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I ABSTRACT

ALGAL GROWTH POTENTIALS AND HEAVY METAL CONCENTRATIONS

II OF THE PRIMARY STREAMS TO UPPER BEAVER LAKE

II Meyer and Green (1984) demonstrated the probable inhibition of
algal growth potential by heavy metals in upper Beaver Lake. Upper

I Beaver Lake receives water from three tributaries. One contains a
small reservoir and the combined streams receive sewage input. Col-
lections were made approximately monthly at eight sites for the Algal

II Assay Bottle Test (AABT) and heavy metal analysis.

In general, AABT results indicated that the collections above
the sewage lnput were phosphorus limited while those below were nitro-

I gen or combined nitrogen and phosphorus limited. Growth inhibition
I occurred during summer and early fall at various sites with greater

inhibition at the confluence of the streams. No inhibitions occurred
~,II at the site below the sewage input.

i",~ Heavy metal concentrations had an overall tendency to increase down-
;,1" 1 stream. Values within the small reservoir were 50-100% higher than

~, in the feeder stream. Highest values of Pb were observed below the
reservoir. SO ,Cl, Mg, Ca, Na and K had high values during low
flow in August10ctober. The low values were independent of high

"' I flow. Pb followed an independent pattern. Storm event results
~" showed that the Ca maximum was before the hydrographic peak while Fe,

Mn, Pb, In, Co, Ni, Cu and Cd attained their maximum just after theI peak. Maximum values were 4-10 times backgr~un~ values. Mn, Pb and
, .Fe exceeded EPA recommended standards for drlnklng water.[' 

Richard L. Meyer, W. Reed Green, Kenneth F. Steele and Diana Wickliff

I"':
:.

l~:11 Completion Report to the u. S. Department of the Interior, Geological
~;:; Survey, Reston, VA, June 1986
c1i 1:

II Keywords --Algal Assay/Nutrients/Heavy Metals/Toxicity
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I
I INTRODUCTION

The Selenastrum capricornutum Printz Algal Assay Bottle Test

II (AABT), (Miller et al., 1978a) has been developed: (1) to determine

the nutrient status of a natural body of water and its sensitivity to

II changes in nitrogen and phosphorus loadings; (2) to evaluate the

I introduction of waste materials or products and determine their

potential stimulatory or inhibitory effects on algal growth; and (3)

II to define the impact and the effects of introduced complex wastes

originating from industrial, municipal, and agricultural point and

II non-point sources. It is intended to be used: (1) to identify algal

I growth-limiting nutrients; (2) to determine biologically the avail-

ability of algal growth-limiting constituents; and (3) to quantify

II the biological response to changes in concentrations of algal growth-

limiting constituents.

I The test procedure is based upon a modification of "Liebig's Law

I of the Minimum", which in theory states that the maximum growth yield

produced by an organism is proportional to the amount of a nutrient

I or combination of nutrients which are present and biologically avail-

able in minimum quantity in respect to the growth requirements of the

II organism involved (Miller et al., 1978a).

II The AABT is a familiar tool used by water management and related

institutions for the assessment of multiple use bodies of water.

II Research involved with this test is primarily directed towards prob-

lematic and stressed aquatic ecosystems. Numerous laboratory and

II field studies have been conducted in association with the development

I
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and application of this procedure and protocol. A detailed bibliog- r

raphy of thi s research up to 1978 i s presented by Lei schman et a 1 .,;

(1979). ~

Nutrient requirements for the algal test organism (~. capri cornu-

~) has been conducted by Shiroyma et al. (1973). When essential

nutrients are present at sufficient levels, the growth of~. capri-

cornutum will define the amount of nitrogen and phosphorus biologi-

cally available within the test water.

In addition, the AABT procedure can define the biological reac-

tive status and influence of heavy metals that might inhibit algal

growth (Miller et al., 1978a, 1978b). Rai et al. (1981) discuss the

function of heavy metals as essential trace elements necessary for

algal growth and the influence of high concentrations of these chemi-

cals upon growth inhibition and toxicity. High concentrations of

heavy metals not only inhibit algal growth, but also reduces indige-

nous alga1 diversity. This reduction results in the economically and

environmentally dominance of the most tolerant forms, most of which

are undesirable greens and b1ue-greens.

However, the application of the AABT and the inhibited growth

response of~. capricornutum may not necessarily reflect the growth

potential of the indigenous algae which have adapted to these condi-

tions through long-term exposure of such (Miller et al., 1978b).

Greene et al. (1978) found strong correlations between the EDTA

treatments with the combination of nitrogen and phosphorus, and that

of the indigenous standing crop measured by chlorophyll-a. Eloranta

2
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.I
II and Halttumem-Keyrilainen (1984) determined that the results of the

AABT are more sensitive to heavy metal influence than assays con-

II ducted with inoculations from natural phytoplankton samples.

Quantitative determinations of heavy metal inhibitory effects

I upon the growth of~. capricornutum have been reported by Greene et

II al. (1975); Christensen and Scherfig (1979); and Michnowicz and Weaks

(1984). Specific conductance and pH function in the regulation of

II biologically reactive heavy metal concentrations. Synergistic and

antagonistic interactions can occur with the combination of high

II concentrations of these chemicals. The presence of high concentra-

I tions of heavy metals as determined by chemical analysis, mayor may

not influence cell growth. Only biological response analysis can

I determine the influence of heavy metal concentrations (Miller et al.,

1978b).

II Miller et al. (1974) used the AABT to determine the limiting

I nutrient in a number of waters. They found that phosphorus limita-

tion decreased as the trophic status of the test water increased. As

I the phosphorus concentrations increased, the test water became more

likely to be nitrogen limited. Davis and DeCosta (1980) found that

II all waters in their study were phosphorus limited and that toxic

II factors such as heavy metals were not important factors controlling

algal important factors controlling algal growth. The AABT procedure

I was used by Ram and Plotkin (1983) to assess the influence of munici-

pal and industrial waste discharges and the removal of phosphorus

II along a heavily used river system. These test waters were nitrogen

I
I 3
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limited below the discharge sites. It was determined that the

r"

removal of phosphorus would not change the nutrient status of these

waters. T"

A. Purpose and Objectives

The protocol of this study was designed to determine the source

of the heavy metals causing the algal growth inhibition discovered by

Meyer and Green (1984) in upper Beaver lake. Specifically, the

research focused upon the distinct differences in the three primary

streams feeding into the upper lake. The eastern stream is bordered

by forest and farm land. The middle stream includes an impoundment

which may effect heavy metal concentrations. The western stream

receives the urban runoff from the villages of West Fork and Green-

land and the moderate-sized city of Fayetteville. All three streams

drain areas with exposed shales with known concentrations of iron

(and other heavy metals) and sulfide ions. The combined streams

receive the effluent from the city. The industry located along the

streams and the industry within the city may be sources of heavy

metals.

The research protocol was structured to permit the determination

of the background level of heavy metals from natural origins and the

contribution by each tributary. The inclusion of lake Sequoyah pro-

vides some insight into the influence of a small impoundment on heavy

metal distribution. The post sewage outfall results indi-cate the

influence of urban runoff and domestic/industrial wastes. Two reser-

voir sampling stations are used to estimate the total input influence

4
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and assimilation within the lake.

B. Related Research or Activities

Meyer and Green (1984) conducted an AABT study within the body of

water of the present research. It was found that nitrogen was the

limiting nutrient directly below the municipal waste discharge site.

The test water gradually became phosphorus limited further down-

stream. Storm events accelerated water flow which influenced

nutrient limitation downstream. The presence of heavy metal inhibi-

tion of algal growth was determined in a number of samples during

different seasons and associated with a storm event.

The results of the past study (Meyer and Green, 1984), led to

the development and application of the present study. One of the

objectives of the present study is to better resolve the influence of

industrial and municipal wastes discharged from the City of Fayettev-

ille's sewage treatment plant. This plant is located in the upper

reaches of Beaver Lake Reservoir. Upstream from the treatment plant

are the confluences of the three tributaries of the White River and a

small impoundment (Lake Sequoyah). Objectives also include the

determination of nutrient and heavy metal influence upon algal

growth, contributed by these bodies of water.

The White River, along which the sewage treatment plant is

located, and the three forks of the White River make up over 80% of

the drainage basin of Beaver Lake. Beaver Lake is a multi-use reser-

voir and supplies the drinking water to the majority of the popula-

tion and institutions in northwest Arkansas. Quantitative and quali-

5
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tative determinations of nutrient limitation, growth potential and

Igrowth inhibition within this system will provide water management

basic data to determine future strategies. I

METHODS AND PROCEDURES

Physical and Chemical Procedures and Parameters I

Samples were collected approximately monthly from May, 1985 II

through April, 1986 from eight sites on the White River at least

three days after a major rain. The west, middle and main stream of II

the White River were sampled above lake Sequoyah at the bridges at

Baptist Ford (BF), Highway 16 (16) and Highway 74 (74), respectively. II

Samples also were collected at lake Sequoyah Dam (OM) and Iron Bridge II

(IB) near Baldwin, Wymann Bridge (WB) near Wymann, the bridge on

Highway 45 (45) near Goshen and at the bridge on Highway 68 (68) near I

Pleasant Valley on the White River (Figure 1). Samples also were

collected at IB during two rain storm events in September and Octo- II

ber, 1985. Temperature, pH, conductivity and total alkalinity were II

determined in the field on raw water samples (Table 1).

Collections were divided into "heavy metal" and "algal" subsets. I

Two 500 ml "heavy metal II samples were filtered through a 0.40

micrometer pore-size membrane using a freon-pressurized unit and II

stored in plastic bottles that had been prewashed with nitric acid. II

One sample was acidified with 1.5 ml of 1:1 nitric acid for cation

analyses in the laboratory. The other 500 ml sample was refrigerated II

for anion, ammonia and silica analyses at the laboratory. The

"algal" subset samples were placed on ice and filtered in the labora- I

I
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" Figure 1. Location of sampling sites. All samples were collected
;;~'I upstream of bridges except for OM which was collected

:;" at the dam on Lake Sequoyah.
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tory through Schleicher & Schuell #30 filters prior to nutrient ana-

lysis and inoculation.

U. S. Environmental Protection Agency (EPA, 1983), American

Public Health Association (APHA, 1985) and Hach Chemical Company

(1984) methods were used for analyses of the "heavy metal" subset

samples. However, the chelation-extraction method of Nix and Goodwin

(1974) was used for heavy metal analyses. See Table 2 for specific

methods and precision for each analysis.

Chemical analysis for the "algal" subset included determinations

of nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen and ortho-

phosphorus concentrations. Nitrate-nitrogen was determined by the UV

method (Standard Methods, APHA, 1975) using a Perkin-Elmer model 202

spectrophotometer. Nitrite-nitrogen, ammonia-nitrogen and ortho-

phosphorus were determined using a Bausch & Lomb Spectronic 70 spec-

trophotometer. Nitrite-nitrogen was determined by Method 354.1 (EPA,

1979). Ammonia-nitrogen was determined by the Chaney and Marboch

method (Chaney and Marboch, 1962). Orthophosphorus was determined

using the stannous chloride method (Standard Methods, APHA, 1975)

using 10 cm cuvettes. Nutrient standards were prepared from stock

solutions purchased from Hach Chemical Company, except for the nitri-

te-nitrogen standards which were prepared in the laboratory.

Nutrient analysis was conducted within 24-48 hours after collection.

Algal Assay Bottle Test Procedure

The experimental design and protocol used for this research pro-

ject was that prepared by Miller et al. (1978) for the EPA entitled

8
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I "The Selenastrum capricornutum Printz Algal Assay Bottle Test."

The test water samples were initially filtered through Schleicher

II & Schuell (S&S) #30 glass fiber filters. Following filtration the

samples were divided into 50 ml aliquots in 125 ml test flasks and

I then autoclaved. Control and nutrient additions were added to tri-

II plicate test flasks. Nutrient additions to the triplicate test

flasks were as follows.

I 1. Control (C) (test water without nutrient additions)

2. Control + 1.00 mg Na2EOTA/l (E)

II 3. Control + 1.00 mg Nil as NaN03 (N)

II 4. Control + 1.00 mg Nil + 1.00 mg EOTA/l (NE)

5. Control + 0.05 mg Pil as K2HPO4 (P)

I 6. Control + 0.05 mg Pil + 1.00 mg EOTA/l (PE)

7. Control + 1.00 mg Nil + 0.05 mg Pil (NP)

I 8. Control + 1.00 mg Nil + 0.05 mg Pil

II + 1.00 mg EOTA/l (NPE)

The test alga Selenastrum capricornutum Printz was obtained

II through the Carolina Biological Supply Co. (cat. #15-2520). The

test organism was grown as stock cultures maintained in log growth

I using Synthetic Algal Nutrient Medium (Miller et al., 1978). Weekly

I transfers were made in order to maintain log growth. An inoculum

equivalent to 1,000 cells per ml were added to each test flask.

II The test flasks were maintained under constant temperature (24 !

0.50 C) and continuous 400 ft-c fluorescent light. The test flasks

II were shaken at least once daily for a period of fourteen days.

I
I 9
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Cell growth production was determined by gravimetric biomass.

The cells were harvested by filtration through S&S #30 glass fiber

filters on day fourteen. The filters were dried using a Thelco

vacuum oven and a vacuum desiccator. Weights were determined using

a Mettler H-18 analytical balance. Triplicate tests were averaged

together and factored by 20 to determine the maximum standing crop

produced as mg dry-weight biomass per liter.

Data Analysis

Experimental results were determined using the maximum standing

crop (M$C) weights of each test. The nitrogen yield coefficient (38)

and the phosphorus yield coefficient (430) (Miller et al., 1978) were

used to determine the expected yields produced by ambient nutrient

concentrations and nutrient additions. Potential maximum standing

crop production was calculated by multiplying the orthophosphorus

concentration of a sample by 430 or by multiplying the TS1N concen-

tration by 38. Biologically available phosphorus concentrations were

calculated by dividing the MSC produced by nitrogen treatments by

430. Biologically available nitrogen concentrations were determined

by dividing the MSC produced by the phosphorus treatments by 38. The

percent algal growth inhibition after fourteen days (%114) was deter-

mined using corresponding nutrient tests with and without the addi-

tion of EDTA. The control MSC was subtracted from the control + EDTA

MSC and then divided by the EDTA MSC and multiplied by 100. Similar

calculations were us~d with the N-NE, P-PE and the NP-NPE tests to

determine percent inhibition associated with nutrient limitation.

10
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I PRINCIPAL FINDINGS AND SIGNIFICANCE

General Parameters and Heavy Metals

I Seasonal Variation in Water Chemistry

Although there are some differences among sites, generally it can

I be stated that the period July through September had the highest

I values for specific conductivity, alkalinity, pH, sulfate, chloride,

ammonia, magnesium, calcium, sodium and potassium (Tables 2 and 3).

I This observation is consistent with the higher amounts of evaporation

and the lack of surface water recharge to the streams during this

I period. Although a few of the heavy metals exhibit high values dur-

ing this period, the lack of a specific period of high heavy metal

II concentrations (Table 3) requires additional explanation. During

I periods of surface water recharge, higher loads of suspended sedi-

ments and/or colloids with absorbed heavy metals could affect heavy

II metal concentrations if some of these particles passed through the

0.40 micrometer pore-size filter. Thus, the conditions during the

II periods of low recharge which lead to sluggish, stagnant conditions

II could allow more of the suspended sediment to settle out of the water

resulting in low heavy metal concentrations. The possibility of

II suspended sediments and/or colloids passing through the 0.40 microme-

ter pore-size will be discussed in more detail in the section on

II Variation in Water Chemistry During Storm Events/First Storm Event.

I Chemistry During Storm Events

Because the IB site was used as the site for storm event samp-

I ling, it is impor~ant to note the seasonal variation in water chemis-

I
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try at this site. Generally, August and September sampling dates ~

give the highest values except for the heavy metals. The explanation

for this period giving high values is the same as for the entire ~

stream, i.e., higher evaporation rates and lack of surface water

recharge. Variation in amount and type of suspended sediment load at

IB could explain the lack of a period of consistently high heavy ,--

metal concentrations.

Variation of Water Chemistry Among Sites

The water chemistry of the White River generally shows a trend

downstream toward Beaver Lake for the heavy metals. The upper

stream sites (BF, 74 and 16) generally have the lowest heavy metal

concentrations for any sampling date. There is an increase in con-

centration downstream to WB, which is located below Sequoyah Dam. It

is somewhat surprising that the site at the dam on Lake Sequoyah

follows this trend since the lake had been expected to effect the

water chemistry. Apparently, the lake behaves much as a large pool

on the river in terms of water chemistry, especially since the water

overflows the top of the dam. The higher nutrient concentration at

this site may be due to the outflow from Fayetteville waste water

treatment plant and/or agricultural activities. Site 45 is either

slightly higher or lower in concentration than WB. However, site 68

always has low concentration values (e.g., Figure 2). These differ-

ences in heavy metal concentrations at the sites are attributable to

the geology and geohydrology of the areas in the vicinity of the

stream. The rock type plays an important role in the water chemistry

12
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due to both dissolved and suspended load. The Fayetteville Shale is ~

exposed near all of the sites, except site 68. Thus, the shale could

contribute heavy metals as suspended sediment directly to the river r~

or via tributaries, and also could contribute dissolved ions by means

of soil or ground water. The topography of the areas with shale

present may be the controlling factor for most of the sites. High

relief areas would probably contribute more suspended sediment due to

erosion, and more soil and ground water due to better drainage than

low relief areas. Thus, the upstream sites have low concentrations

of heavy metals due to the low relief of the shale, and the concen-

tration of the heavy metals increases downstream due to an increase

in relief. The heavy metal concentrations decrease dramatically at

site 68 due to lack of shale in the vicinity of this site and because

of the 'Ipool" nature of this site, which would allow suspended sedi-

ments to settle out. However, during storm events, this site might

receive considerable suspended sediment from upstream and thus cause

elevation of the heavy metal concentrations.

Variation of Water Chemistry During Storm Events

It is often thought that the critical period for pollution in

streams is the period of lowest flow (as exemplified by the seasonal

behavior of many of the White River parameters); however, this is not

necessarily the situation. Nutrients have the potential to be washed

into streams during storm runoff from surface sources, and because

heavy metals are often adsorbed onto the suspended sediment it would

be expected that a higher metal content would occur during high flow

14
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I
I
II conditions when suspended sediment load also would be high.

Thus, the purpose of this portion of the study was to determine

I the effects of storm events on the water chemistry of a portion of

the White River. An effort was made to eliminate the effect of the

I suspended sediment load by filtering the samples through 0.40 micro-

II meter pore-size membranes. The 1B site on the West Fork of the White

River was chosen for this part of the study. The monitoring site is

II located about four miles east of Fayetteville near Baldwin, Arkansas.

The West Fork drains a basin of about 110 sq. mi., which is composed

II of limestone, shale and sandstone. The landuse in the area is pre-

II dominantly pasture and forest. However, the river does flow nearby

several small towns and along the outskirts of Fayetteville adjacent

I to an industrial park.

The river was sampled following a 1.5 inch rain in September and

II a 2.0 inch rain in October, 1985. Samples were collected approxi-

II mately every hour or two immediately following the rain, with the

sampling intervals becoming progressively longer after the peak of

II the stream hydrograph (Table 2).

First Rain Event

.II During the first storm event, the highest flow rate of 120 cfs

II (cubic feet per second) occurred approximately eight hours after

initiation of rain. Some parameters increase in concentration as the

II stream hydrograph peaks; whereas, others decrease (Tables 4-6). Spe-

cific conductivity, calcium (Figure 3) and total alkalinity exhibited

I initial increases in concentration which peak about three,hours after

I
I 15
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I

the hydrograph peak and then exhibit decreases in concentration.

II These parameters reached a minimum 28 hours after the rain began and

I returned to background values as flow returned to base flow (Figure

3). The initial increase in values can be attributed to flushing of

I readily available surface sources which are rapidly depleted by the

I storm runoff. The later decrease in values represents a dilution

effect caused by the influx of rain water as runoff.

II Magnesium, sodium (Figure 4), potassium and chloride reached

maximum concentrations slightly after the peak of the hydrograph.

II Although these cations reached maximum concentration values at the

II same time as specific conductivity, total alkalinity and calcium,

these ions did not exhibit a dilution effect. Thus, there was a

I flushing effect of readily available material that increased the

concentration of the ions slightly above background, and then a

II return to background values following the hydrograph, because the

II source of the ions was not depleted. The behavior of nitrate, ammo-

nia and orthophosphate (Figure 5) is similar to the ions discussed

I above with the main difference being the lag time for these ions to

reach maxima and the fact that the concentration peaks versus time

I are broader for these ions. Note that nitrate was still returning to

I background concentration at the end of the sampling period. There

are two possible explanations for the behavior of these three

II nutrients. One is that the source for these nutrients was some dis-

tance from the sampling site, and the other is that the source mate-

I rial for these ions required a "wetting" time before the ions could

I
.I 17
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be dissolved in significant concentrations. Sulfate concentration

initially peaked with the hydrograph and also exhibited a second

broad peak. The nature of the sulfate peaks may be related to sul-

fate being made available from shale by oxidation of pyrite in the

form of sediments (i.e., first peak) and as dissolved ions from

ground water (i.e., second peak). The explanations for the behavior

of these parameters discussed above are similar to that used by

Steele et al. (1985) to explain the variation in water chemistry in

spring water following storm events and Wickliff and Steele (1986) in

their investigation of heavy metals in stream water. Miller and

Drever (1977) found similar trends (specific conductivity, bicarbo-

nate [total alkalinity], calcium and potassium) for the North Fork of

Shoshone River, Wyoming with the exception of a dilution trend for

sodium.

Of the heavy metals, iron had the highest concentrations rising

from a background of about 200 ug/l to a maximum of 1100 ug/l seven

hours after the peak of the hydrograph (Figure 6). Manganese, lead

and zinc (Figure 7) exhibited similar trends. Note that iron, manga-

nese and lead (Table 6) concentrations all exceed the EPA (1976)

drinking water standards of 300, 50 and 50 ug/l, respectively.

Although much lower in c.oncentrations, cobalt, nickel, copper and

cadmium also reach maximum concentrations following the peak of the

hydrograph. Whipple and Hunter (1977) found the highest concentra-

tions of heavy metals in storm runoff from urban areas to occur

within the first 30 minutes of storm runoff. Under natural stream

20
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,

conditions, manganese is precipitated from solution more readily than

iron because of the autocatalytic effect on manganese precipitation.

Thus, the dissolved concentration of these two metals should not

correlate well. Figures 6 and 7 show a good correlation between

these two elements indicating that the source for these two metals is

nearby, or that particulate material is passing through the filter.

Kennedy et al. (1974) found that fine-grained particulate material

can pass through 0.45 micrometer pore-size membrane filters and cause

large percentage errors in analyses of iron, manganese, aluminum and

titanium that are enriched in the particulates relative to the water.

In order to evaluate the possible importance of particulate material

in this study, a water sample was collected at IB during a rain event

in March, 1986. The results indicate that significant amounts of

some heavy metals (especially iron) pass through 0.40 micrometer

pores and that most are collected on 0.30 micrometer pores or smaller

(Table 7). Thus, it appears that a significant amount of some heavy

metals could have been leached from suspended material by the acid

used to stabilize the White River water samples. Williams et al.

(1973) found no correlation between stream flow and the soluble heavy

metals in the Black Warrior River at Tuscaloosa, Alabama. However,

they did find a strong positive correlation of heavy metals and the

resuspended bottom sediments present in the water column following

increased flow and scour from heavy rain runoff.

Comparison of the Two Rain Events

Sampling began just before the peak of the hydrograph during the

:;1'".1.



I
I

second rain storm event in October~ The parameters exhibited trends II

similar to those of the first rain events (Tables 8-10). The flow

rate was approximately five times greater in the second rain storm II

event than in the first; thus, it is not surprising that the dilution

effects are greater (about 2x) than those for the first rain event, II

and that it required twice as long to return to background values II

(Tables 8 and 9 and Figure 8). Although the heavy metal concentra-

tions, with the exception of iron, were higher in the second rain II

event, the ranges in concentrations were similar. Thus, iron, manga-

nese and lead concentrations again exceeded the EPA (1976) standards II

for drinking water (Table 10). Some other differences between the II

two rain storm events are:

(1) sulfate exhibits a dilution effect in the second rain II

event after exhibiting an increase that corresponds

with the peak of the hydrograph (Figures 9 and 10) II

(2) ammonia and orthophosphate both reach a maximum that II

closely follows the peak of the hydrograph (rather than

the later peak exhibited during the first rain event) II

(3) nitrate exhibits a second peak in concentration during

the second rain event (Figure 11) II

(4) maximum values for the heavy metals occurred at the peak ..

of the hydrograph during the second rain event rather

than after the peak II

(5) Manganese, copper, lead, ~obalt ~nd nickel reache~ a

Isecond peak in concentratlon durlng the second raln

I
24 I
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event (e.g., Figure 12). Lead, cobalt, nickel and cad-

mium also exhibited this bimodal character during the

first rain event.

The bimodal nature of the heavy metal peaks suggest that there

are two sources of heavy metals, perhaps one at a greater distance

from the monitoring site. The difference in behavior of the other

ions between the two storm events probably is due to different

amounts of readily available ions, variation in suspended sediment

load, variation in soil moisture and variation in ground water chem-

istry. In turn, these variations can be attributed to time between

rains, and amount and intensity of rain.

Algal Assay

Ambient nitrogen and phosphorus concentrations and the propor-

tionality of these nutrients provides the basis for determining

nutrient limitation. It has been determined (Miller et al., 1978)

that the growth of Selenastrum capricornutum becomes phosphorus

limited in waters containing N:P ratios greater than 11:1 and

nitrogen limited in those less than 11:1. Background nutrient data

can be used to place a sample in a limiting category; however, to do

so without assay analysis is discouraged according to the previous

author. Assay response can verify nutrient limitation with better

resolution and determine the biological availability of these

nutrients within the test water in question. Nutrient additions with

and without the chelator (EDTA) addition can determine if growth

inhibition occurs due to heavy metal toxicity and the extent of the

'1n
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inhibition if it does occur

Background Data

Nutrient ratios and calculated production (MSC) yields based on

ambient nutrient concentrations of the test water were used to pre-

Based on these results, the testdict growth limiting nutrients.

water samples can be separated into three categories of potential

phosphorus, nitrogen and nitrogen-phosphorusnutrient limitation:

co-limitation

Table 

11).

Those samples which were expected to be phosphorus limited are

In all cases, the N:P ratio is greater thanpresented in Table 12.

11:1, and the calculated MSC based on ambient phosphorus concentra-

tions are less than those based on the ambient nitrogen con centra-

The calc!Jlated production yields further clarify the expectedtions.

results based on the N:P ratios

The majority of the test water samples collected were predicted

to be phosphorus limited (Table 12). In general, all three tributar-

ies of the White River and the sites after the confluence of the

tributaries upstream from the sewage discharge site were expected to

be phosphorus limited throughout the sampling period.

Below the sewage discharge site, phosphorus levels were great

All samples taken directlyenough to expect nitrogen limitation.

below the sewage discharge (45) were classified to be nitrogen

During the late autumn and winter collectionslimited (Table 13).

this nutrient influence continued downriver, as seen in the 68 site

During the summer and early fall collection dates, phosphorusdata.
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levels declined between 45 and 68, enough to categorize 68 as being

phosphorus limited. At one instance (68, 1/11/86), the N:P ratio and

the calculated production yields were such that neither nitrogen or

phosphorus could be expected to imit growth more than the other.

IThis sample was placed into the category of nitrogen and phosphorus

co-limitation Table 14).

The effluent from the sewage discharge dramatically changed the

expected growth limiting nutrient status and the calculated cell

growth potential of this aquatic system. Upstream from the sewage

discharge site, in the three tributaries and the post-confluent

sites, phosphorus levels remain extremely low throughout the year

Associated with these low levels is the low potential for algal pro-

duction. Under these conditions, the calculated growth yields never

exceed the level of 10.0 mg/l. However, below the sewage discharge

Isite where phosphorus levels are extreme enough to indicate nitrogen

limitation, the potential algal growth yields are roughly an order of I
magnitude higher

Maximum Standing Crop Production

The maximum standing crop produced by the test water assays are

presented graphically in Figures 13-28, and the corresponding concen-

trations are found in Table 11. The test water collections above the

sewer treatment plant generally produce low maximum standing crop

values as expected. In many of the control treatments, ambient

nutrient concentrations were at such levels that cell growth could

..

not be detected. using the present experimental technique. This also

I. 32
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occurred in many of the nitrogen and phosphorus additions. With the

addition of both nitrogen and phosphorus the maximum standing crops

increased as was expected

The influence from the sewage effluent can be seen in those sites

The maximum standing crops of thebelow the sewage treatment plant.

control tests from 45 are much greater than those above the sewage

This nutrient influence continues downstream during theplant.

During the summer andwinter collections, as seen in the 68 data.

fall collections, the results from 68 resemble those of the up

stream sample sites.

Nutrient Limitation

imitation of the test water is better resolved throughNutrient

the analysis of assay results. From the results of this experiment,

a number of nutrient limiting situations occur. If the test water

was phosphorus limited, for example, the addition of phosphorus (0.05

mg/l} to the test water would increase the maximum standing crop.

Similar results could occur under nitrogen limitation with the addi-

1.00 mg/l If the non-limiting nutrient (nitrogention of nitrogen

in the case of phosphorus limitation} functions in a secondary way

then the addition of both nitrogen and phosphorus would produce a MSC

This wouldgreater than that of the limiting nutrient added singly.

be the case under phosphorus limitation if the addition of phosphorus

changed the N:P ratio to a ratio below that of 11:1, resulting in

Under these conditions, the combined nutrientnitrogen limitation.

additions would produce a MSC similar to those calculated for the
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ambient nitrogen yields with the addition of nitrogen

Conditions can occur in which neither nitrogen or phosphorus are

Istrongly limiting growth over the other and resulting in co-

limitation. Neither the addition of nitrogen or phosphorus produces

increased growth, but the combination of both does. It can be deter-

mined which nutrient influences growth in a primary sense by compar-

Iing the assay produced maximum standing crops with those expected to

occur. If the actual combined yield is more similar to the expected

phosphorus addition yield, then phosphorus is the primarily nutrient

Iinfluencing growth. The same would be true for nitrogen if the

expected nitrogen addition yield was similar to the MSC produced by

the combination or both nutrients.

Synergistic growth effects from the combination of both nutrients

can be determined if the addition of both nitrogen and phosphorus

produce a MSC greater than the single nutrient additions, as well as

those expected to occur. Again, nitrogen or phosphorus may be the

primary limiting nutrient, or they may be co-limiting.

ICategories of nutrient limitation and influence can be classified

based on the results of this research as follows: phosphorus limita-

Ition, nitrogen limitation, nitrogen and phosphorus co-limitation,

nitrogen and phosphorus co-limitation with primary phosphorus influ-

I
ence, nitrogen and phosphorus co-limitation with primary nitrogen

influence, nitrogen imitation with nitrogen and phosphorus synergis-

tic influence, phosphorus limitation with nitrogen and phosphorus

Isynergistic influence, and nitrogen and phosphorus co-limitation with

. 50



synergistic influence. Categorized assay results are found in Table

15

Relationships exist between the assay results and the seasonal

Spatial continuity exists withand spatial test water collections.

those sites above the sewage treatment plant and those below the

Temporal continuity exists between the summer and early falplant.

October) collections and the late fall and winter collections

(November -March).

In general, the results from the sample sites above the sewage

treatment plant during the late fall and winter collections indicate

Table 

15a). These spa-phosphorus limitation of growth production

samples may also be phosphorus limited with nitrogen and phos-

Table 159). The upstream sites duringphorus synergistic influence

the summer and early fall collections have varied nutrient limiting

Many are phosphorus limited, with or without synergisticinfluences.

influence in combination with nitrogen additions. Others are

nitrogen and phosphorus co-limited with synergistic influence (Table

,h).

Below the sewage treatment plant, assay results indicate nitrogen

All collections from 45 are nitrogen limited except onelimitation.

collection occurring in February, which is nitrogen limited but with

synergistic influence from the combination of both nitrogen and phos-

Results from the collections at 68 vary inTables 15b & f).phorus

Nitrogen plays a role in influencing growthnutrient influence.

production in all collections except on the November collection date,
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which indicates strong phosphorus imitation. Three collections are

I

nitrogen limited, and the other six are either co-limited by nitrogen

Iand phosphorus or indicate synergistic influence with the addition of

both nutrients

Biologically Available Nutrients

Another result of the Algal Assay Bottle Test ;s also used to

determine biologically available concentrations of nitrogen and phos-

phorus. INutrient concentrations are determined by the maximum stand-

ing crop produced by the additions of nitrogen or phosphorus with or

Iwithout the addition of EOTA. This procedure can be used to verify

chemical analysis and should theoretically correlate with such. How-
I

ever, according to Miller et al. (1978), failure of nutrient analysis

to correlate wi.th the biologically available nutrient determinations

may be the result of the presence of biologically available organic

nutrients, effects of other growth-limiting nutrients, the presence

of inhibitory constituents, sediment and/or unreliable chemical ana-

I
lysis.

Calculated biologically available nutrients based on assay

results are found in Table 16. These data are determined with both

Ithe presence and absence of EDTA. Correlations between nutrient

analysis and biologically available nutrient determinations vary.

Many measured and calculated biologically available nutrients corre-

late well; whereas, others indicate that the biologically available

nutrients are much higher than measured and still others are much

Ilower. There are no general trends among these data, and the signif-
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,

icance of these findings is unknown. The lack of correlations

between the measured nutrient levels and the biologically determined

nutrient levels is probably due to a number of reasons, those men-

tioned above and those unknown. Since a number of test water samples

suggest co-limitation, secondary limitation and synergistic influ-

ence, the biologically determined available nutrients would not be

expected to correlate well with the analytically determined inorganic

nutrient concentrations. Ambient phosphorus levels must be greater

than 0.010 mg/l in order to accurately determine biologically avail-

able nutrient levels (Miller et al., 1978b). Chemical analysis shows

that many samples are below this limit (Table 12).

Algal Growth Inhibition

Another purpose of the Algal Assay Bottle Test is to determine

the extent of heavy metal toxicity and its interactions with nutrient

regulation. If the presence of heavy metals inhibits the growth of

the algae, it can be determined with the application of EDTA to the

control and nutrient additions. EDTA combines with the heavy metals

in solution, removing them from biological activity. Any increase in

production, with the addition of EDTA over that of the treatment

without EDTA, indicates that production may be inhibited by heavy

metals.

Indications of growth inhibition during the summer and early fall

can be seen graphically in Figures 13-28, and actual assay results

are presented in Table 17. These data are expressed in percent inhi-

bition (%I) in Table 18. To better resolve and analyze the greatest
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cases of inhibition, those samples which had greater than 50% inhibi-

Ition between the nitrogen and phosphorus combinations with and with-

out EDTA were analyzed (Table 16). Analysis of variance between the

two tests for each sample, along with the controls and the single

Inutrient additions with and without EDTA, was conducted to determine

A 11if the mean triplicate samples were significantly different.

reported data in Table 16 is significant at the p <0.01 or greater

than 99% significant.

Growth inhibition under these conditions occurs only during the

Isummer and early fall collections, except on the August collection

date. All three tributaries of the White River contain growth ;nhi-

bition on one or more of these sample dates. The sample collections

Ibelow the triblJtary confluences and above the sewage treatment plant

also contain growth inhibition during June, July and September. No

growth inhibit'ion occurred at 45 any time during this study. This

suggests that 1:he heavy metals may already be complexed with the

organics relea~;ed in the sewage effluent, removing them from biologi-

cal activity.

CONCLUSIONS

IThe concen1:rations of heavy metals in the White River vary sig-

nificantly with location along the river, season and storm events

The local geology (especially presence of shale and relief, which

will effect the suspended sediment load) and ground water hydrology

(contribution of dissolved ions) probably are the major factors con-

trolling the heavy metal concentrations for the sites. The sluggish

I
-
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and stagnant conditions of the river during periods of low recharge

cause increases in most parameters due to concentration by evapora-

tion and the lack of dilution by storm runoff. These types of condi-

tions can be used to explain the seasonal chemical variations of most

parameters. However, the heavy metal seasonal and storm event var;a-

tions appear to be controlled by the amount (and perhaps type) of

fine suspended sediment load. For example, during the period of low

recharge, the suspended sediment load would be low due to the lack of

runoff and suspended sediments would tend to settle out of the water.

During storm events, parameter values exhibit variations that are

significant and about the same magnitude as the seasonal variations.

The heavy metals increase in concentration as flow increases, appar-

ently because the suspended load also is increasing, and a portion of

suspended sediments and/or colloids are passing through the 0.40

micrometer pore-size membranes used for filtration of the water

The other parameters exhibit increases because of flushing effects

potassium) or dilution effects (e.g., calcium) due to rain

runoff

Nutrient analysis of the collections predicts that most of the

samples from the three tributaries and above the sewage treatment

input are phosphorus limited. Below the sewage input the phosphorus

concentration is great enough to cause nitrogen limitation to Highway

68.

During low flow, phosphorus is processed between Highways 45 and

68 so that the 68 site may become phosphorus limited or nitrogen-

phosphorus co-limited.
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The MSC's are near detection limits above the sewage flow. In

most instances, both nitrogen and phosphorus are necessary for signif-

;cant growth. The r~sc at the Highway 45 site tend to be greater than

al other sites, including the Highway 68 site.

IInhibition of algal production by heavy metals was present at

various times in all branches of the White River. The correlation of

reduced production of biomass (MSC) with specific heavy metal toxic-

ity was limited by the low MSC values. The lack of growth inhibition

at the Highway 45 site may be associated with the organic input com-

plexing with the metals and/or sedimentation, thereby removing them

from biological activity. The variance between this study and that I
of Meyer and Green (1984) requires further investigation.

I
I

I

I

I

I
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