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Abstract

3D printers are a method of additive manufacturing that consists of layering material to produce a

3D structure. There are many types of 3D printers as well as many types of materials that are

capable of being printed with. The most cost-effective and well documented method of 3D

printing is called Fused Deposition Modeling (FDM). FDM printers work by feeding a thin strand

of plastic filament through a heated extruder nozzle. This plastic is then deposited on a flat,

typically heated, surface called a print bed. The part is then built by depositing thin layers of

plastic in the shape of the cross sectional area of the part. The print time of 3D printed parts

typically takes anywhere from 15 minutes to a couple days, depending on complexity. FDM

printers are capable of printing almost any shape that fits within the print volume of the machine

without special tooling. Therefore, 3D printers can be used to rapidly prototype complex designs

and are capable as a production method in and of itself. This thesis focuses on the finding the real

and imaginary components of the complex permittivity of three common 3D printed plastics in

the W-Band (75 GHz - 110 GHz): Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS),

and Polyethylene Terephthalate Glycol (PETG). The Free Space System is used to measure the

S11, S12, S21, and S22 parameters of a flat sample of the plastics from 75 GHz to 110 GHz.

The obtained results demonstrate that the relative permittivity of each sample remains relatively

stable across the entire bandwidth of the frequencies tested. PLA has the highest relative

permittivity out of all the samples at 2.724 and the PETG has the lowest permittivity at 2.675.

The permittivity of these 3D printed materials are slightly higher than that of Teflon which has a

real relative permittivity of 2.1. Furthermore, the imaginary part of the permittivity that represents

the losses in the material are shown to be small (below 0.045 for all samples) between 75 GHz -

110 GHz.
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3.2.5 Free Space Measurements

After calibrating the free space system using the Thru-Reflect-Line method, the final step is to

measure the sample. First, the gold mirror is removed and the sample is inserted into the sample

holder. It is advised to mark the side of the sample that is to face the Port 1 antenna to ensure

consistent orientation over several measurements. The 2-Port S-parameters are then measured by

setting the trigger to continuous and restarting the average. The four S-parameters are then put

through the same process of time-domain gating discussed in previous section. The S11 and S22

measurements should be gated using the same gating center and span; the same is true for the S12

and S21 measurements. This procedure assumes an isotropic sample which has the same

S-parameters when flipped around. The final step is to put the gold mirror between the sample

and port 2 and repeating the S11 measurement, thereby extracting the loss due to the material. The

calibration process is repeated between the measurement of every sample to ensure measurement

accuracy. Below is a picture of the green PETG and gold ABS samples (the gray PLA sample was

destroyed in an attempt to make it smoother for future testing).

Figure 8: Green PETG and Gold ABS Samples
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4 Measurements and Discussion of Results

Figure 9: Relative Permittivity (ε) of Gray PLA (real)

Figure 10: Relative Permittivity (ε) of Gray PLA (imaginary)
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Figure 11: Relative Permittivity (ε) of Green PETG (real)

Figure 12: Relative Permittivity (ε) of Green PETG (imaginary)
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Figure 13: Relative Permittivity (ε) of Gold ABS (real)

Figure 14: Relative Permittivity (ε) of Gold ABS (imaginary)
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After measuring the S-parameters, the complex permittivities for the samples were extracted

using custom MATLAB code developed by other personnel in the lab. The relative permittivity of

each sample remains relatively stable across the entire bandwidth of the frequencies tested. The

gray PLA has the highest relative permittivity out of all the samples at 2.724 and the green PETG

has the lowest permittivity at 2.675. The permittivity of these 3D printed materials are slightly

higher than that of Teflon which has a real relative permittivity of 2.1. The samples also have

imaginary relative permittivities below 0.045, which indicates that the plastics are good dielectrics

in the W-band. Each sample was oriented with the print lines going in the same direction so as to

keep measurements consistent. The 3mm thick samples were all printed with a 100% infill and

were thus a solid sheet of plastic. There was a slight bend in the ABS material, though this was

flattened by the sample holder and has not affected the measurements taken in this experiment.

The linearly polarized horn antennas measured the S-parameters (both with and without the gold

mirror) to get the data necessary to derive the complex permittivity of the 3D printed samples.

17



5 Future Work and Conclusion

This honors thesis sought to measure the S-parameters and extract the complex permittivity of

three popular 3D printed materials from 75 GHz - 110 GHz. Future work in this area includes

measuring the complex permittivity of other popular 3D printed materials in this range such as

nylon, TPU, and resins used in SLA 3D printing methods. 3D printing also offers the opportunity

to mix materials into the plastic, thus changing the properties of the material. In addition,

different infills can be used to change the properties of the material and the signals propagating

through it. Repeating the experiment with injection molded samples could provide a smoother

sample for measurement. The use of 3D printed materials as radomes has yet to be investigated in

the 75 GHz - 110 GHz range. The versatility of 3D printing allows for nearly endless

combination of materials, infills, and shapes to be manufactured. These unique aspects of 3D

printing can be built on extensively in the future.

3D printing has never been more accessible to the average consumer and engineer. The rapid

prototyping and ease of access afforded by 3D printing lends itself to a variety of applications in

the RF engineering industry. This thesis sought to investigate the complex permittivity of three

common 3D printing materials in the W-band. PLA, PETG, and ABS were all printed using the

Prusa I3 Mk3S+ 3D printer with a 3mm thickness and a 100% infill. The S-parameters of a signal

passing through the sample material can be found using the free-space system. To calibrate the

free-space system, the Through-Reflect-Line method is used. The first step in this calibration

method consists of finding the S11 and S22 of the system with a gold mirror placed in the sample

holder to create a perfectly reflecting surface. Next, the mirror is taken out of the sample holder

and the S-parameters are measured with the focal points of both antennas centered on the Port 1

plane of the sample holder. Finally, the S-parameters are measured with the focal points of the

antennas offset by a factor determined by the bandwidth of the desired measurement. The

complex permittivity of all three samples remained relatively stable across the entire bandwidth.

The samples each had a real relative permittivity of approximately 2.7, which is 0.6 higher than
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that of Teflon. More research needs to be done in this area to investigate the properties of these

materials in other frequency bands as well as additives used to alter the properties of these

materials.
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