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Abstract  

 

 The highway and bridge network is a critical infrastructure that allows for the free 

transportation of citizens and enables truck-borne freight transportation. Disruption of this 

system could be caused by a terrorist attack, natural disaster, growth of population, required 

repairs and upgrades, or collapse caused by old age or malfunction. In the event of a disruption 

cities and regions can experience increased traffic and supply chain shortages, thus causing 

cascading effects throughout surrounding areas. With this motivation, we develop a network 

interdiction optimization model to identify a limited subset of roads that, if disrupted, causes the 

greatest increase in the weighted sum of shortest path distances associated with a collection of 

origin-destination pairs.  We apply the model to perform a vulnerability analysis on the network 

consisting of interstate highways, U.S. highways, and state highways in Northwest Arkansas.  
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Section 1 - Introduction 

 The highway and bridge system is one of the largest and most critical infrastructures in 

the United States containing over 4 million miles of roads and 600 thousand bridges [1, 2]. 

Disruptions within this network can slow critical transportation of travelers and supply chains 

and create expensive repairs or upgrades that are funded by taxpayers. Disruptions can be 

improvements, repairs, or nonrecurring traffic incidents which include car wrecks, construction 

zones, and inclement weather [3].  In the event of a disruption cities and regions can experience 

increased traffic, supply chain shortages, and loss of life which can have cascading effects 

throughout surrounding areas, as displayed by the I-35W bridge collapse in Minneapolis. This 

bridge fell during rush hour killing 13 people, injuring 145 more, and requiring over 230 million 

dollars and a full year to be reinvested in building a new bridge. 

 In the US funding for the highway and bridge network’s maintenance and upgrades 

comes from a combination of federal, state, and local government spending. In 2019 around 

$203 billion dollars was spent on the road transportation network with state and local 

governments funding 76% and the federal government funding the remaining 24% [4]. It is 

estimated that over the next 20 years the US will spend $41 billion dollars per year on road repair 

but required funding for repair and operation is estimated to be $53 billion dollars per year. 

 One way of identifying an effective use of funding is through a vulnerability analysis on 

the road and bridge network. Vulnerability in road networks is defined by Berdica [5] as the 

“susceptibility to incidents that can result in considerable reductions in road network 

serviceability” [5].  A common method to identify critical parts of transportation networks is to 

use a full scan approach in which each arc between nodes is iteratively eliminated and the 

subsequent cost of this removal are measured in a reduction of network performance [6]. To 
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increase the realism of the full scan approach it is common to equate arc travel times to the 

amount of congestion along an arc using traffic assignment models [7]. In this form traffic 

assignment models allow a researcher to include behavioral responses from travelers which 

Nicholson and Dalziell [8] describe as canceling trips, postponing trips, choosing alternate 

destinations, choosing a different mode of travel, or choosing a different route [8]. To include all 

five behavioral factors a combined travel demand model (CTDM) that considers each behavioral 

factor as a probability is used. The CTDM model quickly becomes difficult to solve due to the 

complexity of the nested behavioral probabilities and has only been numerically tested on small 

experimental networks. Additionally, the CTDM model does not take into consideration capacity 

constraints on arcs and does not consider combinations of road disruptions simultaneously.    

One way to consider combinations of road disruptions in a directed network is to use 

network interdiction modeling. The basic structure of a network interdiction model has a 

follower and a leader. The follower runs a network with the goal of maximizing or minimizing 

some function while the leader strives to inhibit the objective from occurring by interdicting (i.e., 

damaging or removing) arcs in the followers’ network. The goal of these models is to then find 

the most disruptive combination of arcs to remove [9]. Interdiction modelling has previously 

been used for many applications, including hospital infection modeling [10], distribution of 

hazardous materials [11], and military and security efforts to disrupt enemy supply lines [12]. 

To model a road network the network users play the role of followers who aim to identify 

a shortest origin-destination route, and the leader is a malicious entity allowing for the testing of 

network vulnerability. Our model is an extension of the shortest path network interdiction 

problem [9], in which the interdictor removes arcs between nodes in a network to maximize the 

shortest path length between an origin and destination. Since the original paper on shortest path 
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network interdiction, research has considered variants of this problem including a study of 

network interdiction with asymmetric information where an interdictor and evader have different 

levels of information [13]. Borrero et al. [14] expand upon asymmetric information through a 

study of sequential interdiction in which an interdictor does not have initial information but over 

time, through the decisions of the evader, learns the structure and arc cost of the network [14]. 

Most recently, Nguyen and Smith [15] studied a similar interdiction scenario except the 

interdictor knows initial information is uniformly distributed between an upper and lower bound 

and the interdictor is tasked with maximizing the expected shortest path an evader can take [15]. 

This thesis contributes an extension of the shortest path network interdiction model that 

can be used to run a vulnerability analysis over road networks while considering a combination 

of road disruptions with multiple origins and destinations. We apply the network interdiction 

model to perform a vulnerability analysis of the Northwest Arkansas highway network and 

attempt to detail priority road sections for future funding.  

We present the mathematical model in Section 2 and summarize the road network data 

used in the model in Section 3. We then experiment with changing the allowable budget and 

modifying the model to allow arcs to be interdicted more than once in Section 4 and give 

conclusions and proposals for future research in Section 5.  
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Section 2 - Methodology  

  

In this section the mathematical formulation and description of the interdiction problem is 

described based upon an extension of Israeli and Wood’s shortest path network interdiction 

model Israeli and Wood [9] to incorporate multiple origins and destinations. This problem 

maximizes the weighted sum of shortest path distances between multiple origin and destination 

pairs by choosing a subset of arcs to lengthen. 

 To define the interdiction model we first define 𝐴 ⊆ 𝑁 × 𝑁 as a set of directed arcs 

where 𝑁 defines the set of nodes.  Let 𝑐𝑖𝑗 denote the length of arc (𝑖, 𝑗) ∈ 𝐴, and define a 

nonnegative integer variable 𝑧𝑖𝑗 to indicate the number of times arc (𝑖, 𝑗) is interdicted.  We 

assume each interdiction adds 𝑑𝑖𝑗 > 0 units of length to arc (𝑖, 𝑗), i.e., the interdicted length is 

𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑧𝑖𝑗.  

To develop a mathematical model of the interdiction problem, we begin by formulating a 

linear program to represent the weighted sum of shortest path distances given assigned values to 

𝑧𝑖𝑗 that indicate which arcs have been interdicted. Let 𝑥𝑖𝑗
𝑠  express the amount of flow on arc (𝑖, 𝑗) 

∈ 𝐴 that originates at node 𝑠 ∈ 𝑁 with 𝑤𝑗
𝑠 units flowing from source nodes and 𝑤𝑖

𝑠 units 

consumed by sink nodes. We can then describe the following optimization Model (1) – (3).  

  

Min𝑥 ∑ ∑ (𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑧𝑖𝑗)𝑥𝑖𝑗
𝑠

(𝑖,𝑗)∈𝐴𝑠∈𝑁

 
(1) 

s.t. 

∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁:(𝑖,𝑗)∈𝐴

  −  ∑ 𝑥𝑗𝑖
𝑠

𝑗∈𝑁:(𝑗,𝑖)∈𝐴

=  {
∑ 𝑤𝑗

𝑠

𝑗∈𝑁\{𝑠}

 𝑖𝑓 𝑖 = 𝑠,

−𝑤𝑖
𝑠   𝑖𝑓 𝑖 ≠ 𝑠,

 ∀𝑠, 𝑖 ∈ 𝑁 

(2) 

 𝑥𝑖𝑗
𝑠 ≥ 0, ∀𝑠 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐴 (3) 
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Given values for 𝑧𝑖𝑗, Equation (1) minimizes the weighted sum of interdicted shortest path 

distances across all origin-destination pairs subject to flow balance Constraints (2) and 

nonnegativity Constraints (3). The model is an uncapacitated multi-commodity flow model in 

which a different commodity is used to represent flow originating at each source node 𝑠 ∈ 𝑁, 

and 𝑤𝑖
𝑠units of this commodity must be sent from 𝑠 to each node 𝑖 ∈ 𝑁 \ {𝑠}. The cost per unit 

flow on arc (𝑖, 𝑗) ∈ 𝐴 is described by the interdicted length 𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑧𝑖𝑗 for arcs (𝑖, 𝑗)  ∈ 𝐴. 

Constraints (2) require each node 𝑖 ≠ 𝑠 to consume 𝑤𝑖
𝑠 units of commodity 𝑠 ∈ 𝑁 while also 

implying that a total of  ∑ 𝑤𝑗
𝑠

𝑗∈𝑁\{𝑠}  units of commodity 𝑠 ∈ 𝑁 must leave node 𝑠.  

 To convert the minimization Model (1) – (3) to a maximization model we can take the 

dual of the model, letting 𝑢𝑖
𝑠 define the dual variable for constraint (2). The dual of the model  

(1) – (2) is then given as 

Max𝑢  − ∑ ∑ 𝑤𝑖
𝑠𝑢𝑖

𝑠

𝑖∈𝑁∖{𝑠}𝑠∈𝑁

 
(4) 

s.t. 𝑢𝑖
𝑠 − 𝑢𝑗

𝑠  ≤  𝑐𝑖𝑗 + 𝑑𝑖𝑗𝑧𝑖𝑗 , ∀𝑠 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐴  (5) 

 

Due to strong duality, the optimal objective value of Model (4) – (5) is equal to the weighted 

sum of interdicted shortest path distances across all origin-destination pairs. 

 To formulate the interdiction model, we introduce the interdiction variables 𝑧𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, 

to Model (4) – (5) and include the constraint  

 ∑ 𝑧𝑖𝑗(𝑖,𝑗)∈𝐴 ≤ 𝐾  (6) 

to impose that at most 𝐾 arcs can be interdicted. 
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 We then created a parameter 𝑙𝑖𝑗, used in subsequent tests of the model, that defines the 

maximum number of times an arc (𝑖, 𝑗) can be interdicted and introduced this parameter to 

Model (4) – (5) by including the constraint 

 𝑧𝑖𝑗 ≤  𝑙𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (7) 

 

Section 3 - Data 

 

 This section describes where we obtained the data used in the interdiction model, how 

this data was cleaned and filtered, and finally how the data was formatted and input in AMPL 

solver.  

We used data from the Northwest Arkansas highway network to test and extend the 

network interdiction model. Northwest Arkansas is a metropolitan region that hosts four of the 

largest cities in Arkansas: Fayetteville, Springdale, Bentonville, and Rogers and is home to the 

headquarters for Walmart, Tyson, JB Hunt, and Arc Best, making it a regional hub for 

transportation and commerce. This region is growing rapidly as census reports show population 

growth is 3.6x higher in Northwest Arkansas than the United States and 8.6x higher than the 

state of Arkansas [16]. In the 2030 Northwest Arkansas Regional Transportation Plan there was 

an estimated need for $1.9 billion dollars in road construction and improvements, but only an 

estimated $411 million dollars in total funding [17]. The increased transportation importance and 

high population growth combined with a constrained budget for road improvements in Northwest 

Arkansas raises the need to understand where resources should go to effectively improve the 

transportation network. We obtained data for interstate and state highways in the Northwest 

Arkansas region and summarize below how this data was used to create the sets and parameters 

for the network interdiction model. 
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The main dataset used to create the network graph containing arcs 𝐴 ⊆ 𝑁 × 𝑁 came from 

transportation data in the US Census Bureau’s TIGER/Line Shapefile. A shapefile stores 

geospatial data and information on roads, buildings, water features, and other areas useful for 

research. To read and manipulate the Arkansas shapefile we created a data frame, using the 

Geopandas Python package, containing network information on Washington and Benton 

counties’ road network. Utilizing a separate Python package, Folium, we created our first 

visualization of the Arkansas road network as detailed in Figure 1.  

 

Figure 1: Visualization of Washington and Benton counties’ road transportation network 

The dataset created from the shapefile contained 1,313 nodes with multiple road types and 

summary information. To decrease the complexity of the road network municipal, county, and 

dead-end roads were filtered from the map, leaving interstate highways, state highways, and U.S. 

highways. To further reduce the complexity of the transportation network we utilized the Folium 

package to drop pins at intersections of multiple roads. These 34 pins were used to construct the 

node set 𝑁 used in the interdiction model.  
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Figure 2: Simplified transportation network with node’s visible 

The arc set 𝐴 ⊆ 𝑁 × 𝑁 was created by connecting each node to neighboring nodes. In creating 

the arc set 𝐴, which contains 110 arcs, the directed arcs (𝑖, 𝑗) and (𝑗, 𝑖) are both created if nodes 𝑖 

and 𝑗 are connected by a road, thus allowing for bi-directional flow on the directed graph.  

 The cost 𝑐𝑖𝑗 for flow between arcs is equal to the distance between (𝑁, 𝑁) node pairs in 

miles. These distances were calculated using the latitude and longitude of each node 𝑁 and 

plugging these values into the Geopandas geodesic function, which outputs the distance between 

the two points based on the shortest path considering the curve of the Earth. Performing the 

distance calculations in this manner was done to simplify distance calculations since we created 

custom nodes that did not have distance values already populated within the Shapefile dataset.  
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The integer budget 𝐾 that constrains the number of interdictions was tested with different 

values less than 40, which we viewed as representing a substantial disruption of the 110-arc 

network  

 We assigned weights to the each of the |𝑁|(|𝑁| − 1) origin-destination pairs by giving 

each pair (𝑠, 𝑖) a weight 𝑤𝑖
𝑠 that defines the number of units of flow from node 𝑠 to node 𝑖; thus, 

the higher the value of 𝑤𝑖
𝑠 the more important the node pair. We created these weights using 

population projections for all cities within Washington and Benton counties based upon the 2025 

NWA Regional Transportation Plan [18].  The weight associated with node pair (𝑠, 𝑖) was 

computed as  

𝑤𝑖
𝑠 =  𝛼𝑠𝛼𝑖 , (8) 

where 𝛼𝑖 is the proportion defined by the projected population of node 𝑖 divided by the total 

projected population of all nodes.  In calculating the proportion 𝛼𝑖 associated with each node 𝑖, 

we assumed the projected population of node 𝑖 was equal to the projected population of the city 

in which node 𝑖 is located divided by the number of nodes in that city. 

An example 𝑤𝑖
𝑠 calculation using the origin node 22, which is in the town of Gentry, and 

the destination node 21, located in Siloam Springs, is given below. 

 Projected population of Gentry = 3043 

 Projected population of Siloam Springs = 16227 

 Projected total population of all areas with 1+ node = 348,241 

 𝛼22 =  
3,043

348,241
= 0.0087  

 𝛼21 =  
16,227

348,241
= 0.046 

𝑤21
22  = 𝑤22

21 =  𝛼22𝛼21 =  0.0087 ×   0.046 = 0.0004002   
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In the case of Gentry, the value 𝛼22 can be interpreted as the percentage of people within the 

network that live in Gentry, which we assume is equal to the proportion of flow that begins or 

ends in Gentry. This probability is multiplied in the model by the negative resulting length 𝑢𝑖
𝑠 to 

proportionally weight the importance of the origin destination pair in the objective. Every 

increase in the weight values corresponds with additional cost to travel along that arc. Table 1 

summarizes the 𝑎𝑖 values obtained for each node 𝑖 ∈ 𝑁.  

Table 1: 𝛼𝑖
𝑠 values given to each node 

Node Weight City 

0 0.003354 Lincoln 

1 0.003354 Lincoln 

2 0.005367 Prairie Grove 

3 0.008362 West Fork 

4 0.006803 Elkins 

5 0.000010 N/A 

6 0.000010 N/A 

7 0.032288 Fayetteville 

8 0.005367 Prairie Grove 

9 0.032288 Fayetteville 

10 0.032288 Fayetteville 

11 0.032288 Fayetteville 

12 0.032288 Fayetteville 

13 0.032288 Fayetteville 

14 0.032288 Fayetteville 

15 0.002736 Tontitown 

16 0.002736 Tontitown 

17 0.111156 Springdale 

18 0.032288 Fayetteville 

19 0.111156 Springdale 

20 0.004537 Bethel Heights 

21 0.046597 Siloam Springs 

22 0.008738 Gentry 

23 0.006831 Cave Springs 

24 0.007833 Centerton 

25 0.002783 Highfill 

26 0.192691 Rogers 

27 0.035106 Bentonville 

28 0.007483 Gravette 

29 0.045342 Bella Vista 

30 0.007833 Centerton 
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31 0.035106 Bentonville 

32 0.045342 Bella Vista 

33 0.035106 Bentonville 

TOTAL 1.000104  

 

Section 4 - Results  

This section details the computational tests and results used to investigate what sections 

of roads within the Northwest Arkansas transportation system are interdicted using the shortest 

path interdiction model. 

Initial Experimental Run   

The first test used our original 𝑤𝑖
𝑠  values, based on the multiplication of population 

densities of source and sink nodes, and set the value of 𝑙𝑖𝑗 equal to one to limit the number of 

interdictions on each arc (𝑖, 𝑗) ∈ 𝐴. The length 𝑑𝑖𝑗 added per interdiction on arc (𝑖, 𝑗) ∈ 𝐴 was 

initially defined to equal 𝑐𝑖𝑗; thus, a single interdiction on arc (𝑖, 𝑗) ∈ 𝐴 initially has the effect of 

doubling the length of the arc. This added distance 𝑑𝑖𝑗 is measured as a distance but can be 

interpreted to signify an obstruction increasing the time required to travel along an arc. We 

solved eight instances of the interdiction model corresponding to each value of interdiction 

budget 𝐾 in {5,10, … ,40}. In Table A (provided in the Appendix), we note that 76% of the time 

each arc (𝑖, 𝑗) is interdicted (𝑗, 𝑖) is interdicted. This is likely because the objective function 

applies identical weights to the shortest path distance from an origin node 𝑠 to a destination node 

𝑡 and the shortest path distance from 𝑡 to 𝑠.  

 We then created a visualization, using Table A (provided in the appendix), detailing 

which arcs were interdicted through the eight trials and to what frequency they were interdicted, 

as depicted in Figure 3. 



 15 

 
 

 

 

In Figure 3 any line that is colored red was interdicted in at least 7 of the 8 instances, orange 

lines were interdicted in at least 4 instances, and yellow lines were interdicted in at least 1 

instance. Roads surrounding higher density metropolitan regions like Fayetteville, Rogers, and 

Springdale were interdicted the most.  

 Figures 4 and 5 depict the interdiction solutions from the trials with 𝐾 = 15 and 𝐾 = 10. 

Figure 3: Resulting map from experiment 1 
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Figure 4: Visualization of trial with K = 15 

In Figure 4 we see that as the value of 𝐾 decreases the model continues to interdict major 

highways between Rogers, Springdale, and Fayetteville and continues to interdict both the (𝑖, 𝑗) 

and (𝑗, 𝑖) arcs. A smaller value of 𝐾 means the model can make less interdictions; thus, the 

interdictions made for small values of 𝐾 can be considered as roads that are more critical to the 

network’s performance. This trend continues in Figure 5, which depicts the visualization of a 

trial run with 𝐾 = 10, in this scenario all 5 arcs were interdicted in the (𝑖, 𝑗) and (𝑗, 𝑖) direction 

showing that these 5 arcs have a greater impact on the objective than any other arcs.  
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Figure 5: Visualization of Trial with K = 10 

To investigate how the value of 𝐾 affects the length of routes we looked at the average distance 

between four routes in the Northwest Arkansas Region, depicted in Figure 6. 
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Figure 6: Distance of four routes as K decreases in first experiment 

We can see that as the number of interdictions allowed increases so too do the distances of each 

route. This increase is most dramatic in the route between Fayetteville and Bentonville 

presumably because the model is unable to interdict as many arcs near Fayetteville or 

Bentonville when the budget 𝐾 is low, and instead must use up the 𝐾 budget to interdict key arcs 

that affect multiple routes, as shown in the five arcs interdicted in Figure 5.    

 Modification to allow Multiple Arc Interdiction 

 

Many of the arcs interdicted in our first model setup are longer potentially signaling that 

because the cost values 𝑑𝑖𝑗 per arc are directly related to the length 𝑐𝑖𝑗 longer arcs may be getting 

unfairly interdicted more often. We believe these longer arcs are also getting interdicted more 

often because the budgetary cost 𝐾 is 1 no matter the length allowing the model to 

disproportionally affect the length of a route while not significantly affecting the 𝐾 number of 

interdictions. To create a fairer scenario we allowed the model to interdict an arc multiple times, 

up to a set budget for each arc, but standardized the 𝑑𝑖𝑗 value by setting 𝑑𝑖𝑗 = 1, ∀(𝑖, 𝑗) ∈ 𝐴. This 
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then allows the model to interdict longer arcs more frequently but the cost on the budget 𝐾 is 

more significantly altered. In this set of experiments, we set 𝑙𝑖𝑗 = ⌈𝑐𝑖𝑗⌉ for each arc (𝑖, 𝑗) ∈ 𝐴; 

thus, we allow the model to interdict longer arcs more often, but each interdiction adds only 1 

unit to the length of an arc. Because we now allow for multiple interdictions on an arc, we 

increased the maximum budget 𝐾 to 135, which is the sum of the previous interdicted arc lengths 

in Figure 3.  We  solve 8 instances in this set of experiments corresponding to 𝐾 ∈

{15,30, … ,135} which all solved to optimality in less than 20 seconds.  

Figure 7 displays a summary of the results from this set of experiments which allowed 

the model more freedom to make interdictions by decreasing the cost associated with the 𝑑𝑖𝑗 

values and allowing multiple interdictions on each arc.  

 

Figure 7: Visualization of experiment with modified model (4) – (5) 
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Because we allowed the model to have more freedom in choosing which routes to interdict, we 

again wanted to look at the same four routes chosen previously to see how the distance of routes 

is affected by the budget 𝐾.   

 
Figure 8: Distance between routes as 𝐾 decreases in modified experiment 

In Figure 8 most of the route distances still increase as the budget 𝐾 increases, but because the 

new modified model had more freedom in interdiction these increases were more gradual than 

compared to Figure 7. We can also see that the distance between Siloam Springs and Bentonville 

was not altered between any of the trial runs which shows that the model no longer interdicted 

arcs between those two cities. The model also did not interdict arcs between Siloam Springs and 

Rogers until the maximum budget of 𝐾. Because the second model did not interdict routes to and 

from Siloam Springs, we can hypothesize that the arcs from Siloam Springs are not as vulnerable 

as those within the 3 major cities, that run along Interstate 49, of Bentonville, Springdale, and 

Rogers. 
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Section 5 - Conclusion and Future Research  

  

 This paper details the use of a shortest path network interdiction problem to model the 

vulnerability of road networks by identifying combinations of simultaneous arc disruptions that 

maximally increase the weighted shortest path distance between multiple origins and 

destinations. This model was tested with a dataset using selected interstate and state highways 

from the Northwest Arkansas road transportation network, and was iteratively tested by changing 

the number of interdictions allowed.  

 The model was shown to solve to optimality, with a solve time less than 20 seconds, in a 

network with 110 arcs and 1122 origin destination pairs. In both experiments Interstate 49 

between Springdale and Rogers, Arkansas Highway 265 between Springdale and Rogers and the 

Arkansas Highway 71B Corridor between Springdale and Rogers were interdicted in all trials. 

These key arcs make sense as Rogers and Springdale make up a large portion of the population 

in Northwest Arkansas but are only directly connected by three arcs whereas Fayetteville, the 

largest city in the region, has a greater number of major connections allowing for more potential 

routes into the city. After we allowed the model more freedom to decide which routes to interdict 

we continued to see similar arcs being interdicted, but did see more emphasis on interdicting arcs 

within the Fayetteville area when compared to the first experiment. This could show that the arcs 

within the Fayetteville area were unfairly discounted in the first experiment. After both 

experiments our model was able to generate solutions that detail what roads are important for 

future funding.  

This model lays the groundwork for future research that can create a more complete road 

network by adding municipal and county roads and including the speed limits on each road. 

Future research could seek to identify more accurate weights for the origin and destination pairs 
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that could be based on road congestion around the nodes, and instead of calculating distance 

based off straight lines these calculations could be found by using the shapefile data to find 

distances over roads. Furthermore, future research could use combined demand traffic models 

that model behavioral factors in a driver’s decision making. With the addition of speed limits, 

more realistic weights for origin and destination pairs, distance values based on road travel, and 

behavioral factors the model could be tested more accurately in larger road networks allowing 

for a comprehensive vulnerability analysis. Similarly, because the dataset used was filtered to 

create more simplicity in running there is room for future testing with larger datasets to find the 

limits of the proposed interdiction model’s solving abilities.  
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Appendix 

 

 

 The table below contains the sum of interdictions for the arc (𝑁, 𝑁) between all eight 

trials using different values of 𝐾. For arcs with a value of 8 these arcs were interdicted in all 

eight trials meaning they significantly affected the objective values. We used this table to create 

Figure 3.  

 
                                                                           Table A: Results from experiment 1 

Arc Sum of 

Interdictions 

23,15 8 

27,16 8 

26,20 8 

20,26 8 

16,27 8 

20,17 7 

20,19 7 

19,20 7 

17,20 7 

15,23 7 

19,18 6 

27,23 6 

9,14 5 

14,9 5 

13,12 5 

12,13 5 

17,12 5 

12,17 5 

18,19 5 

23,27 5 

26,33 5 

33,26 4 

33,27 4 

27,33 4 

6,7 3 

7,6 3 

21,15 3 

15,21 3 

14,16 2 

22,21 2 
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21,22 2 

25,23 2 

24,25 2 

23,25 2 

22,25 2 

16,14 1 

17,16 1 

25,22 1 

25,24 1 

24,27 1 

26,27 1 

33,31 1 

33,32 1 

29,32 1 
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