5 S

REPS

total C 1 0.030 0.06 NS
total N (wet) 1 0.317 0.62 NS
inorganic N (wet) 1 0.003 1.43 NS
% solids 1 0.510 1.33 NS
total N (dry) 1 0.099 2.46 NS
inorganic N (dry) 1 0.000 0.05 NS

12



Figure 1 - Cumulative CO2-C evolved from hen manure 
incubated at 25 C
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First order rate constants for the apparent decomposition 

data in Figure 1 were calculated by regressing the natural 

logarithm of the hen manure C remaining in the soil (original hen 

manure C minus CO2-C corrected for appropriate controls) 

against time as shown in Figure 2. The slopes of the linear 

segments in Figure 2 corresponded to rate constants for the 

rapid, intermediate, and slow fractions of the manure in terms of 

decomposability. The extent of each linear segment determined 

the amount of manure C in each fraction.

Table 3 presents the first order rate constants (k) and the 

percentage of the manure C in each group. Rate constants were 

0.041, 0.018, and 0.09 d-1 for the rapid, intermediate, and 

slow fractions, respectively. Corresponding percentages for these 

fractions were 33, 20, and 47 %, respectively. Gale and Gilmour 

(1986) found first order rate constants for poultry litter of 

0.046 and 0.019 d-1 and percentages of 25 and 10 percent for the 

rapid and intermediate fractions.

C. N Mineralization and Volatilization

Mean inorganic N in the static system increased rapidly dur­

ing the first 10 d reaching a peak value of 575 g N (kg manure 

N)-1 at 14 d as given in Figure 3. The apparent decline after 14 

d was attributed to losses as ammonia through the saran wrap 

cover which was verified in a separate experiment (data not 

reported), denitrification, and/or immobilization; thus, the data

14



Figure 2 - Natural log of % C remaining as a function of time 
for hen manure at 25 C
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Table 3. First order rate constants for the 
decomposition of hen manure at 25 C.

Fraction k Percent of Manure 
C or N

d-1 %

CARBON MINERALIZATION

Rapid 0.041 (0.0014)* 33
Intermediate 0.018 (0.0010) 20
Slow 0.009 (0.0088) 47

AMMONIA VOLATILIZATION

Rapi d 0.081 (0.0056) 43
Intermediate 0.013 (0.0028) 11
SIow 0.0009 (0.0002) 46

Standard error

16



Figure 3 - Changes in inorganic-N with time for hen manure 
incubated in a static system at 25 C
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from the static system likely were underestimates of actual N 

mineralization. The large standard errors were a result of sample 

to sample variability and not within sample variability.

The inorganic N in the flow through system (Figure 4) was 

obtained by making the assumption that the initial ammonium N and 

mineralized N were converted to volatile ammonia N and lost from 

the system before denitrification could occur. This assumption 

appeared to be valid during early stages of decomposition as the 

pattern of ammonia N volatilization followed the expected N min­

eralization pattern. Essentially no inorganic N was found in the 

soil-manure combination at the termination of the experiment 

which in combination with the data in Figure 4 suggested that as 

decomposition proceeded, denitrification and/or immobilization 

may have occurred. Other researchers (Giddens and Rao, 1975) 

have also found large amounts of volatilization for poultry 

manures and have observed denitrification (Gilbertson and Nor- 

stadt, 1979).

The pattern of ammonia volatilization shown in Figure 3 was 

different than the pattern of carbon dioxide evolution shown in 

Figure 1. Ammonia losses were large as the rapid fraction was 

undergoing decomposition, slowed during decomposition of the 

intermediate fraction, and were small during slow fraction 

decomposition. Again, the standard errors reflect sample to 

sample variability and not replication variability.
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Figure 4 - Cumulative NH3-N evolved from hen manure 
incubated in a flow through system at 25 C
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First order rate constants for volatilization were obtained 

by regressing the natural logarithm of the percent total N 

remaining in the soil-manure combination (organic N plus 

inorganic N corrected for appropriate controls) versus time as 

shown in Figure 5. As was the case with decomposition, three 

linear segments were obtained. The rate constants or slopes of 

these linear segments for ammonia N volatilization are presented 

in Table 3. The values for the rapid, intermediate, and slow 

fractions were 0.081, 0.013, and 0.009 d-1, respectively. 

Corresponding percentages were 43, 11, and 46, respectively.

The rate constant and percentage for the ammonia 

volatilization was larger than the corresponding C mineralization 

rate constant and percentage for the rapid fraction because of 

the contribution of the initial level of inorganic N to 

volatilization. During the intermediate phase rate constants for 

the two processes were similar which suggested that the portion 

of the hen manure undergoing decomposition was the source of both 

volatile materials. During the slow phase the ammonia 

volatilization rate constant was much smaller than the carbon 

mineralization rate constant.

D. Relationships Between N and C mineralization

The relationship between ammonia volatilized (Figure 4) and 

C mineralized (Figure 1) expressed on a percentage basis is pre­

sented in Figure 6. During the initial stages of decomposition

20



Figure 5 - Natural log of % N remaining as a function of 
time for NH3-N volatilization from hen manure 
incubated in a flow through system at 25 C
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Figure 6 - N volatilized versus C mineralized in the flow 
through system at 25 C
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(<35 % C mineralized) about half of the total N in the manure was 

converted to volatile ammonia and lost from the system. After 

that time, C mineralization continued with only small amounts of 

ammonia volatilization. It is likely that the initial, large 

losses of ammonia can be attributed to the high pH of the manure, 

high initial ammonium N, and some conversion of uric acid to 

ammonia to increase the inorganic N pool. The total losses of 

about 50 percent of the manure N corresponded well to findings of 

Wolf (unpublished data, 1987) which showed that about half of the 

total N in hen manure is uric acid for fresh samples. The manure 

studied here had been removed from the laying operation a few 

hours prior to freezing and so uric acid contents were low 

(Wolf, unpublished data, 1987) and ammonium N levels were high 

indicating that substantial uric acid hydrolysis had already 

occurred.

The relatively small amounts of N volatilization at C 

mineralization values >35 percent in Figure 6 were not expected 

as the C:N ratio of the hen manure was low. The possibility that 

denitrification was occurring remains and will be evaluated 

during the next year of the project. The possibility that 

simultaneous N mineralization and immobilization were occurring 

at approximately equal rates was also a probable explanation of 

at least part of the effect as the manure did contain 

undigested feed. Inmobilization was found to be responsible for
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cessation of net N mineralization in poultry litter where straw 

and sawdust were the immobilizing agents (Gale and Gilmour, 

1986).

While Figure 6 compares total N and C dynamics for the hen 

manure, Figures 7 and 8 present the N dynamics for the organic N 

fraction as a function of C mineralization. In Figure 7, N 

mineralization was estimated from volatile ammonia losses, while 

in Figure 8, N mineralization was estimated from extracted soil 

inorganic N. In both cases corrections for initial inorganic N 

and inorganic N in controls were made.

Using either estimate of N mineralization for the first, 

linear portion of the relationship, the slope was near unity 

which would be expected for hen manure with a C:N ratio of 8.4 

(Gilmour et al., 1985). The lag in Figure 7 for N mineralization 

was due to losses of initial inorganic N prior to losses of min­

eralized N. The smaller slope in Figure 7 as compared to Figure 

8 and the decreases in N mineralization later in the decomposi­

tion process in Figure 7 were attributed to volatile losses of 

ammonia through the saran cover on the incubation bottles and the 

potential for denitrification and/or immobilization as discussed 

above. The cessation of N mineralization in Figure 8 was also 

attributed to denitrification and/or immobilization reactions.
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Figure 7 - N mineralized versus C mineralized in the flow 
through system for hen manure at 25 C
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Figure 8 - N mineralized in the static system versus C 
mineralized in the flow through system for hen 
manure at 25 C
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E. Predictions of C and N Mineralization

The computer model, DECOMPOSITION, described by Gilmour et 

al. (1985) was used to describe the decomposition and N mineral­

ization processes. Figure 9 presents the relationship between 

predicted and observed C mineralization or decomposition. The 

agreement was excellent as expected because the input to the 

model was the observed decomposition rate constants given in 

Table 3.

The prediction of N mineralization versus N mineralization 

estimated from volatilization of ammonia is given in Figure 10. 

With hen manure a slope near unity is expected. The slope of 

1.89 was much larger which was attributed to the small amounts of 

observed N mineralization as compared to predictions during the 

period when denitrification and/or immobilization reactions were 

probable.

The prediction of N mineralization during the initial phases 

of decomposition where loss mechanisms did not appear to be 

operative was good as shown by the initial linear relationship in 

Figure 11. The slope was near the expected value of unity. 

After that time, however, predictions were poor as increases in 

soil inorganic N slowed and eventually decreased as discussed 

above.
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Figure 9 - Predicted (from model) C mineralized versus 
observed C mineralized from flow through system 
for hen manure at 25 C
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Figure 10 -Predicted (from model) N mineralized versus 
observed N mineralized from flow through system 
for hen manure at 25 C
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Figure 11 - Predicted (from model) N mineralized versus 
observed N mineralized from static system for 
hen manure at 25 C
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F. Nitrification

The distribution of ammonium and nitrate N in the static 

system is presented in Table 4. Little nitrate N was found dur­

ing the experiment which suggests that either nitrification was 

small or that nitrate N was rapidly converted to gaseous forms 

via denitrification. Similar, small amounts of nitrate N were 

found by Giddens and Rao (1975) for poultry manure, while Hadas 

et al. (1983) reported large amounts of nitrate N for pelleted 

manure.

CONCLUSIONS

During the decomposition of surface applied hen manure, N 

mineralization followed two patterns. Initially, N mineralization 

was rapid and the mineralized N plus initial inorganic N were 

converted to volatile ammonia and lost to the atmosphere. Later, 

one of two scenarios appeared to be operative. If nitrification 

and denitrification were small, then N immobilization likely 

occurred at a rate near that of N mineralization resulting in 

only small increases in inorganic N. Undecomposed feed was sug­

gested as the immobilizing agent. If nitrification and denitrifi­

cation were large, then N mineralization could have proceeded at 

expected rates and would not be measured by the methods employed 

herein. Future studies will assess the role of denitrification.

In a practical vein, the initial inorganic N and mineralized 

N in surface applied hen manure has a low N fertilizer value and
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Table 4. Changes in inorganic-N with time in 
the static system.

Day nh 4-n no 3-n

---------g N/kg manure ---------

0 19.0 (6.8)* 0.02 (0.024)

1 21.5 (2.9) 0.17 (0.19)

3 25.6 (3.1) 0.31 (0.36)

6 29.8 (6.0) 0.31 (0.36)

10 32.9 (4.6) 0.22 (0.29)

14 33.4 (8.9) 0.05 (0.18)

21 30.7 (5.3) 0.10 (0.39)

49 27.6 (7.3) 1.45 (2.26)

★
Standard deviation
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water pollution potential due to volatilization of N. If the 

manure is incorporated or a rainfall event occurs soon after sur­

face addition, more than 50 percent of the manure N could be 

available for plant uptake and contamination of ground and sur­

face waters.
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