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Abstract 

As the global population increases and food security is recognized as a critical issue, crop 

growth prediction models help ensure the sustainability of reliable food sources. Using a 

prediction model based on temperature and simple, measurable field parameters, e.g., Leaf 

Area Index (LAI) or Canopy Height (Hcan), may allow farmers and others to intervene mid-season 

with fertilizer, irrigation, or other inputs to obtain a better harvest.  

This study aims to create a general model that could predict LAI and Hcan values for 

numerous rice varieties using Growing Degree Days (GDD) as the time scale. The models use 

data collected during the 2018-2020 growing seasons for 16 fields in east-central Arkansas. 

After comparing model performance indicators (coefficient of determination (R2), root mean 

square error (RMSE), percent bias (pbias), percent difference, and Akaike Information Criterion 

values (AIC) of quadratic and sigmoid regression forms, a sigmoid regression with GDD as its 

time scale was chosen as the best functional form for the datasets provided. The sigmoid with 

GDD was chosen due to its higher R2 values and lower AIC values (LAI: R2= 0.82, AIC= 14.97; 

Hcan: R2= 0.88, AIC= 83.01), compared to the other models. The data was then divided into 

calibration and validation datasets, accounting for field and rice variety differences. The 

calibration dataset created a generalizable model, and the validation dataset ensured the 

model could be applied successfully over varying field conditions (LAI: R2= 0.78, RMSE= 1.15 

m2m-2; Hcan: R2= 0.85, RMSE= 13.7 cm). 

Three cultivar-specific models for the CL-XL745, XP753, and Gemini214 CL cultivars were 

created and compared to the general model. Overall, there were only minor differences 

between each model, with the statistics values remaining within a tight range between the 
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general and cultivar-specific models. Further work is being pursued on the benefits of dividing 

the data based on field cultivar. The uncertainties due to less representative calibration 

datasets within the cultivar-specific models make the general model the preferred choice for a 

future wide-scale application for farmers to make field management decisions concerning 

improving yield and general field management practices within Arkansas.  
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1. Introduction 

Crop modeling has been used for years by farmers and agronomy researchers to predict 

possible outcomes of current and upcoming growing seasons and prepare for issues that may 

be experienced during these seasons (Hammer, 1997; Matthews et al., 2013; Mehdi et al., 

2018). More importantly, as food scarcity becomes a pressing issue due to the growing world 

population, diets shift, and biofuel production competes with crops, crop modeling and 

estimation will be vital for maintaining global food security (Waldner et al., 2019). There have 

been many approaches to creating crop models, specifically through phenological plant 

characteristics, like Leaf Area Index (LAI) and Canopy Height (Hcan).  

One crop of global interest is rice (Oryza sativa), a primary source of sustenance for 

approximately 3.5 billion people globally and a primary source of income for hundreds of 

millions of people throughout many developing countries (Muthayya et al., 2014). Although the 

United States accounts for less than 2% of global rice production, it contributes about 6% of 

global rice exports (Childs, 2021). Within the United States, Arkansas (the location of this study) 

is the top producer of rice. With rice being such an important food source, creating a rice crop 

model could assist many farmers in ensuring a productive and successful growing season.  

Additionally, a crop model can help farmers make pre-season decisions regarding cultivar 

choice, fertilizer and pesticide applications, and potential yield when applying any new 

techniques to their fields (Mehdi et al., 2018). 

When developing a mathematic crop model, it is crucial to designate a reliable time 

series to build the model. Many studies use days after planting (DAP) or the day of the year 

(DOY) since they are simple to calculate and are consistent regardless of external factors such 
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as cultivar and soil type (Campos-Taberner et al., 2016; Gilardelli et al., 2019). However, 

temperature and photoperiod have also proved to be primary factors that affect crop 

development (Sharifi et al., 2017). Using a temperature-based time series like Growing Degree 

Days (GDD) considers the varying temperatures throughout multiple growing seasons, as well 

as differences in planting dates. Therefore, it could create a more accurate crop model than a 

model using DAP. GDD is based on thermal time accumulated between a base temperature and 

a cut-off temperature, and it is used to describe the timing of each phenological stage 

(Boschetti et al., 2018). Since temperature influences Leaf Area Index (LAI) and canopy height 

(Hcan), these factors should be considered when creating a mathematic crop model (Shah et al., 

2011). 

Leaf Area Index (LAI) has proved to be a primary contributor to mathematical model 

building as an integrative plant physiological variable that helps govern vegetated surfaces' 

mass and energy balances (Colaizzi et al., 2017). LAI is defined as the total one-sided area of 

photosynthetic tissue per unit surface area. It is one of the essential variables in climatic, 

ecological, and agronomical research studies (Stroppiana et al., 2006). However, measuring LAI 

can be both labor-intensive and destructive to the crops. The use of LAI and Hcan as outcomes 

for a crop model may eliminate the need to visit numerous locations throughout a field, or 

several fields, to obtain readings. Farmers could measure Hcan in their fields, and while they may 

not be able to measure LAI easily, they could instead use satellite-derived products to estimate 

it. Obtaining these field values would allow for comparisons with the model and gauge possible 

stress. There has also been limited cultivar-only modeling work within rice fields, particularly in 

Arkansas and other parts of the US Mid-South. Relationships between a general model 
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including all the cultivars could be compared to individual models for each cultivar to determine 

whether creating cultivar-specific models is necessary for a successful model. 

Although it has limited accuracy in predicting yield, maximum LAI is a crucial factor to 

observe when implementing weather variables into a crop prediction model (Waldner et al., 

2019). For example, there is some evidence that maximum LAI can be used to predict yield; 

however, little work has been done to test this claim on rice crops, and the literature review 

could not uncover evidence that this test has been applied to rice crops in Arkansas. Comparing 

yield and Peak LAI will assist in determining if LAI has the capability of substituting for yield for 

farmer and modeler use in future models.  

Since there has been little work on creating a rice crop prediction using a temperature-

dependent time series, this work provides new insight into the extent to which GDD applies to 

different types of regression curves. The objectives of this study were to (1) compare models 

using polynomial and sigmoid-curve regressions to determine the best-fitting model across GDD 

and DAP time scales; (2) once the best fitting model is selected, the general and cultivar-specific 

models are calibrated and validation, and then compared; and (3) compare peak LAI to yield to 

test its predictive power.  
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2. Methods 

2.1 Study Area 

 Over the 2018, 2019, and 2020 growing seasons, the study area consisted of 16 field 

sites, which differed for each growing season. These sites were located throughout the central-

eastern region of Arkansas (Figure 1).  

Rice was grown following the typical practice in Arkansas, where it was either dry, drill-

seeded, and flooded at the five-leaf stage, or where the pre-germinated seed was broadcast 

seeded into a wet field ("water seeding"). Table 1 displays the seeding method for each field, 

with 27% of the fields being water-seeded and the rest drill-seeded. This table also shows each 

field's agronomic and soil details, including soil type, planting/harvest date, water regime used, 

rice cultivar, and yield values. The study includes eight different rice cultivars and two irrigation 

regimes: Alternate Wetting and Drying (AWD) and Continuous Flooding. Continuous Flooding 

occurs from the 5-leaf stage until approximately two weeks before harvest, when the fields 

typically have at least 10-15 cm of pooled water present, depending on the field type (i.e., zero-

grade, multiple inlet irrigation (MIRI), precision grade, etc.) (Henry et al., 2021). On the other 

hand, AWD is a practice in which the field is allowed to dry down before reapplying irrigation 

water (Belder et al., 2004; Lampayan et al., 2004; Lampayan et al., 2015), creating significant 

water savings and mitigating greenhouse gas emissions, like methane (Chidthaisong et al., 

2018; LaHue et al., 2016; Nalley et al., 2015; Runkle et al., 2019). Yield values (t/ha) were shared 

with the researchers by the farmers from yield monitors or on-farm estimations. These yield 

values were corrected to a 13% grain moisture basis for consistent yield comparisons. Soil type 

information was collected from the SSURGO database (USDA-NRCS).  
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Figure 1: Map of Study Sites in Arkansas map with selected counties labeled; Land Use Data was provided by the 
Arkansas GIS Office (2013). 
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Table 1: Research site agronomic and soil details separated into their respective calibration and validation datasets 

Calibration Dataset 
Field 
Name 

Growing 
Season Year 

Planting 
Date 

Harvest 
Date 

Soil Type 

 
Seeding 
Method 

Irrigation 
Regime 

Rice Cultivar Yield Corrected to 
13% moisture (t/ha) 

W3 2018 Apr 30 Sep 15 Perry silty clay Drill AWD* CL-XL745 7.1 
CS 2018 May 03 Sep 11 Calhoun silt loam Drill AWD CL-XL745 8.3 
R2 2018 May 01 Sep 04 Stuttgart silt loam Drill AWD XP753 10.7 
R7 2018 May 11 Oct 07 Perry clay Drill CF** Gemini214-CL 10.4 
R4 2018 May 02 Sep 16 Perry silty clay Drill CF RT7311-CL 9.5 
R10 2019 Jun 05 Oct 08 Perry silty clay Water CF CL-XP4534 5.0 
R5 2018 Apr 12 Sep 15 Stuttgart silt loam Drill AWD XP753 8.1 
B50 2019 Jun 10 Oct 25 Perry silty clay Water AWD Gemini214 + XL7451 5.9 
R8 2019 May 14 Sep 28 Calhoun silt loam Drill AWD Gemini214-CL 10.6 
R3 2019 Apr 24 Sep 22 Dewitt silt loam Drill CF XP753 10.7 
W3 2020 Apr 02 Aug 18 Perry silty clay Water AWD CL-XL745 10.5 
R9 2019 Apr 17 Sep 02 Hebert silt loam Drill AWD XP760 10.4 
W4 2019 May 13 Sep 12 Perry silty clay Water AWD CL-XL745 8.4 
CN 2019 May 16 Sep 14 Calloway silt loam Drill AWD Gemini214-CL 9.0 
R4 2019 May 13 Sep 18 Perry silty clay Water CF CL-XL745 8.6 
R10 2018 May 04 Sep 05 Perry silty clay Drill AWD CL-XL745 8.8 

Validation Dataset 
W4 2018 Apr 30 Aug 31 Perry silty clay Drill AWD CL-XL745 9.3 
CN 2018 May 03 Sep 11 Calloway silt loam Drill AWD CL-XL745 8.6 
R3 2018 May 06 Nov 07 Dewitt silt loam Drill AWD XP753 10.3 
R8 2018 Jun 04 Sep 20 Calhoun silt loam Drill AWD Gemini214-CL 10.6 
R9 2018 Mar 23 Aug 15 Hebert silt loam Drill CF RT7311-CL 10.2 
R1 2018 Apr 25 Sep 05 Calhoun silt loam Drill AWD CL-XP4534 8.6 
R1 2019 Apr 02 Sep 02 Calhoun silt loam Drill AWD XP753 9.1 
B30 2019 Jun 04 Oct 10 Perry silty clay Drill CF Gemini214-CL 6.4 
R2 2019 Apr 03 Sep 09 Stuttgart silt loam Drill CF Gemini214-CL 10.3 
R5 2019 Apr 09 Sep 03 Stuttgart silt loam Drill AWD XP753 9.6 
W4 2020 Apr 02 Aug 19 Perry silty clay Water AWD CL-XL745 10.4 
CS 2019 Jun 02 Oct 03 Calhoun silt loam Drill AWD Gemini214-CL 8.4 
R6 2019 May 15 Oct 17 Roellen clay Water AWD Provisia 9.0 
W3 2019 May 13 Sep 12 Perry silty clay Water AWD CL-XL745 9.1 

*AWD = alternate wetting and drying 
**CF = continuous flooded from 5-leaf stage 
1 The farmer mixed the seeds from two different varieties before planting. 

2.2  Field Data Collection 

2.2.1 LAI Data Collection 

Leaf Area Index (LAI) and canopy height (Hcan) were measured approximately every 1-2 

weeks during 2018, 2019, and 2020 growing seasons. The team obtained at least 8-15 sampling 

dates for each field for all three growing seasons. However, the median number of sampling 

dates across all fields was 11 dates, with the most consistent measurements taken in 2019. 

Both the LAI-2000 and LAI-2200C instruments measured LAI in 2018. In 2019 and 2020, all the 

measurements were performed with the LAI-2200C. It should be noted that the LAI-2000 and 
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LAI-2200C technically measured plant area index (PAI), but for convenience, it will be referred 

to as LAI throughout this study, as the instrument reports these values as LAI. The PAI includes 

other material that blocks the light from reaching the sensor, like stems and grain, and not only 

the leaf material. The LAI-2200C measures any objects blocking sunlight from reaching the 

sensor; therefore, the instrument measures PAI (LI-COR Biosciences, 2013).  

Measurements were taken each season differently due to annual improvements in the 

protocol. In 2018, the measurements at each field were taken in one location arbitrarily 

selected within a relatively small and consistent area of the field. In 2019, two flagged locations 

with an area of 1 m2 each within every field marked the measurement locations (Figure 2A). 

Similarly, in 2020, measurements at two flagged locations were taken, but the measurement 

area was increased to 4 m2 within a 4m x 1m area (Figure 2B). The average of these two 

measured LAI values on each date was used for modeling. With methods for obtaining LAI 

measurements improving each growing season, it is possible for the models to also improve 

with respect to accuracy. For more information regarding LAI data readings and scattering 

corrections, refer to Appendix A. 
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Figure 2: (A) Flagged LAI measurement location in Field R2 during the 2019 growing season, and (B) LAI 
measurements were taken by a research group member in the 2020 growing season at field W3; photos by B. 
Moreno-García. 

2.2.2 Canopy Height Data Collection 

 Canopy height was measured in 5 locations in each field every time LAI was measured, 

typically within the same measurement area as LAI. The average of the five measurements was 

used for modeling purposes. Hcan was measured from the soil surface to the line of the upper 

leaves and the top of the panicle after heading. For each growing season, at least eight and no 

more than 17 Hcan sampling dates were taken at each field; most of the fields had an average of 

12 height measurements. 

2.3 Weather Data and Conversion to Time Series 

The weather data used for GDD calculations were collected from a database supported 

by the PRISM Climate Group. This group gathers climate observations from a range of 

monitoring networks, applies quality control measures, and develops spatial climate datasets to 

reveal short- and long-term climate patterns (PRISM Climate Group, 2019). The PRISM datasets 

provide estimates of 6 basic climate terms: precipitation (ppt), minimum temperature (Tmin), 

maximum temperature (Tmax), mean dew point temperature (Tdmean), minimum vapor pressure 
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deficit (vpdmin), and maximum vapor pressure deficit (vpdmax) (PRISM Climate Group, 2019). Of 

these basic climate terms, we used only the daily Tmin and Tmax to calculate GDD. For each 

growing season, climate data were obtained by entering the coordinates and specifying the 

growing season dates into the PRISM application for each field individually. The base equation 

for calculating GDD is: 

𝐺𝐷𝐷 = ቀ
୫୧୬ ( ೘்ೌೣ,ଷ଴)ା்೘೔೙

ଶ
ቁ − 𝑇௕௔௦௘                                                 (1) 

where 𝑇௕௔௦௘ is 10℃. When the Tmax is higher than 30℃, the value of 𝑇௠௔௫  must be set to 30℃ 

(Liu et al., 2016). This temperature range was chosen based on the desired temperatures for 

optimal rice growth (Sharifi et al., 2017). The base equation is applied to the PRISM 

temperature data but includes a conditional statement setting GDD to 0 when  ( ೘்ೌೣା்೘೔೙)

ଶ
<

𝑇௕௔௦௘ (McMaster and Wilhelm, 1997). For model testing, we calculated cumulative GDD values 

for each field and season. 

2.4 Relationships between LAI and Canopy Height to DAP and GDD 

2.4.1 Polynomial Regression Models 

 First, quadratic polynomial regression models were created to test the relationships 

between LAI and Hcan with different time series (either GDD or DAP). The general polynomial 

regression equation used for both models is as follows: 

f(x) = ax² + bx + c                                                                                                             (2) 

where x is GDD or DAP (within units of °C٠day or day, respectively), and a, b, and c are all 

parameters fit using the ordinary least squares method, modeled in Excel.  
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2.4.2 Sigmoid-Curve Regression Models  

Second, we tested a sigmoid regression form using non-linear fitting in Excel. Like the 

polynomial regression approach, data was inserted into an Excel file for each field for each 

growing season. The models were based on the general sigmoid-curve equation: 

f(x) = base ∙ ቀ1 + exp ቂ
ି(୶ି୧୬୤ )

௦௣௥ௗ
ቃቁ

ିଵ
∙ ቀ1 − (1 + exp ቂ

ି(୶ି୭୮୲)

௢௣௧_௦௛௣
ቃ)ିଵቁ             (3) 

where, x is GDD or DAP, and the five parameters of the sigmoid regression are: base is 

the base of the function, infl is the inflection point of sigmoid curve, sprd is the spread of data, 

opt is Optimum GDD or DAP, and opt_shp is a curve shape parameter. 

Each parameter had a different effect on the general curve (Figure 3). Alteration of the 

base parameter affected the magnitude of the curve over the y-axis. When we changed the 

inflection point, the part of the curve that increased the most rapidly shifted to the left or right. 

The spread parameter shifted the upper and lower curves of the "S," producing a more or less 

defined curve. Changing the optimum GDD or DAP parameter resulted in the curve's final LAI 

point increasing or decreasing along the y-axis. When the optimum shape parameter was 

altered, the uppermost peak of the curve moved upwards or downwards.  
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Figure 3: Schematic of how each sigmoid parameter affects the overall curve  

Four graphs were created for each field year's sigmoid-curve regression model, 

comparing GDD and DAP to Hcan or LAI. Initial parameter values were estimated by considering 

what each parameter represents within the equation and approximating values that best fit the 

dataset before applying the solver function. The solver function then minimized the sum of the 

squared errors for each regression by changing the five estimated parameters. Table 2 displays 

the projected initial values used for the general sigmoid models.   

Table 2: Sigmoid regression estimated values for initial modeling tests  

Model Base 
(m2m-2, cm) 

Infl 
(days, °C•day) 

Sprd 
(days, °C•day) 

Opt 
(days, °C•day) 

Opt_shp 
(m2m-2, cm) 

LAI v. GDD  8 750 150 3000 3500 
Hcan v. GDD 400 1700 600 1700 270 
LAI v. DAP 10 50 8 1970 4600 
Hcan v. DAP 100 70 13 5000 3000 

 

2.4.3 Testing Model Performance  
For both the polynomial and sigmoid models, we analyzed the coefficient of 

determination (R²), root mean square error (RMSE), percent bias (pbias), and percent 

difference (% diff) of the mean to test the data across a range of model performance metrics 

(eq. 4-7).  
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𝑅ଶ = ቎
∑ (ை஻ௌ೔ିை஻ௌതതതതതത)(ாௌ்೔ିாௌ்)തതതതതതത೙

೔సభ

ට∑ (ை஻ ೔ିை஻ௌതതതതതത)మ೙
೔సభ ට∑ (ாௌ்೔ିாௌതതതതതത)మ೙

೔సభ

቏

ଶ

                    (4) 

𝑅𝑀𝑆𝐸 =  ට
∑ (ை஻ ೔ିாௌ்೔)మ)೙

೔సభ

௡
                            (5)                                                                   

𝑃𝐵𝐼𝐴𝑆 =  
∑ (ை஻ௌ೔ିாௌ்೔)೙

೔సభ

∑ (ை஻ௌ೔)೙
೔సభ

 𝑥 100%                          (6)         

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
ை஻ௌതതതതതതିாௌ்തതതതതത

ೀಳೄതതതതതതതశಶೄ೅തതതതതത

మ

 𝑥 100%                            (7)            

where n is the number of observations; OBSi is either measured LAI or Hcan; ESTi is either 

estimated LAI or Hcan from the models; i = 1,2,3…n; and 𝑂𝐵𝑆തതതതതത 𝑎𝑛𝑑 𝐸𝑆𝑇തതതതത are the mean observed 

and estimated values, respectively. An ANOVA test was then completed on the data to 

determine the p-value to test the significance of the regressions. The ANOVA was run on both 

the polynomial and sigmoid functions. Any models with a p-value below 0.05 for a dataset were 

considered statistically significant.  

 Akaike's Information Criterion (AIC) values also were calculated to observe the models' 

complexity and robustness. AIC considers the number of inputs into the model, which helps 

weigh whether the improvement from a polynomial to a sigmoid model justifies the use of two 

or more parameters. AIC is calculated according to the equation:  

𝐴𝐼𝐶 = 𝑛 ∙ log(𝑀𝑆𝐸) + 2𝑇             (8) 

where n is the number of data points in the model, MSE is the mean squared error of the 

regression, and T is the number of parameters and input variables into the model. AIC values 
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help to represent model complexity, where these values lie in the range of -∞ to +∞, with an 

optimum value of -∞ (Akaike, 1974). 

2.5 Calibration and Validation of a General Model to Predict LAI and Hcan 

 Creating a general model (i.e., across all cultivar and field conditions) was approached 

by dividing the field data into calibration and validation datasets. The datasets were first 

divided into pairs based on rice cultivar, growing season year, and soil type, and then we 

separated each pair into the calibration or validation dataset (Table 1). These categories 

provided an even distribution of specific field conditions throughout the calibration and 

validation processes. After examining the initial polynomial and sigmoid regression models, we 

decided it was best to create the general model with a sigmoid curve and GDD as its time 

series. Once a general model was calibrated, we applied the validation dataset to test whether 

the model could be used over various field conditions.  

2.6 Calibration and Validation of Cultivar-Specific Models to Predict LAI and Hcan 

The calibration and validation process was also performed per cultivar to test whether 

cultivar-specific models improve the general model. The calibration and validation datasets 

remained the same (Table 1); however, we divided the datasets into smaller groups based on 

cultivar. Only three cultivars were considered for the field variety tests: CL XL745, XP753, and 

Gemini214 CL. For the CL XL745 cultivar, six field-years were included in the calibration dataset, 

while the validation dataset was composed of 4 field-years. For the XP753 cultivar, three field-

years were included in each calibration and validation. For Gemini214 CL, the calibration and 

validation datasets each contained data from 4 field-years. For model comparison, both the 

cultivar-specific model and the general model were applied to the validation datasets to 
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establish a comparison and detect whether these cultivar-specific models improve the 

prediction of LAI or Hcan.   

2.7 Evaluating the Effectiveness of Peak LAI as a Yield Substitute  

Additional models were examined to predict yield values for the growing seasons 

observed. To create these models, the Peak LAI value from each field was determined either as 

the maximum observed or estimated in the sigmoid model using GDD as the time series 

(Waldner et al., 2019). Due to the sparse time series data with LAI measurements taken every 

1-2 weeks, using simple metrics to create a yield prediction model can help predict harvest 

conditions and amounts. 

3. Results 

3.1  Data Collection and Model Selection 

3.1.1 Data Collection 
The average differences and standard deviations of the LAI and Hcan were calculated to 

test the accuracy of the field measurements. The two LAI measurements for individual fields 

differed by 0.20-1.03 m2m-2, with an average standard deviation of 0.364 m2m-2. The average 

differences in height between the five initial Hcan measurements were typically between 6-10 

cm at each field for each sampling date. The average standard deviation between these 

measurements was 2.97 cm. 

3.1.2 GDD and DAP Models 
 The relationships between LAI and Hcan as a function of GDD and DAP were examined 

for the 2018, 2019, and 2020 growing seasons using polynomial and sigmoid-curve regressions 

(Figure 4, Appendix B, C, D, and E). Table 3 displays the final regression equations for both of 
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these models. Overall, GDD was the preferred time series choice for polynomial and sigmoid 

regression models, with higher R2 values and lower RMSE and pbias values reported for the 

GDD models (Table 4). However, for some of the individual fields' models, the R2 values 

remained the same, leading to inconclusive results concerning choosing the best fit model 

(Appendix B and C). Cases where this occurred were most likely due to fewer data points 

available for use within the creation of the regression. Overall, the 2019 datasets performed 

best due to more consistent field measurements taken when compared to values measured in 

the 2018 and 2020 growing seasons. This finding shows how vital data collection frequency is 

for creating a prediction model.  

There was an average increase of 11.3% in the R2 value and a decrease of 14.3% in the 

RMSE value when observing the polynomial LAI graphs for GDD (R2 = 0.75, RMSE = 1.17 m2m-2) 

compared to the model using DAP (R2 = 0.67, RMSE = 1.35 m2m-2). Similarly, there was an 

average R2 increase of 8.6% and a decrease of about 20.5% in the RMSE value when observing 

the polynomial Hcan graphs (GDD: R2 = 0.85, RMSE = 13.6 cm, DAP: R2 = 0.78, RMSE = 16.7 cm). 

This improvement in the models confirms that applying a temperature-dependent time series 

to models increases the overall model accuracy regarding LAI and Hcan prediction for 

polynomial and sigmoid regression models. 
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Figure 4: For the 2018, 2019, and 2020 growing seasons, the following relationships were fit to both polynomial 
and sigmoid-curve regressions: (A) Leaf Area Index (LAI) v. Growing Degree Days (GDD), (B) LAI v. Days after 
Planting (DAP), (C) Canopy Height (Hcan) v. GDD, and (D) Hcan v. DAP. These comparisons were tested using two 
different time series: Growing Degree Days (A, C) and Days after Planting (B, D). 
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Table 3: Fitted equations from the polynomial and sigmoid regressions for GDD and DAP with respect to LAI and 
Hcan for the datasets, including information from every field 

Polynomial Regression 
Model Equation 

LAI v. GDD f(x) = -2x10-6x² + 0.0078x – 0.7525 
Hcan v. GDD f(x) = -2x10-5x² + 0.1095x – 8.9341 
LAI v. DAP f(x) = -0.0005x² + 0.1125x – 0.5386 
Hcan v. DAP f(x) = -0.0058x² + 1.622x – 7.3904 

Sigmoid Regressions 
Model Equation 

LAI v. GDD 
f(x) = 10.3 ∙ ቆ1 + exp ቈ

−(x − 792.8)

181.6
቉ቇ

ିଵ

∙ ቆ1 − (1 + exp ቈ
−(x − 2415.1)

1776.2
቉)ିଵቇ 

Hcan v. GDD 
f(x) = 285.7 ∙ ቆ1 + exp ቈ

−(x − 777.6)

232.6
቉ቇ

ିଵ

∙ ቆ1 − (1 + exp ቈ
−(x + 4233.6)

9664.2
቉)ିଵቇ 

LAI v. DAP 
f(x) = 9.42 ∙ ቆ1 + exp ቈ

−(x − 50.5)

12.33
቉ቇ

ିଵ

∙ ቆ1 − (1 + exp ቈ
−(x − 217.3)

156.4
቉)ିଵቇ 

Hcan v. DAP 
f(x) = 122.7 ∙ ቆ1 + exp ቈ

−(x − 48.8)

15.55
቉ቇ

ିଵ

∙ ቆ1 − (1 + exp ቈ
−(x − 4728.1)

2929
቉)ିଵቇ 

 

3.1.3 Polynomial and Sigmoid Regression Models 
Since the two models differed in the number of initial inputs, AIC values were calculated 

for the polynomial and sigmoid regressions to select the model that best fits the data while 

accounting for the cost of increasing parameters. On average, there was a 112.4% decrease in 

the AIC value for the LAI v. GDD model using a sigmoid regression (AIC = 14.97), compared to 

the polynomial regression (AIC = 53.35) (Table 4). However, there was only a 1.64% decrease in 

the sigmoid AIC value (AIC = 826.6) compared to the polynomial AIC value (AIC = 840.3) for the 

Hcan v. GDD model. The sigmoid model was thus the preferred regression since it decreased AIC 

values for both LAI and Hcan models.  
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Table 4: Descriptive statistics for polynomial and sigmoid regression models, comparing GDD and DAP to LAI and 
Hcan 

 
*Note: All p-values for these regressions were < 0.001 and were therefore not included in the table. The % 
difference values for the polynomial regression had values that were << 0.001 and were also not included in the 
table. 

Additionally, the sigmoid models were preferred by the R2 and RMSE metrics. The R2 

increased by approximately 8.92% and the RMSE decreased by 14.7% when applying the 

sigmoid regression to compare LAI and GDD (Polynomial: R2 = 0.75, RMSE = 1.17 m2m-2; 

Sigmoid: R2 = 0.82, RMSE = 1.01 m2m-2). Similarly, for the Hcan and GDD comparison, the R2 

increased by 3.47% and the RMSE decreased by about 6.8% (Polynomial: R2 = 0.85, RMSE = 13.6 

cm; Sigmoid: R2 = 0.88, RMSE = 12.7 cm). The slight increases in the coefficients of 

determination and decreases in the RMSE values for both LAI and Hcan models demonstrate the 

improvements when applying a sigmoid regression model to the datasets. The descriptive 

statistics for each field's polynomial models are shown in Appendix B and C for the 2018 and 

2019 growing seasons. Appendix D and E contain the same information for the sigmoid models.  

  

 Polynomial Regression Sigmoid-Curve Regression 
Model R2 RMSE 

(m2m-

2/cm) 

pbias AIC R2 RMSE 
(m2m-

2/cm) 

pbias % Diff. AIC 

LAI v. 
GDD 

0.75 1.17 2.2 x 
10-14 

53.35 0.82 1.01 0.13 2.70 14.97 

LAI v. 
DAP 

0.67 1.35 3.9 x 
10-14 

840.3 0.71 1.27 -1.87 -0.14 826.6 

Hcan v. 
GDD 

0.85 13.6 1.4 x 
10-13 

94.53 0.88 12.7 4.22 2.91 83.01 

Hcan v. 
DAP 

0.78 16.7 3.8 x 
10-14 

908.7 0.80 16.0 0.28 -1.20 900.33 
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3.2 Calibration and Validation of Models 

3.2.1 Calibration and Validation of the General Models 
 After initial model selection tests had been completed, the final model form was a 

sigmoid function with GDD as its time series variable. The sigmoid regressions were fit to the 

calibration datasets and then applied to the validation sets. The final regression equations are 

shown in Figure 5, with the final calibrated parameter values located in Appendix F. Between 

the calibration and validation fits, there was only a drop in the R2 value of approximately 10% 

for the LAI models and 7% for the Hcan models. Thus, the model performed well, and the 

corresponding modeling procedure was considered good and contained well-selected 

calibration datasets (Table 5).  

 

Figure 5: (A) Comparing LAI and GDD for the model of the calibration dataset; (B) Comparing LAI and GDD for the 
model applied over the validation dataset; (C) Comparing Hcan and GDD for the model of the calibration dataset; (D) 
Comparing Hcan and GDD for the model over the validation dataset 
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Similarly, the RMSE values for the calibration datasets were lower than those from the 

validation datasets. For the calibration of LAI, the RMSE value was 0.92 m2m-2, while it was 1.15 

m2m-2 for LAI for the validation datasets (Table 5). The RMSE value for the calibration 

comparison of Hcan v. GDD was 10.9 cm, compared to a value of 13.7 cm for the validation of 

Hcan (Table 5). As expected, the validation datasets' pbias and percent difference values are also 

higher than those for the calibration datasets.  

Table 5: Descriptive statistics for general calibration and validation datasets for both LAI v. GDD and Hcan v. GDD 

Calibration Datasets 
Model R2 RMSE 

(m2m-2/cm) 
pbias % Diff. 

LAI v. GDD 0.86 0.92 0.10 2.41 
Hcan v. GDD 0.91 10.9 0.19 -1.42 

Validation Datasets 
Model R2 RMSE 

(m2m-2/cm) 
pbias % Diff. 

LAI v. GDD 0.78 1.15 -8.52 -5.49 
Hcan v. GDD 0.85 13.7 -3.97 -5.20 

 

3.2.2 Calibration and Validation of Cultivar-Specific Models 

After the general models were calibrated and validated, we tested whether the rice 

cultivar-specific model formulations improved model accuracy. The three main cultivars 

observed were CL XL745, XP753, and Gemini214 CL. Models were fit to the calibration datasets 

using the general model for each cultivar, and a new model was calibrated using only values 

from the cultivar-specific dataset (Figure 6). With most models having an inflection point 

around a GDD value of 700-750 °C•day, most cultivars had the most phenological change within 

this short period. The final calibrated parameters for these models are located in Appendix G. 
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Figure 6: (A) Comparison of LAI and GDD for the general polynomial model (blue), general sigmoid model (orange), 
the CL XL745 cultivar-specific model (green), the XP753 cultivar-specific model (gray), and the Gemini214 CL 
cultivar-specific model (yellow); (B) Comparison of Hcan and GDD for the general polynomial model (blue), general 
sigmoid model (orange), the CL XL745 cultivar-specific model (green), the XP753 cultivar-specific model (gray), and 
the Gemini214 CL cultivar-specific model (yellow). 

The calibration equations were then applied to the validation datasets to test the 

accuracy of each of the models. For LAI models, the cultivar-specific model performed only 

slightly better for the Gemini214 cultivar (LAI: R2= 0.73, RMSE= 1.21 m2m-2), compared to the 

general model (LAI: R2= 0.72, RMSE= 1.22 m2m-2) (Table 6). For the XL745 cultivar, the cultivar-

specific and general models had almost identical R2 values (Cultivar-specific and General: R2 = 

0.82), but the cultivar-specific model had a slightly lower RMSE value (Cultivar-Specific: RMSE = 
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0.99 m2m-2; General: RMSE = 1.00 m2m-2) (Table 5). The general model performed better for the 

XP753 cultivar (LAI: R2= 0.84, RMSE = 1.28 m2m-2) compared to the cultivar-specific model (LAI: 

R2= 0.83, RMSE = 1.50 m2m-2) (Table 6). However, the model for the XP753 cultivar did appear 

to overpredict the model for the validation dataset, which could be a result of a poor 

representative dataset chosen for this calibration.  

Similarly, for the Hcan models, the cultivar-specific model provided slight model 

improvement for the Gemini214 cultivar (Hcan: R2= 0.80, RMSE= 16.2 cm), while the general 

model for Gemini214 did not perform as well containing lower R2 and higher RMSE values (Hcan: 

R2= 0.79, RMSE= 16.6 cm) (Table 5). The cultivar-specific model performed similar to its general 

model for the XP753 cultivar (Cultivar-Specific: R2= 0.90, RMSE = 14.2 cm; General: R2= 0.90, 

RMSE = 12.3 cm) (Table 5). The general model also reported slightly better results that for the 

cultivar-specific model for the CL XL745 cultivar (General: R2= 0.89, RMSE= 14.2 cm; Cultivar-

specific: R2= 0.86, RMSE= 13.5 cm) (Table 5). Since the R2 and RMSE values are within a tight 

range, it is not clear if the general or cultivar-specific model is preferred due to the mixed 

statistical results from the CL XL745 and XP753 cultivars, which contained higher R2 values for 

the general models but lower RMSE values for the cultivar-specific models. 
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Table 6: Descriptive statistics for validation datasets for specific field cultivar model and all fields model for both LAI 
v. GDD and Hcan v. GDD 

LAI v. GDD 
 Cultivar-Specific Model General Model 

Cultivar R2 RMSE
(m2m-2) 

pbias % Diff. R2 RMSE
(m2m-2) 

pbias % Diff. 

XL745 0.82 0.99 -5.46 -2.56 0.82 1.00 -6.14 -3.22 
XP753 0.83 1.50 -28.7 -24.0 0.84 1.28 -22.6 -19.5 
Gemini214 0.73 1.21 -4.42 -1.28 0.72 1.22 -2.82 0.89 

Hcan v. GDD 
 Cultivar-Specific Model General Model 
Cultivar R2 RMSE 

(cm) 
pbias % Diff. R2 RMSE

(cm) 
pbias % Diff. 

XL745 0.91 10.59 -1.86 -3.29 0.91 11.0 -4.98 -6.66 
XP753 0.90 13.1 -8.55 -10.5 0.90 12.3 -5.97 -8.29 
Gemini214 0.80 16.2 -0.06 -0.51 0.79 16.6 4.26 4.37 

*Note: All p-values for these regressions were < 0.001 and were therefore not included in the table 

3.3 Evaluating the Effectiveness of Peak LAI as a Yield Substitute  

The relationships between the two peak LAI values (measured and modeled) and yield 

(Figure 7) show that it is not viable only to use peak LAI to estimate yield since the coefficients 

of determination for these tests are less than 0.01. Additionally, an ANOVA test was performed 

to determine if the linear regressions were significant. Each test revealed an insignificant p-test 

value, which indicated that this model does not allow for an accurate prediction of yield. The 

poor relationship between the peak LAI and yield could be due to the grain-filling period after 

the LAI has peaked.  
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Figure 7: Comparison of Yield to observed and estimated Peak LAI  

4. Discussion 

4.1 Model Selection 

4.1.1 Comparing GDD Models and DAP Models 

Sigmoid models created with GDD as the time series consistently had higher coefficients 

of determination and lower RMSE and pbias values than models using DAP (Table 4). However, 

this pattern was not present when comparing some of the individual fields' GDD and DAP 

models.  

GDD allows for the consideration of temperature within the growing season, which 

creates a more accessible application of these models to different regions worldwide. Rice is a 

temperature-dependent crop, so including climatic parameters within the prediction model 

assists in better explaining other components of the model, i.e., early-season yield predictions 

and effects from extreme weather events. However, in other studies (Waldner et al., 2019), 

including weather parameters helped with models containing fewer parameters but did not 

have any beneficial effect otherwise. Additionally, there have been challenges identified with 
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empirical models not being easily applied to more generalized scales. It is more difficult to use 

them in areas with specific crop cultivars, crop growth stages, geographical regions, etc. 

(Waldner et al., 2019). However, the results of this study display generalizability of LAI and Hcan 

models in Arkansas. 

4.1.2 Comparing Polynomial and Sigmoid Regression Models 

  The sigmoid regression functions tended to fit more accurately to the datasets than 

when using polynomial regression. The models consistently recorded higher coefficients of 

determination and lower RMSE values when using a sigmoid regression (Table 4). However, the 

polynomial regressions did report lower pbias values, which may be due to more significant 

differences between the measured and estimated LAI or Hcan values for the general sigmoid 

model (Table 4). When considering the models for individual fields, the Excel solver had more 

difficulties creating an accurate model. These difficulties could result from the model requiring 

more accurate initial guesses for the parameters, likely due to fewer data points available than 

the general models (Appendix D and E). Boschetti et al., 2018 also encountered the challenge of 

creating precise, individual models, especially when different crops and varieties are present in 

a small area. Although the polynomial regression was easier to apply in Excel, the datasets 

recurringly behaved in an s-curve type manner, making the sigmoid regression a better choice 

for creating a representative model when including the entire data series. Although the sigmoid 

function did not always fit well for the individual fields' models, the sigmoid model did 

consistently fit better when including all the data.  

Although the pbias in the sigmoid model are still relatively low (approximately <10%), 

the lower pbias from the polynomial regressions than the sigmoid regressions warrant further 
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examination. With limited variability within the pbias and percent difference values for the 

polynomial regression, having fewer initial parameters into a model could help create minor 

variation and bias throughout the datasets when the model is applied. However, the decreases 

in AIC values when comparing sigmoid and polynomial regressions suggest it is better to include 

more parameters. Future work could simplify the sigmoid-curve regression equation to better 

represent the spread of the data throughout the growing season.  

4.2 Calibration and Validation of the Models 

A better understanding of how each individual cultivar behaves within the growing 

season was developed by dividing the data into calibration and validation datasets based on 

field cultivar. Comparing the calibrated parameter values for the different cultivar-specific 

models helped conclude the individual cultivars and their relationships with the other 

parameters. Most models showed an inflection point around a GDD value of 700-750 °C•day; 

perhaps, more frequent measurements could be taken within the beginning to the middle of 

the growing season to better predict the rapid changes the cultivars experience in future work.  

The best performing cultivar models for LAI v. GDD and Hcan v. GDD were the Gemini214 CL 

models, which improved the R2 values by approximately 1.38% and 1.26% for the LAI and Hcan 

models, respectively. However, the models continue to perform similarly for the other two 

cultivars, with only slight differences between the R2 and RMSE values for the cultivar-specific 

and general models.  

Creating models for specific cultivars can aid in reducing uncertainty through the 

consideration of field information particular to each cultivar, i.e., time spent in each rice growth 
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stage and ideal growing temperatures. Although their model used remotely-sensed LAI data, 

Gilardelli et al. (2019) found that separating the fields into sub-sections assisted in creating a 

better representative model. However, they noted that more cultivar-specific calibrations for 

assimilating LAI data were still needed. Recalibrating our data based on cultivar conditions 

made it difficult to observe whether cultivar-specific models are needed or if more research of 

initial model parameters may be required to predict LAI and Hcan for specific cultivars better. 

Overall, the general model performed well for the combined dataset and had similar results to 

the cultivar-specific models for some cases. These results suggest a general model can simplify 

LAI and Hcan predictions and ultimately allow for one model to be applied across Arkansas over 

various cultivars.  
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4.3 Evaluating the Effectiveness of Peak LAI as a Yield Substitute 

In a study on wheat crops in Australia, the integration of peak LAI into yield prediction 

models has proven best for early season grain predictions (Waldner et al. 2019). However, 

there was no significant relationship when completing our peak LAI tests to yield. This lack of 

correlation was also apparent in a study conducted in Northern Italy, where researchers could 

not define any direct relationships between maximum LAI and final yield for almost all the 

observed varieties (Gilardelli et al., 2019). Additionally, another study observing correlations 

between crop yields and satellite-obtained LAI data indicated no significant relationship 

between LAI and rice yields (Johnson, 2016). More parameters may need to be considered 

within the peak LAI model to use it as a viable yield prediction option.   

4.4 Extension of Research  

To represent the climate more accurately within Arkansas, the GDD values could be 

recalculated by changing the value where the maximum temperature is capped from 30°C to 

approximately 34°C. By changing this temperature, GDD values will better represent field 

conditions and more accurately depict the higher temperatures present in Arkansas (Hardke 

and University of Arkansas (System). Cooperative Extension Service., 2018). In addition, high 

temperatures can result in lower yields due to heat stress (Mendez et al., 2021). For example, 

nighttime temperature fluctuations have been reported to drop rice yield by 10% for each 

increase in 1°C (Peng et al., 2004). GDD does not account for the penalization of high 

temperatures and their negative effect on crop growth, limiting the use of GDD units within 

models.  
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Improving the datasets by removing outliers could also improve model fit. We will go 

back through each field dataset to identify if any data points caused the model to fit the dataset 

poorly. If any consistent responses are observed throughout the data, these points will be 

eliminated from the model, allowing for a more accurate and precise general model. 

Additionally, implementing satellite data, i.e., NDVI, can assist this modeling process. NDVI and 

LAI have been found to have a close relationship, which could allow for gaps within data to be 

filled. By considering NDVI, it could be possible to obtain more accurate parameters by which 

the data can be calibrated and even help with the calibration of the regression parameters. LAI 

estimates can also be retrieved from satellite data (Campos-Taberner et al., 2016; Waldner et 

al., 2019). . The satellite LAI data could lead to less reliance on manual field measurements and 

allow for a greater number of LAI data points to be used for model calibration purposes.  

5. Conclusion 

With higher R² values and lower RMSE values present for the GDD-based models, GDD 

proved to be a more accurate time series to use when creating a general prediction model 

compared to the models using DAP as its time series. Considering the recurring S-curve 

behavior of the datasets when completing initial tests helped create a more precise prediction 

model due to the increase in R2 values, lower RMSE values, and an overall decrease in the AIC 

values. The sigmoid model created with the calibration dataset was applied to the validation 

dataset, which proved to effectively model both LAI and Hcan, with R2 values of 0.78 and 0.85 

and RMSE values of 1.15 m2m-2 and 13.7 cm, respectively. Overall, the data suggest a general 

model can be applied to predict LAI or Hcan. However, more work still needs to be completed to 

see the benefit of having cultivar-specific models. 
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Further work on simplifying the general sigmoid model still needs to be completed by either 

eliminating outliers or simplifying the overall model by reducing the number of parameters 

used within the sigmoid equation. Incorporating satellite data can also help apply these general 

models more easily to other rice fields in a precise and accurate manner. The variables modeled 

in this work can be used as inputs for other more extensive and sophisticated models, such as 

yield prediction models. As food scarcity becomes a more significant issue, the use of prediction 

models based on temperature and simple measurement parameters similar to the ones created 

in this study will be beneficial for ensuring a more sustainable and reliable food source as the 

global population increases. 
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8. Appendices 

A. LAI Scattering Corrections 

For each location, different readings above and below the canopy were measured 

following a sequence already programmed within the LAI-2000 or LAI-2200C devices. The 

sequence was: 

 4A 4B 1A 3B for the LAI 2000 

4A 4B 1A 4B 1A 4B 1A for the LAI-2200C, 

where A is a measurement above the canopy, and B is a measurement below the canopy, i.e., 

close to the ground in case there is no ponding water, or above the water level in case there is 

ponding water. The sequence includes extra sky radiation measurements that will be used by 

the software FV2200 to perform scattering corrections. We used the 4A sequence using the 

white diffuser cap (LI-COR (Biosciences, 2013). For the normal above and below readings, the 

90° cap was used to hide the operator from the sensor. 

 

Figure 10: 90° cap used on LAI-2200C to hide the operator from the sensor 

LAI files were transferred to the computer in order to perform the scattering corrections using 

the software FV2200. Files from the LAI-2000 were first converted to LAI-2200C format before 

the scattering correction process. One of the traditional underlying assumptions of the LAI-2000 
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and LAI-2200C has been that foliage absorbs all the radiation in the wave and seen by the 

sensor (320-490 nm). Starting with version 2.0, FV2200 allows this assumption to be set aside 

and provides a mechanism (Kobayashi et al., 2013), for correcting measurements for the 

radiation reflected and transmitted by the foliage (LI-COR (Biosciences, 2013). 

 

B. Comparing the Polynomial Regression Equations and R² Values when using GDD 
Cumulative and Days After Planting for 2018: 

 LAI v. GDD LAI v. DAP 
Field Name R2 RMSE 

(m2m-2) 
pbias % Diff. P-value R2 RMSE 

(m2m-2) 
pbias % Diff. P-value 

R1 0.89 0.60 -2.74 x 10-13 -3.72 x 10-14 < 0.001 0.88 0.61 4.66 x 10-15 0 < 0.001 
R2 0.89 0.72 4.48 x 10-15 0 < 0.001 0.88 0.74 -1.65 x 10-14 -1.52 x 10-14 < 0.001 
R3 0.79 0.99 7.69 x 10-14 7.09 x 10-14 0.009 0.78 1.02 -2.36 x 10-14 -1.77 x 10-14 0.099 
R4 0.92 0.65 1.78 x 10-14 2.84 x 10-14 0.004 0.92 0.67 1.42 x 10-14 4.26 x 10-14 0.004 
R5 0.84 0.75 3.16 x 10-14 1.65 x 10-14 0.031 0.82 0.79 4.12 x 10-15 1.65 x 10-14 0.018 
R7 0.94 0.53 0 0 < 0.001 0.94 0.52 3.24 x 10-14 3.01 x 10-14 < 0.001 
R8 0.75 0.81 -9.48 x 10-15 0 0.013 0.75 0.81 4.74 x 10-15 0 0.015 
R9 0.89 0.75 -2.10 x 10-15 0 < 0.001 0.88 0.79 4.20 x 10-15 0 < 0.001 
R10 0.95 0.49 1.04 x 10-14 0 0.007 0.94 0.50 5.96 x 10-15 0 < 0.001 
W3 0.84 0.90 2.02 x 10-14 1.56 x 10-14 < 0.001 0.83 0.93 -2.41 x 10-14 -3.12 x 10-14 < 0.001 
W4 0.81 0.87 -4.66 x 10-14 -5.12 x 10-14 < 0.001 0.80 0.90 -2.21 x 10-14 -3.41 x 10-14 0.003 
CN 0.71 1.08 2.45 x 10-14 0 0.005 0.70 1.10 3.84 x 10-14 3.68 x 10-14 0.005 
CS 0.78 1.00 4.37 x 10-14 5.08 x 10-14 0.005 0.77 1.03 -4.93 x 10-15 0 0.005 
All Fields 0.79 0.98 -3.54 x 10-14 -3.31 x 10-14 < 0.001 0.77 1.02 -9.04 x 10-15 -4.97 x 10-14 < 0.001 

 
 Hcan v. GDD Hcan v. DAP 
Field 
Name 

R2 RMSE 
(cm) 

pbias % Diff. P-value R2 RMSE 
(cm) 

pbias % Diff. P-value 

R1 0.95 5.30 5.56 x 10-15 -2.04 x 10-14 < 0.001 0.95 5.40 2.69 x 10-14 2.04 x 10-14 < 0.001 
R2 0.95 6.74 -2.12 x 10-14 -1.54 x 10-14 < 0.001 0.95 6.45 -1.93 x 10-15 -1.54 x 10-14 < 0.001 
R3 0.91 11.3 7.69 x 10-14 7.09 x 10-14 0.0087 0.90 11.9 3.19 x 10-14 3.19 x 10-14 < 0.001 
R4 0.96 6.66 7.94 x 10-15 1.59 x 10-14 < 0.001 0.96 6.70 -5.56 x 10-15 0 < 0.001 
R5 0.91 8.16 2.44 x 10-14 1.89 x 10-14 < 0.001 0.89 9.34 3.14 x 10-15 0 < 0.001 
R7 0.97 7.49 1.02 x 10-14 0 < 0.001 0.96 7.79 2.63 x 10-15 0 < 0.001 
R8 0.94 7.47 -2.50 x 10-15 0 < 0.001 0.94 7.26 -1.07 x 10-14 1.60 x 10-14 < 0.001 
R9 0.96 6.18 -7.03 x 10-15 0 < 0.001 0.96 6.81 7.57 x 10-15 0 < 0.001 
R10 0.95 6.80 3.43 x 10-14 3.27 x 10-14 < 0.001 0.95 6.78 1.31 x 10-14 1.64 x 10-14 < 0.001 
W3 0.91 11.4 7.27 x 10-16 2.04 x 10-14 < 0.001 0.90 12.0 -1.82 x 10-14 -2.04 x 10-14 < 0.001 
W4 0.89 12.2 -1.06 x 10-14 0 < 0.001 0.87 12.9 -6.81 x 10-15 0 < 0.001 
CN 0.96 6.74 -3.08 x 10-15 1.97 x 10-14 < 0.001 0.96 6.72 -1.03 x 10-14 0 < 0.001 
CS 0.95 6.82 -1.70 x 10-15 0 < 0.001 0.95 6.72 -6.37 x 10-15 -2.04 x 10-14 < 0.001 
All Fields 0.80 15.5 6.72 x 10-14 1.77 x 10-14 < 0.001 0.77 16.8 6.78 x 10-14 -3.54 x 10-14 < 0.001 
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C.  Comparing the Polynomial Regression Equations and R² Values when using GDD 
Cumulative and Days After Planting for 2019 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   *Note: All p-values for these regressions were < 0.001 and were therefore not included in the table 

 

 LAI v. GDD LAI v. DAP 
Field 
Name 

R2 RMSE 
(m2m-2) 

pbias % Diff. R2 RMSE 
(m2m-2) 

pbias % Diff. 

R1 0.84 0.92 -2.57 -2.54 0.81 0.97 2.88 x 10-15 -1.15 x 10-14 
R2 0.88 0.89 6.0 x 10-14 5.32 x 10-14 0.82 1.09 -3.54 x 10-15 0 
R3 0.86 0.98 -6.0 x 10-14 -7.00 x 10-14 0.83 1.08 8.07 x 10-15 1.75 x 10-14 
R4 0.92 0.78 -1.52 x 10-14 -2.03 x 10-14 0.92 0.80 0 0 
R5 0.83 0.75 2.00 x 10-15 1.30 x 10-14 0.79 0.83 -1.10 x 10-14 1.30 x 10-14 
R6 0.93 0.70 2.57 x 10-14 3.17 x 10-14 0.92 0.72 1.14 x 10-14 0 
R8 0.88 0.71 -2.22 x 10-14 -2.01 x 10-14 0.87 0.74 2.43 x 10-14 2.01 x 10-14 
R9 0.79 1.00 -3.11 x 10-14 -2.19 x 10-14 0.76 1.06 -1.26 x 10-14 0 
R10 0.86 0.89 4.93 x 10-15 0 0.86 0.90 -1.56 x 10-14 0 
W3 0.90 0.76 1.23 x 10-14 0 0.89 0.79 -5.94 x 10-15 0 
W4 0.82 0.91 -2.12 x 10-14 -1.26 x 10-14 0.81 0.95 0 0 
CN 0.81 1.16 -3.51 x 10-14 -1.86 x 10-14 0.80 1.19 -1.07 x 10-14 0 
CS 0.85 0.88 1.56 x 10-14 1.87 x 10-14 0.84 0.89 3.90 x 10-15 -1.87 x 10-14 
BK30 0.78 0.94 2.73 x 10-14 4.86 x 10-14 0.77 0.95 0 -2.43x 10-14 
BK50 0.92 0.66 1.28 x 10-14 1.13 x 10-14 0.92 0.67 5.64 x 10-15 -2.26 x 10-14 
All Fields 0.78 1.15 -5.02 x 10-14 -4.10 x 10-14 0.71 1.31 -2.75 x 10-14 0 

 Hcan v. GDD Hcan v. DAP 
Field 
Name 

R2 RMSE 
(cm) 

pbias % Diff. R2 RMSE 
(cm) 

pbias % Diff. 

R1 0.90 10.3 -2.57 -2.54 0.87 11.3 1.17 x 10-14 0 
R2 0.93 10.3 -1.31 x 10-14 -2.03 x 10-14 0.88 13.1 7.76 x 10-15 2.03 x 10-14 
R3 0.90 12.4 -1.74 x 10-14 -1.74 x 10-14 0.86 14.4 2.12 x 10-14 3.49 x 10-14 
R4 0.97 6.43 -2.00 x 10-14 0 0.96 6.86 -2.51 x 10-14 -2.04 x 10-14 
R5 0.90 10.3 7.99 x 10-15 2.18 x 10-14 0.83 13.1 -3.41 x 10-14 -4.36 x 10-14 
R6 0.91 10.3 1.54 x 10-14 0 0.89 11.2 1.98 x 10-14 2.18 x 10-14 
R8 0.93 9.21 1.05 x 10-14 -2.18 x 10-14 0.92 9.81 4.36 x 10-14 2.18 x 10-14 
R9 0.92 10.1 0 -2.10 x 10-14 0.89 11.8 3.08 x 10-14 2.10 x 10-14 
R10 0.92 8.89 1.03 x 10-14 0 0.91 9.37 5.13 x 10-15 0 
W3 0.90 11.2 1.09 x 10-14 0 0.89 11.8 1.82 x 10-15 0 
W4 0.93 9.03 -4.69 x 10-15 0 0.92 9.63 -1.88 x 10-14 -2.03 x 10-14 
CN 0.96 6.94 -2.66 x 10-14 -2.10 x 10-14 0.95 7.26 -1.21 x 10-14 0 
CS 0.96 7.06 -1.01 x 10-14 0 0.95 7.30 -5.62 x 10-15 0 
BK30 0.95 7.17 3.71 x 10-14 2.05 x 10-14 0.95 7.28 5.97 x 10-15 0 
BK50 0.95 7.84 5.33 x 10-15 2.13 x 10-14 0.95 8.01 -1.33 x 10-14 0 
All Fields 0.89 11.6 -4.17 x 10-14 0 0.81 15.2 -4.15 x 10-14 4.11 x 10-14 
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D. Comparing the Sigmoid Regression Equations and R² Values when using GDD Cumulative 
and Days After Planting for 2018: 

 LAI v. GDD LAI v. DAP 
Field Name R2 RMSE 

(m2m-2) 
pbias % Diff. R2 RMSE 

(m2m-2) 
pbias % Diff. 

R1 0.90 0.56 -0.03 1.97 0.90 0.56 0.01 2.17 
R2 0.95 0.50 -0.33 7.32 0.95 0.50 -0.29 7.20 
R3 0.96 0.43 -0.09 7.92 0.96 1.49 -0.03 7.98 
R4 0.97 0.40 -0.23 13.9 0.97 0.40 -0.22 14.10 
R5 0.85 0.74 -0.49 4.91 0.77 0.90 1.01 0.56 
R7 0.92 0.62 -0.77 0.64 0.93 0.61 -0.76 0.55 
R8 0.42 2.21 35.7 39.7 0.34 2.39 30.1 29.5 
R9 0.97 0.36 0.08 -1.83 0.98 0.36 0.03 -1.91 
R10 0.51 0.46 -0.44 0.20 0.51 0.45 -0.45 0.16 
W3 0.65 0.71 -0.48 12.31 0.61 0.70 -0.39 12.7 
W4 0.51 0.73 -0.40 12.50 0.53 0.73 -0.35 12.0 
CN 0.71 1.05 -1.05 -2.84 0.79 1.24 2.29 -0.21 
CS 0.12 0.72 -0.36 5.84 0.12 0.71 -0.31 5.88 
All Fields 0.52 0.97 -0.45 2.61 0.59 1.02 -0.40 1.04 

 

 Hcan v. GDD Hcan v. DAP 
Field Name R2 RMSE 

(cm) 
pbias % Diff. R2 RMSE 

(cm) 
pbias % Diff. 

R1 0.95 5.58 -0.41 1.40 0.95 5.44 -0.32 1.24 
R2 0.94 7.34 -0.50 0.29 0.94 7.19 -0.53 0.17 
R3 0.98 5.27 -0.31 -2.58 0.98 5.15 -0.34 -2.59 
R4 0.95 7.18 -0.54 -2.92 0.96 6.98 -0.49 -2.89 
R5 0.98 3.93 -0.07 1.44 0.98 3.93 0.03 1.38 
R7 0.97 7.20 -0.59 -3.62 0.97 7.02 -0.53 -3.54 
R8 0.92 9.02 -0.79 -2.41 0.92 8.92 -0.71 -2.35 
R9 0.98 4.56 -0.19 -1.11 0.98 4.56 0.01 -0.82 
R10 0.88 7.68 -0.58 -2.56 0.88 7.50 -0.52 -2.52 
W3 0.86 7.16 -0.52 1.61 0.85 7.14 -0.42 1.73 
W4 0.89 6.62 -0.25 1.97 0.88 6.58 -0.07 2.16 
CN 0.98 7.61 -0.72 -5.69 0.97 7.33 -0.63 -5.60 
CS 0.95 7.06 -0.69 -4.68 0.94 6.95 -0.61 -4.62 
All Fields 0.88 15.25 -0.35 -1.52 0.86 16.6 -0.31 -1.63 

                    *Note: All p-values for these regressions were < 0.001 and were therefore not included in the table 
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E. Comparing the Sigmoid Regression Equations and R² Values when using GDD Cumulative 
and Days After Planting for 2019: 

 LAI v. GDD LAI v. DAP 
Field Name R2 RMSE 

(m2m-2) 
pbias % Diff. R2 RMSE 

(m2m-2) 
pbias % Diff. 

R1 0.98 0.29 -0.46 0.14 0.98 0.33 -0.53 -4.21 
R2 0.98 0.41 -0.50 12.29 0.98 0.39 -0.55 12.3 
R3 0.99 0.27 0.40 -2.50 0.99 0.25 0.40 -2.34 
R4 0.97 0.47 0.19 2.12 0.97 0.46 0.29 2.20 
R5 0.97 0.34 0.04 4.66 0.96 0.35 0.03 4.76 
R6 0.99 0.20 -0.07 15.58 0.99 0.19 -0.07 15.73 
R8 0.96 0.42 -0.11 3.47 0.96 0.42 -0.08 3.50 
R9 0.81 0.78 -0.77 4.69 0.82 0.76 -0.64 4.81 
R10 0.85 0.55 -0.40 2.87 0.84 0.54 -0.42 2.84 
W3 0.83 0.28 -0.49 -0.63 0.84 0.27 -0.48 -0.68 
W4 0.71 0.32 -0.71 1.10 0.71 0.32 -0.68 1.06 
CN 0.64 0.31 0.42 -1.75 0.64 0.31 0.42 -1.75 
CS 0.79 0.36 0.28 7.61 0.79 0.36 0.26 4.36 
BK30 0.23 0.34 0.44 8.45 0.21 0.33 0.38 8.32 
BK50 0.84 0.41 -0.40 2.09 0.90 0.42 0.11 -0.52 
All Fields 0.82 0.89 -0.10 2.51 0.82 1.15 -0.19 1.80 

 

 Hcan v. GDD Hcan v. DAP 
Field Name R2 RMSE 

(cm) 
pbias % Diff. R2 RMSE 

(cm) 
pbias % Diff. 

R1 0.98 3.77 -0.46 3.62 0.99 3.39 -0.33 3.25 
R2 0.99 3.46 -0.52 7.26 0.99 2.89 -0.37 8.19 
R3 0.99 4.62 -0.29 -1.91 0.98 5.00 0.14 -2.28 
R4 0.99 4.43 -0.32 0.37 0.98 4.56 -0.17 -0.13 
R5 0.98 4.40 -0.45 -1.82 0.98 4.32 -0.27 -1.51 
R6 0.99 2.24 -0.24 -2.32 0.99 3.22 0.16 -3.74 
R8 0.96 6.81 -0.33 -2.98 0.96 6.87 0.01 -2.94 
R9 0.85 5.17 -0.75 -2.83 0.84 4.52 -0.64 -2.41 
R10 0.55 3.35 -0.36 -0.11 0.77 6.47 0.23 -2.21 
W3 0.79 5.82 -0.39 -0.63 0.85 6.30 0.05 -3.05 
W4 0.86 4.26 -0.44 -0.28 0.89 4.37 -0.13 -0.54 
CN 0.92 6.35 -0.66 -4.43 0.92 6.32 -0.58 -4.36 
CS 0.91 4.98 -0.49 -3.79 0.91 4.95 -0.47 -3.77 
BK30 0.90 5.77 -0.64 -3.39 0.95 5.84 -0.48 -4.61 
BK50 0.81 3.22 -0.42 -2.21 0.92 4.65 -0.07 -5.68 
All Fields 0.85 9.09 -0.45 -1.54 0.88 13.85 -0.14 -1.80 

                  *Note: All p-values for these regressions were < 0.001 and were therefore not included in the table 
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F. Sigmoid Regression Final Values from Excel Solver Based on Calibration Datasets  
Model Base Inflection Point Spread Optimum GDD Optimum Shape 

GDD v. LAI 9.78 757.51 152.57 3145.13 2378.60 
GDD v. Hcan 369.37 730.22 208.68 -9.72 x 105 1.05 x 106 

 

 

G. Sigmoid Regression Final Values from Excel Solver for Cultivar-Specific Models 
Model Base Inflection Point Spread Optimum GDD Optimum Shape 

CL XL745  
GDD v. LAI 

10.6 749.2 142.5 2999.5 3499.3 

CL XL745 
GDD v. Hcan 

893.1 799.0 221.1 -2.94 x 104 6962.6 

XP753 
GDD v. LAI 

10.6 740.7 130.0 2794.5 2367.8 

XP753 
GDD v. Hcan 

219.9 721.5 160.3 -7.04 x 105 7.48 x 106 

Gemini214 CL 
GDD v. LAI 

9.70 699.95 158.0 1.11 x 107 1.56 x 107 

Gemini214 CL 
GDD v. Hcan 

314.4 763.3 251.9 -6.00 x 105 1.06 x 106 
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