
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Biomedical Engineering Undergraduate Honors
Theses Biomedical Engineering

5-2020

Development of a MATLAB GUI to Assist the Active Development of a MATLAB GUI to Assist the Active

Comprehension of Biomedical Transport Phenomena Using a Comprehension of Biomedical Transport Phenomena Using a

Visual Aid Visual Aid

Pranav Suri
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/bmeguht

 Part of the Biomechanics and Biotransport Commons, and the Other Education Commons

Citation Citation
Suri, P. (2020). Development of a MATLAB GUI to Assist the Active Comprehension of Biomedical
Transport Phenomena Using a Visual Aid. Biomedical Engineering Undergraduate Honors Theses
Retrieved from https://scholarworks.uark.edu/bmeguht/88

This Thesis is brought to you for free and open access by the Biomedical Engineering at ScholarWorks@UARK. It
has been accepted for inclusion in Biomedical Engineering Undergraduate Honors Theses by an authorized
administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu,
uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/bmeguht
https://scholarworks.uark.edu/bmeguht
https://scholarworks.uark.edu/bmeg
https://scholarworks.uark.edu/bmeguht?utm_source=scholarworks.uark.edu%2Fbmeguht%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/234?utm_source=scholarworks.uark.edu%2Fbmeguht%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/811?utm_source=scholarworks.uark.edu%2Fbmeguht%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/bmeguht/88?utm_source=scholarworks.uark.edu%2Fbmeguht%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu
mailto:scholar@uark.edu,%20uarepos@uark.edu

 1

Development of a MATLAB GUI to Assist the

Active Comprehension of Biomedical Transport

Phenomena Using a Visual Aid

Pranav Suri and Dr. Christopher Nelson

Department of Biomedical Engineering

E-mail: psuri@uark.edu

Abstract

Studies show that inductive teaching methods for Biomedical Transport Phenomena

greatly benefit from an accompanying visual aid. The following project aimed to

develop a MATLAB GUI application that illustrates steady-state heat transfer with a

graph and heat map using user-defined boundary conditions and numerical

parameters. The application was evaluated using a survey that first familiarized the

user with the GUI by running through heat transfer exercises, then allowed the user

to experiment with the application, and finally asked users about their experiences

using a questionnaire. The responses indicate that the GUI was received positively

overall, and that a MATLAB component to the class would have aided these

students’ understanding of the material.

Keywords: heat transfer, biomedical transport phenomena, MATLAB GUI

Introduction

Students of any discipline can recognize the

broad scope of applications heat and mass transfer

has in everyday life: from wearing a coat to insulate

you during a cold winter day, to heating water for

your morning cup of coffee, and even to the

maintenance of your body’s temperature. Heat and

mass transfer’s broad scope of applications lends to

its intuitive nature: heat and mass both flow from

high to low temperature/concentration. However,

the intuitive nature of the concept somewhat breaks

down when more complex mathematical models are

applied to it. Models that incorporate multiple

boundaries, heat generation, partition coefficients,

and other nuances can be difficult to grasp without

telling visual aids. Such deductive teaching

methods often employed for heat and mass transfer

have been shown to stifle students’ natural learning

processes for the subject [1].

Biomedical Transport Phenomena is

arguably one of the most challenging courses within

the Biomedical Engineering curriculum, drawing

complex learning objectives from previous classes

such as Thermodynamics, Biomaterials, and Fluid

Mechanics to mathematically model heat and mass

transport. Typical teaching methods for the course

revolve around theoretical problem sets, but a 2000

study cites the overreliance on these problem sets as

a deficiency of the deductive teaching method, and

 2

that it ultimately leads to inadequate critical

thinking capabilities in students [2]. Teaching

methods have since evolved, and have incorporated

more innovative active-learning strategies, such as

ones that utilize social and digital media, problem-

based learning, and project-based learning [1].

1.1 Current teaching methods

Both deductive and inductive methods have

been employed for teaching heat and mass transfer.

Deductive methods begin with rules or general

principles and draw predictions from those general

rules. Most textbooks for the subject are written in

a deductive format. Induction, according to a study

by Felder et al. in 2000, is the “more natural

learning style,” and is a style in which intructors

present familiar phenomena, practical issues, or

experimental observations before presenting or

inferring a general principal [3].

The typical approach to teaching mass and

heat transfer is beginning with an introductory

chapter on the phenomenon concerned, and

continuing with a derivation of the balances and

other auxiliary equations. Students then typically

work through problems in the classroom with the

guidance of the professor, and are then given

problem sets to work on independently or with

peers as homework.

1.2 Objective of this Study

The objective of this paper and thesis is to

describe and develop a novel MATLAB GUI

application to supplement student learning and

visualization of course material. The application is

premised on steady-state heat transfer, which is

taught at the beginning of the course, and is based

on the heat equation:

𝝆𝒄𝒑

𝝏𝑻

𝒅𝒕
+ 𝝆𝒄𝒑

𝝏

𝝏𝒙
(𝒗𝑻) = 𝒌

𝝏𝟐𝑻

𝝏𝒙𝟐
+ 𝑸

The GUI generates a graph and heat map from

student-defined boundary conditions and

parameters. The purpose of the application is to

better illustrate the heat equation and its relation

with the five boundary conditions. The objective of

the illustration is for students to draw connections

between the otherwise arcane heat equation

derivations and train their own intuition. This

application presents both a deductive and inductive

learning method, as students can use the application

to make predictions about other outcomes and

derive general trends for different combinations of

boundary conditions. Additionally, students have

access to the MATLAB code itself. Through tracing

the code, students can learn how the heat equation

was simplified and how MATLAB code can be

applied to the class. The application was evaluated

by survey responses by students who had already

taken the course. The study will be expanded as the

GUI will be used for the next class, and students

will have the opportunity to use and modify the

application for their own studying.

Methods

2.1 Heat equation simplification

 The application considers the heat profiles

of steady-state heat transfer with or without heat

generation (𝑸). Thus, in the heat equation, the

storage (𝝆𝒄𝒑
𝝏𝑻

𝒅𝒕
) and bulk flow (𝝆𝒄𝒑

𝝏

𝝏𝒙
) terms can

be ignored. For problems without heat generation,

the heat equation simplifies to 𝒌
𝝏𝟐𝑻

𝝏𝒙𝟐 = 𝟎 and for

those with heat generation, the heat equation

simplifies to 𝒌
𝝏𝟐𝑻

𝝏𝒙𝟐 = 𝑸. After integration, the final

heat profiles (𝑻(𝒙)) become:

𝑻(𝒙) = 𝒄𝟏𝒙 + 𝒄𝟐

for problems with no heat generation and

𝑻(𝒙) = −
𝑸𝒙𝟐

𝟐𝒌
+ 𝒄𝟏𝒙 + 𝒄𝟐

for problems with heat generation.

 Then, the constants of integration were

solved for different combinations of boundary

conditions. For the purposes of this transport

phenomena class, five different boundary

 3

conditions were considered: type I (constant

temperature), type II (constant flux), type IIa

(insulative boundary), type IIb (symmetrical

distribution) and type III (convective heat transfer).

Given heat distribution in one dimension and a

surface with length 𝐿, the assumptions for each first

boundary condition (BC 1) were as follows:

Type I: at 𝑥 = 0 the temperature is a constant

temperature 𝑇1, or 𝑇(0) = 𝑇1.

Type II: at 𝑥 = 0, the change in temperature is

proportional to the flux (𝐽), or −𝑘
𝜕𝑇

𝜕𝑥
= 𝐽.

Type IIa: at 𝑥 = 0, there is no change in

temperature due to insulation, or −𝑘
𝜕𝑇

𝜕𝑥
= 0.

Type IIb: at 𝑥 =
𝐿

2
, there is no change in

temperature due to a symmetrical distribution

(again, −𝑘
𝜕𝑇

𝜕𝑥
= 0 but at 𝑥 =

𝐿

2
).

Type III: at 𝑥 = 0, the change in temperature is

proportional to the heat transfer coefficient (ℎ)

between the fluid and surface and the fluid’s 𝑇𝑖𝑛𝑓,

or the temperature of the fluid:

−𝑘
𝜕𝑇

𝜕𝑥
= ℎ(𝑇(0) − 𝑇𝑖𝑛𝑓)

The assumptions for each secondary

boundary condition (BC 2) type were consistent

with those outlined above, except exist at 𝑥 = 𝐿 and

that type I BC 2 temperature was notated as 𝑇2

instead of 𝑇1. Additionally, boundary condition

combinations of any two type II boundaries were

not possible to solve for, as a constant temperature

at a given point is necessary to set a profile. The

results when solving for constants of integration

with no generation are shown in Appendix Figure

1 (A) and (B) and with heat generation in

Appendix Figure 1 (C) and (D). The final heat

profiles for each combination (𝑇(𝑥)) are given in

Appendix Figure 1 (E) and (F).

2.2 Constructing the application

The constants of integration and equations

were then programmed into MATLAB (version

R2018b) using the AppDesigner utility. The code

prompts the user to select two boundary condition

types, and the corresponding parameter edit fields

appear. Parameters that are always active are 𝒌

(thermal conductivity), 𝑳 (length of the surface),

and 𝑸 (the heat generation term). If 𝒌 or 𝑳 are not

entered, the GUI prompts the user to fill the fields,

and if 𝑸 is left as 0, the application assumes that

there is no generation. Once users have finished

filling in the edit fields, they may then select ‘plot’

to graph the function, generate the heat map, and

display both the simplified and general forms of the

heat equation for the profile. The user interface for

the application and flow chart for the code are

shown in Figure 1 and Figure 2, respectively. Plots

generated by the application, including those found

in questions from the survey, are shown in Figure

3.

2.3 Surveying students

Surveys were issued via email to students

who had taken the course during the fall semester of

2019. The survey response collection period lasted

from February 20, 2020 to March 31, 2020 (41

days). The survey first familiarized students with

the interface and options by modeling the heat

distribution of surface tissue in a human at rest

using two type I BCs (Figure 3a). Students were

directed to fill fields for heat generation, thermal

conductivity, length, and two boundary

temperatures intended to illustrate the temperature

differential between tissue at the surface and

viscera. Following the sample exercise, students

were given two problems adapted from a heat

transfer exam administered during the fall semester:

one regarding the internal plate temperature of a

steam iron (Figure 3b) and another regarding the

convective cooling of skin during a cool day

(Figure 3c).

After the exercises, students were asked to

rate the GUI’s help in understanding the material,

 4

utility as a visual aid, help in preparing in class, and

overall performance. Additionally, they were asked

how much they supported the use of a MATLAB

component in the class and for any additional

feedback. A full copy of the survey text is shown in

Appendix Figure 3 and Appendix Figure 4.

 5

Figure 1 The user interface of the application.

Figure 2 Flow chart or pseudocode for the application.

 6

Figure 3 GUI with various heat profiles plotted. Exercise 1 (A), exercise 2 (B), and exercise 3 (C) from the survey are shown,

 7

illustrating combinations of two type I boundary conditions with heat generation (exercise 1), a type II and type I boundary

condition without heat generation (exercise 2), and a type III and type I boundary condition with heat generation (exercise

3). Additionally, (D) shows type I and type IIb boundary conditions with heat generation, giving a symmetrical heat profile.

(E) shows a type IIa (insulative) and type III boundary condition with heat generation, and (F) shows symmetry with a type III

and type IIb boundary condition and no heat generation.

Results

Ratings collected from students are

summarized in Figure 4, and track the ratings by

question and by responder with a total of 9

responders. Answers to qualitative survey questions

regarding support for a MATLAB component in

class, feedback on the GUI, and additional

comments can be found in Appendix Figure 2.

Figure 4 Rating results for each question collected by the survey over the 41 day period. Ratings for each responder are

color-coded.

Discussion and Conclusion

Responses from the survey suggest that the

rseponders believe the GUI was or would be fairly

helpful in understanding the course material (avg.

rating for question 1 = 9). Additionally, responders

believe that the app functioned well as a visual aid

(avg. response for question 2 = 8.56). Responders

projected that the GUI would have helped with class

preparation (avg. rating for question 3 = 8.44) and

gave a final overall rating average of 8.89. Lower

ratings on the first four questions could be

explained by useability issues with the GUI (cited

by two responders) or lack of overall experience

with MATLAB (cited by one responder).

Responders appeared to support the addition

of a MATLAB component to the course, as the

average helpfulness rating for question 5 was 8.11.

Students cited the practicality of using MATLAB

for transport phenomena as providing greater

context for how MATLAB could be used outside of

a class setting (cited by three responders). However,

some said it would be useful only if students have a

stronger MATLAB background (cited by two

responders). The visual aspect of the GUI was cited

by three responders as being particularly useful, and

two responders cited the GUI’s strong ease-of-use.

Otherwise, two responders requested temperature

labels for the temperature edit fields and one

responder requested alternative label placement for

heat generation.

While the survey responses are largely

positive, the study is likely subject to sampling bias.

Surveys were sent unanonymously, which may

have made some students more likely to complete

the survey than others. Additionally, it likely

 8

imparted bias on survey responses as students were

aware that the survey was for an honors project

conducted by a fellow student. The questionnaire

issued to the students was not drafted either, and

could confer bias based on syntax. Nonetheless,

because this is a new component for the course and

shows some promise among the respondents, this

study should be viewed as a pilot worthy of follow-

up.

Future studies for the GUI should aim for a

greater sample size and thus more granular data.

The data collected could benefit from a power

analysis to determine ratings’ significance for the

given sample size using a target rating. The data

collected so far for the application has been

premised entirely on subjective feedback, and the

GUI would be better evaluated by quantitative

measures. Scores on an administered assessment for

students who used the GUI compared with scores of

those that did not would be more telling of the

GUI’s effectiveness. Students surveyed were not

actively enrolled in the transport phenomena course

either, and some of the material covered may have

been forgotten since heat transfer was the first topic

covered chronologically. If students were surveyed

perhaps at the end of the transport course, more

telling data and greater survey participation may be

expected.

The GUI provides a platform upon which

students may expand. The code itself shows

students how MATLAB can be integrated within

their coursework, and could be used pedagogically

by simple revision of the code and its

implementation. The application can be easily

expanded to incorporate cylindrical and spherical

geometries, which are also covered during the

course. Mass transfer could be added as well by

adding a partition coefficient parameter, as all 1-D

steady-state mass transfer profiles in cartesian

coordinates are analogous to the heat profiles

programmed into the GUI. Another version of the

application could be released covering transient

transfer, though this is much more difficult to

implement.

Should the GUI be provided to students

during next fall’s transport course, its uses as a

platform and study/visual aid may become more

clear. While students can use the application to

memorize the heat profiles of different transport

conditions, the derivation of the integration

constants is not given explicitly. Ideally students

will derive the constants themselves and refer to the

GUI to check their work (though some hints are

given in the code’s annotations). Students can use

the application to explore different combinations of

boundary conditions not covered in class, and

hopefully to bolster the development of their

intuition in the context of heat and mass transfer.

References

[1] Wen, F and Khera, E (2016) Identify-Solve-Broadcast your own transport phenomenon: student-created YouTube videos to foster

active learning in mass and heat transfer. Chemical Engineering Education, 50(3), 186-192.

[2] Felder, R.M. et al. (2000). The future of engineering education II. Teaching methods that work. Chem. Eng. Ed., 34(1), 26.

[3] Farrell, S and Hesketh, R.P. (2000). An inductive approach to teaching heat and mass transfer. 2000 ASEE Annual Conference.

 9

Appendix

(A)

(B)

 10

(C)

(D)

(E)

 11

(F)

Appendix Figure 1 Solved constants of integration 𝑐𝟏 (A) and 𝑐2 (B) for temperature profiles with no generation, and solved

𝑐𝟏 (C) and 𝑐2 (D) for temperature profiles with generation. Final temperature equations for profiles with generation result in

a quadratic equation instead of linear, so in most cases constants of integration are more complex for profiles with heat

generation those of profiles with no generation. Constants of integration were solved for using the assumptions given for

each boundary condition. Full temperature profiles for each boundary condition combination are shown without generation

(E) and with generation (F).

Appendix Figure 2 Answers given by responders to open-ended questions.

 13

Appendix Figure 3 Section 1 of survey issued. Section responsible for familiarizing responders with GUI.

 14

Appendix Figure 4 Section 2 of survey issued. Questionnaire part of survey.

 15

classdef HeatTransfer1D < matlab.apps.AppBase

 % Properties that correspond to app components

 properties (Access = public)

 UIFigure matlab.ui.Figure

 UIAxes matlab.ui.control.UIAxes

 Generation0ifnoneLabel matlab.ui.control.Label

 QWm2Label matlab.ui.control.Label

 QEditField matlab.ui.control.NumericEditField

 DsteadystateheattransferwithorwithoutgenerationLabel matlab.ui.control.Label

 BoundaryCondition1ButtonGroup matlab.ui.container.ButtonGroup

 TypeIButton matlab.ui.control.RadioButton

 TypeIIButton matlab.ui.control.RadioButton

 TypeIIIButton matlab.ui.control.RadioButton

 TypeIIaButton matlab.ui.control.RadioButton

 TypeIIbButton matlab.ui.control.RadioButton

 PlotButton matlab.ui.control.Button

 SimplifiedequationEditFieldLabel matlab.ui.control.Label

 SimplifiedequationEditField matlab.ui.control.EditField

 EquationgeneralformEditFieldLabel matlab.ui.control.Label

 EquationgeneralformEditField matlab.ui.control.EditField

 BoundaryCondition2ButtonGroup matlab.ui.container.ButtonGroup

 TypeIButton_2 matlab.ui.control.RadioButton

 TypeIIButton_2 matlab.ui.control.RadioButton

 TypeIIIButton_2 matlab.ui.control.RadioButton

 TypeIIaButton_2 matlab.ui.control.RadioButton

 TypeIIbButton_2 matlab.ui.control.RadioButton

 UIAxes2 matlab.ui.control.UIAxes

 LengthofsurfacemLabel matlab.ui.control.Label

 LengthEditField matlab.ui.control.NumericEditField

 TypeIParametersPanel matlab.ui.container.Panel

 T1EditFieldLabel matlab.ui.control.Label

 T1EditField matlab.ui.control.NumericEditField

 T2Label matlab.ui.control.Label

 T2EditField matlab.ui.control.NumericEditField

 kWmkLabel matlab.ui.control.Label

 kWmkEditField matlab.ui.control.NumericEditField

 BC1FluxPanel matlab.ui.container.Panel

 FluxJWm2Label_2 matlab.ui.control.Label

 JEditField matlab.ui.control.NumericEditField

 TypeIIIBC1ParametersPanel matlab.ui.container.Panel

 hWm2KLabel_2 matlab.ui.control.Label

 hEditField matlab.ui.control.NumericEditField

 TinfEditFieldLabel_2 matlab.ui.control.Label

 TinfEditField matlab.ui.control.NumericEditField

 TypeIIIBC2ParametersPanel matlab.ui.container.Panel

 h2Wm2KLabel matlab.ui.control.Label

 h2EditField matlab.ui.control.NumericEditField

 Tinf2EditFieldLabel matlab.ui.control.Label

 Tinf2EditField matlab.ui.control.NumericEditField

 BC2FluxPanel matlab.ui.container.Panel

 FluxJWm2Label_3 matlab.ui.control.Label

 J2EditField matlab.ui.control.NumericEditField

 end

 methods (Access = private)

 % Code that executes after component creation

 function startupFcn(app)

 %Turning fields off besides T1 and T2 initially

 app.JEditField.Visible = 'off';

 app.FluxJWm2Label_2.Visible = 'off';

 16

 app.hWm2KLabel_2.Visible = 'off';

 app.hEditField.Visible = 'off';

 app.TinfEditFieldLabel_2.Visible = 'off';

 app.TinfEditField.Visible = 'off';

 app.J2EditField.Visible = 'off';

 app.FluxJWm2Label_3.Visible = 'off';

 app.h2Wm2KLabel.Visible = 'off';

 app.h2EditField.Visible = 'off';

 app.Tinf2EditFieldLabel.Visible = 'off';

 app.Tinf2EditField.Visible = 'off';

 end

 % Button pushed function: PlotButton

 function PlotButtonPushed(app, event)

 %BC parameters:

 t1 = app.T1EditField.Value;

 t2 = app.T2EditField.Value;

 J = app.JEditField.Value;

 J2 = app.J2EditField.Value;

 h = app.hEditField.Value;

 h2 = app.h2EditField.Value;

 Tinf = app.TinfEditField.Value;

 Tinf2 = app.Tinf2EditField.Value;

 %General variables

 Eqn = "";

 GenEqn = "";

 k = app.kWmkEditField.Value;

 Q = app.QEditField.Value;

 L = app.LengthEditField.Value;

 %Equation validity check

 VE = 1;

 %Choosing boundary condition 1:

 bc1 = 1;

 if app.TypeIButton.Value

 bc1 = 1;

 elseif app.TypeIIButton.Value

 bc1 = 2;

 elseif app.TypeIIaButton.Value

 bc1 = 21;

 elseif app.TypeIIbButton.Value

 bc1 = 22;

 elseif app.TypeIIIButton.Value

 bc1 = 3;

 end

 %Choosing boundary condition 2:

 bc2 = 1;

 if app.TypeIButton_2.Value

 bc2 = 1;

 elseif app.TypeIIButton_2.Value

 bc2 = 2;

 elseif app.TypeIIaButton_2.Value

 bc2 = 21;

 elseif app.TypeIIbButton_2.Value

 bc2 = 22;

 elseif app.TypeIIIButton_2.Value

 17

 bc2 = 3;

 end

 %Setting the surface length:

 X = linspace(0,L);

 %Checking for k-value input

 if k == 0

 Eqn = 'Please enter a k value';

 VE = 0;

 %Checking for a surface length input

 elseif L == 0

 Eqn = 'Please enter a surface length';

 VE = 0;

 elseif k ~= 0 && L ~= 0

 %For a type I boundary condition 1:

 if bc1 == 1

 %Two Type I BCs

 if bc2 == 1

 %No heat gen

 if Q == 0

 c1 = (t2-t1)/L;

 c2 = t1;

 Z = (c1).*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (t2 + (Q*L^2)/(2*k) - t1)/L;

 c2 = t1;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type I and one type II BC

 elseif bc2 == 2

 %No heat gen

 if Q == 0

 c1 = -J2/(-k); %Negative J because flux is in negative x

direction

 c2 = t1;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = -J2/(-k) + Q*L/k; %Setting dt/dx = -qL/k + c1 = J/k and

solving (recall -k*dt/dx = -J)

 c2 = t1;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 18

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type I and one type IIa (insulative) BC

 elseif bc2 == 21

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = t1;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = Q*L/k; %Setting dt/dx = -qL/k + c1 = 0 and solving since the

insulative boundary is at x = L

 c2 = t1;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type I and one type IIb (symmetry) BC

 elseif bc2 == 22

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = t1;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Q*L)/(2*k); %Setting dt/dx = -q(0.5L)/k + c1 = 0 and

solving

 c2 = t1;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type I boundary and one type III BC

 elseif bc2 == 3

 %No heat gen

 if Q == 0

 c1 = (h2*(Tinf2 - t1))/(k + h2*L); %Solving -k*dt/dx = h*(T(L) -

Tinf)

 c2 = t1;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 19

 elseif Q ~= 0

 c1 = (h2*((Q*L^2)/(2*k) + Tinf2 - t1) + Q*L)/(k + h2*L); %Setting

dt/dx = -qL/k + c1 = h(T(L) - Tinf)/k and solving for c1 (recall T(L) = -QL^2/2k + c1*L + c2)

 c2 = t1;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 end

 %For a type II (constant flux) boundary condition 1:

 elseif bc1 == 2

 %One type II and one type I BC

 if bc2 == 1

 %No heat gen

 if Q == 0

 c1 = J/(-k); %Negative because flux is in positive x direction (-

k*dt/dx = J)

 c2 = t2 - c1*L;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = J/(-k); %setting dt/dx = -q(0)/k + c1 = -J/k

 c2 = t2 + (Q*L^2)/(2*k) - c1*L;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type II and one type III BC

 elseif bc2 == 3

 %No heat gen

 if Q == 0

 c1 = J/(-k);

 c2 = J/h2 + (J*L)/k + Tinf2;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = J/(-k);

 c2 = (Q*L + J)/h2 + (0.5*Q*L^2 + J*L)/k + Tinf2;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %For all other boundary conditions

 elseif bc2 == 2 || bc2 == 21 || bc2 == 22

 VE = 0;

 %No heat gen

 20

 if Q == 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 end

 %For a type IIa (insulative) boundary condition 1:

 elseif bc1 == 21

 %One type IIa and one type I BC

 if bc2 == 1

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = t2;

 Z = ones(length(X)).*c2; %Same as above, except with type I BC

occurring at x = L

 Eqn = "T(x) = " + num2str(t2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = 0; %Because dt/dx = 0 at x = 0 (-q(0)/k + c1 = 0)

 c2 = t2 + (Q*L^2)/(2*k);

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type IIa and one type III BC

 elseif bc2 == 3

 %No heat gen

 if Q == 0

 c1 = 0; %At steady-state, the temperature will eventually reach

Tinf

 c2 = Tinf2;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(t2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = 0; %Because -k(dt/dx) = 0 at x = 0 (-k(-q(0)/k + c1) = 0)

 c2 = Q*L + h2*Tinf2;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %For all other boundary conditions

 elseif bc2 == 2 || bc2 == 21 || bc2 == 22

 21

 VE = 0;

 %No heat gen

 if Q == 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 end

 %For a type IIb (symmetry) boundary condition 1:

 elseif bc1 == 22

 %One type IIb and one type I BC

 if bc2 == 1

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = t2;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Q*L)/(2*k); %Same as above, except with the type I BC

occurring at L

 c2 = t2 + (Q*L^2)/(2*k) - c1*L; %These last two terms cancel,

leaving c2 = t2

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type IIb and one type III BC

 elseif bc2 == 3

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = Tinf2;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Q*L)/(2*k);

 c2 = (Q*L + 2*h2*Tinf2)/(2*h2);

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %For all other boundary conditions

 22

 elseif bc2 == 2 || bc2 == 21 || bc2 == 22

 VE = 0;

 %No heat gen

 if Q == 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "c1*x + c2";

 elseif Q ~= 0

 Eqn = "Needs at least one type I or type III BC to graph";

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 end

 %For a type III boundary condition 1:

 elseif bc1 == 3

 %One type III and one type I BC

 if bc2 == 1

 %No heat gen

 if Q == 0

 c1 = (t2 - Tinf)/(k/h + L);

 c2 = t2 - (t2 - Tinf)/(k/(h*L) + 1);

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (t2 - Tinf + (Q*L^2)/(2*k))/(k/h + L);

 c2 = t2 + (Q*L^2)/(2*k) - (t2 - Tinf + (Q*L^2)/(2*k))/(k/(h*L) +

1);

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type III and one type II BC

 elseif bc2 == 2

 %No heat gen

 if Q == 0

 c1 = -J2/(-k); %Flux going in negative x direction

 c2 = J2/h + Tinf;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);;

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (J2 + Q*L)/k;

 c2 = (J2 + Q*L + h*Tinf)/h;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type III and one type IIa (insulative) BC

 23

 elseif bc2 == 21

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = Tinf;

 Z = ones(length(X)).*c2;

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Q*L)/k;

 c2 = (Q*L)/h + Tinf;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %One type III and one type IIb (symmetry) BC

 elseif bc2 == 22

 %No heat gen

 if Q == 0

 c1 = 0;

 c2 = Tinf;

 Z = ones(length(X)).*c2; %Same as above

 Eqn = "T(x) = " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Q*L)/(2*k);

 c2 = (Q*L)/(2*h) + Tinf;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 %Two type III BCs

 elseif bc2 == 3

 %No heat gen

 if Q == 0

 c1 = (Tinf2 - Tinf)/(L + k*(1/h + 1/h2));

 c2 = (Tinf2 - Tinf)/((L*h)/k + h*(1/h + 1/h2)) + Tinf;

 Z = c1.*X + c2;

 Eqn = "T(x) = " + num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "c1*x + c2";

 %With heat gen

 elseif Q ~= 0

 c1 = (Tinf2 - Tinf + Q*L + (Q*L^2)/(2*k))/(L + k*(1/h + 1/h2));

 c2 = (Tinf2 - Tinf + Q*L + (Q*L^2)/(2*k))/((L*h)/k + h*(1/h +

1/h2)) + Tinf;

 Z = -(Q.*X.^2)/(2*k) + c1.*X + c2;

 Eqn = "T(x) = -(" + num2str(Q) + "x^2)/(2*" + num2str(k) + ") + "

+ num2str(c1) + "*x + " + num2str(c2);

 GenEqn = "-Qx^2/2k + c1*x + c2";

 end

 24

 end

 end

 end

 %Checking to see if equation is valid

 if VE == 1

 %Graphing temperature profile

 plot(app.UIAxes2,X,Z);

 %Generating matrix for heat map

 grid = zeros(length(X),length(Z));

 for i = 1:length(X)

 grid(:,i) = Z(i);

 end

 pcolor(app.UIAxes,grid)

 elseif VE == 0

 cla(app.UIAxes);

 cla(app.UIAxes2);

 end

 %Displaying equations

 app.EquationgeneralformEditField.Value = "T(x) = " + GenEqn;

 app.SimplifiedequationEditField.Value = Eqn;

 end

 % Selection changed function: BoundaryCondition1ButtonGroup

 function BoundaryCondition1ButtonGroupSelectionChanged(app, event)

 selectedButton = app.BoundaryCondition1ButtonGroup.SelectedObject;

 %Making the T1 field appear when selected

 if app.TypeIButton.Value

 app.T1EditField.Visible = 'on';

 app.T1EditFieldLabel.Visible = 'on';

 elseif ~app.TypeIButton.Value

 app.T1EditField.Visible = 'off';

 app.T1EditFieldLabel.Visible = 'off';

 end

 %Making the BC1 flux field appear when selected

 if app.TypeIIButton.Value

 app.JEditField.Visible = 'on';

 app.FluxJWm2Label_2.Visible = 'on';

 elseif ~app.TypeIIButton.Value

 app.JEditField.Visible = 'off';

 app.FluxJWm2Label_2.Visible = 'off';

 end

 %Making the BC1 convective boundary fields appear when selected

 if app.TypeIIIButton.Value

 app.hWm2KLabel_2.Visible = 'on';

 app.hEditField.Visible = 'on';

 app.TinfEditFieldLabel_2.Visible = 'on';

 app.TinfEditField.Visible = 'on';

 25

 elseif ~app.TypeIIIButton.Value

 app.hWm2KLabel_2.Visible = 'off';

 app.hEditField.Visible = 'off';

 app.TinfEditFieldLabel_2.Visible = 'off';

 app.TinfEditField.Visible = 'off';

 end

 end

 % Selection changed function: BoundaryCondition2ButtonGroup

 function BoundaryCondition2ButtonGroupSelectionChanged(app, event)

 selectedButton = app.BoundaryCondition2ButtonGroup.SelectedObject;

 %Making the T2 field appear when selected

 if app.TypeIButton_2.Value

 app.T2EditField.Visible = 'on';

 app.T2Label.Visible = 'on';

 elseif ~app.TypeIButton_2.Value

 app.T2EditField.Visible = 'off';

 app.T2Label.Visible = 'off';

 end

 %Making the BC2 flux field appear when selected

 if app.TypeIIButton_2.Value

 app.J2EditField.Visible = 'on';

 app.FluxJWm2Label_3.Visible = 'on';

 elseif ~app.TypeIIButton_2.Value

 app.J2EditField.Visible = 'off';

 app.FluxJWm2Label_3.Visible = 'off';

 end

 %Making the BC2 convective boundary fields appear when selected

 if app.TypeIIIButton_2.Value

 app.h2Wm2KLabel.Visible = 'on';

 app.h2EditField.Visible = 'on';

 app.Tinf2EditFieldLabel.Visible = 'on';

 app.Tinf2EditField.Visible = 'on';

 elseif ~app.TypeIIIButton_2.Value

 app.h2Wm2KLabel.Visible = 'off';

 app.h2EditField.Visible = 'off';

 app.Tinf2EditFieldLabel.Visible = 'off';

 app.Tinf2EditField.Visible = 'off';

 end

 end

 end

 % App initialization and construction

 methods (Access = private)

 % Create UIFigure and components

 function createComponents(app)

 % Create UIFigure

 app.UIFigure = uifigure;

 app.UIFigure.Position = [100 100 967 736];

 app.UIFigure.Name = 'UI Figure';

 % Create UIAxes

 app.UIAxes = uiaxes(app.UIFigure);

 title(app.UIAxes, 'Heat distribution map')

 xlabel(app.UIAxes, 'X')

 ylabel(app.UIAxes, '')

 app.UIAxes.PlotBoxAspectRatio = [1 0.513833992094862 0.513833992094862];

 app.UIAxes.XTick = [];

 26

 app.UIAxes.YTick = [];

 app.UIAxes.Position = [499 372 454 324];

 % Create Generation0ifnoneLabel

 app.Generation0ifnoneLabel = uilabel(app.UIFigure);

 app.Generation0ifnoneLabel.FontSize = 13;

 app.Generation0ifnoneLabel.FontWeight = 'bold';

 app.Generation0ifnoneLabel.Position = [16 524 148 22];

 app.Generation0ifnoneLabel.Text = 'Generation? (0 if none)';

 % Create QWm2Label

 app.QWm2Label = uilabel(app.UIFigure);

 app.QWm2Label.HorizontalAlignment = 'right';

 app.QWm2Label.FontWeight = 'bold';

 app.QWm2Label.Position = [20 500 69 22];

 app.QWm2Label.Text = 'Q (W/m^2):';

 % Create QEditField

 app.QEditField = uieditfield(app.UIFigure, 'numeric');

 app.QEditField.Position = [104 500 54 22];

 % Create DsteadystateheattransferwithorwithoutgenerationLabel

 app.DsteadystateheattransferwithorwithoutgenerationLabel = uilabel(app.UIFigure);

 app.DsteadystateheattransferwithorwithoutgenerationLabel.HorizontalAlignment =

'center';

 app.DsteadystateheattransferwithorwithoutgenerationLabel.FontSize = 16;

 app.DsteadystateheattransferwithorwithoutgenerationLabel.FontWeight = 'bold';

 app.DsteadystateheattransferwithorwithoutgenerationLabel.Position = [165 705 640

32];

 app.DsteadystateheattransferwithorwithoutgenerationLabel.Text = '1-D steady-state

heat transfer with or without generation';

 % Create BoundaryCondition1ButtonGroup

 app.BoundaryCondition1ButtonGroup = uibuttongroup(app.UIFigure);

 app.BoundaryCondition1ButtonGroup.SelectionChangedFcn = createCallbackFcn(app,

@BoundaryCondition1ButtonGroupSelectionChanged, true);

 app.BoundaryCondition1ButtonGroup.Title = 'Boundary Condition 1:';

 app.BoundaryCondition1ButtonGroup.FontWeight = 'bold';

 app.BoundaryCondition1ButtonGroup.Position = [13 563 136 143];

 % Create TypeIButton

 app.TypeIButton = uiradiobutton(app.BoundaryCondition1ButtonGroup);

 app.TypeIButton.Text = 'Type I';

 app.TypeIButton.Position = [11 97 58 22];

 app.TypeIButton.Value = true;

 % Create TypeIIButton

 app.TypeIIButton = uiradiobutton(app.BoundaryCondition1ButtonGroup);

 app.TypeIIButton.Text = 'Type II (const. flux)';

 app.TypeIIButton.Position = [11 77 123 22];

 % Create TypeIIIButton

 app.TypeIIIButton = uiradiobutton(app.BoundaryCondition1ButtonGroup);

 app.TypeIIIButton.Text = 'Type III';

 app.TypeIIIButton.Position = [11 14 65 22];

 % Create TypeIIaButton

 app.TypeIIaButton = uiradiobutton(app.BoundaryCondition1ButtonGroup);

 app.TypeIIaButton.Text = 'Type IIa (insulation)';

 app.TypeIIaButton.Position = [11 56 127 22];

 % Create TypeIIbButton

 app.TypeIIbButton = uiradiobutton(app.BoundaryCondition1ButtonGroup);

 27

 app.TypeIIbButton.Text = 'Type IIb (symmetry)';

 app.TypeIIbButton.Position = [11 35 128 22];

 % Create PlotButton

 app.PlotButton = uibutton(app.UIFigure, 'push');

 app.PlotButton.ButtonPushedFcn = createCallbackFcn(app, @PlotButtonPushed, true);

 app.PlotButton.Position = [696 332 100 22];

 app.PlotButton.Text = 'Plot';

 % Create SimplifiedequationEditFieldLabel

 app.SimplifiedequationEditFieldLabel = uilabel(app.UIFigure);

 app.SimplifiedequationEditFieldLabel.HorizontalAlignment = 'right';

 app.SimplifiedequationEditFieldLabel.FontSize = 14;

 app.SimplifiedequationEditFieldLabel.FontWeight = 'bold';

 app.SimplifiedequationEditFieldLabel.Position = [24 82 135 22];

 app.SimplifiedequationEditFieldLabel.Text = 'Simplified equation';

 % Create SimplifiedequationEditField

 app.SimplifiedequationEditField = uieditfield(app.UIFigure, 'text');

 app.SimplifiedequationEditField.Position = [174 82 297 22];

 % Create EquationgeneralformEditFieldLabel

 app.EquationgeneralformEditFieldLabel = uilabel(app.UIFigure);

 app.EquationgeneralformEditFieldLabel.HorizontalAlignment = 'right';

 app.EquationgeneralformEditFieldLabel.FontSize = 14;

 app.EquationgeneralformEditFieldLabel.FontWeight = 'bold';

 app.EquationgeneralformEditFieldLabel.Position = [5 115 154 22];

 app.EquationgeneralformEditFieldLabel.Text = 'Equation general form';

 % Create EquationgeneralformEditField

 app.EquationgeneralformEditField = uieditfield(app.UIFigure, 'text');

 app.EquationgeneralformEditField.Position = [174 115 297 22];

 % Create BoundaryCondition2ButtonGroup

 app.BoundaryCondition2ButtonGroup = uibuttongroup(app.UIFigure);

 app.BoundaryCondition2ButtonGroup.SelectionChangedFcn = createCallbackFcn(app,

@BoundaryCondition2ButtonGroupSelectionChanged, true);

 app.BoundaryCondition2ButtonGroup.Title = 'Boundary Condition 2:';

 app.BoundaryCondition2ButtonGroup.FontWeight = 'bold';

 app.BoundaryCondition2ButtonGroup.Position = [174 563 136 143];

 % Create TypeIButton_2

 app.TypeIButton_2 = uiradiobutton(app.BoundaryCondition2ButtonGroup);

 app.TypeIButton_2.Text = 'Type I';

 app.TypeIButton_2.Position = [11 97 58 22];

 app.TypeIButton_2.Value = true;

 % Create TypeIIButton_2

 app.TypeIIButton_2 = uiradiobutton(app.BoundaryCondition2ButtonGroup);

 app.TypeIIButton_2.Text = 'Type II (const. flux)';

 app.TypeIIButton_2.Position = [11 77 123 22];

 % Create TypeIIIButton_2

 app.TypeIIIButton_2 = uiradiobutton(app.BoundaryCondition2ButtonGroup);

 app.TypeIIIButton_2.Text = 'Type III';

 app.TypeIIIButton_2.Position = [11 14 65 22];

 % Create TypeIIaButton_2

 app.TypeIIaButton_2 = uiradiobutton(app.BoundaryCondition2ButtonGroup);

 app.TypeIIaButton_2.Text = 'Type IIa (insulation)';

 app.TypeIIaButton_2.Position = [11 56 127 22];

 % Create TypeIIbButton_2

 28

 app.TypeIIbButton_2 = uiradiobutton(app.BoundaryCondition2ButtonGroup);

 app.TypeIIbButton_2.Text = 'Type IIb (symmetry)';

 app.TypeIIbButton_2.Position = [11 35 128 22];

 % Create UIAxes2

 app.UIAxes2 = uiaxes(app.UIFigure);

 title(app.UIAxes2, 'Temperature profile')

 xlabel(app.UIAxes2, 'X')

 ylabel(app.UIAxes2, {'Temperature'; ''})

 app.UIAxes2.PlotBoxAspectRatio = [1 0.56390977443609 0.56390977443609];

 app.UIAxes2.Position = [507 26 446 280];

 % Create LengthofsurfacemLabel

 app.LengthofsurfacemLabel = uilabel(app.UIFigure);

 app.LengthofsurfacemLabel.HorizontalAlignment = 'right';

 app.LengthofsurfacemLabel.FontWeight = 'bold';

 app.LengthofsurfacemLabel.Position = [13 469 138 22];

 app.LengthofsurfacemLabel.Text = 'Length of surface (m):';

 % Create LengthEditField

 app.LengthEditField = uieditfield(app.UIFigure, 'numeric');

 app.LengthEditField.Position = [154 469 54 22];

 % Create TypeIParametersPanel

 app.TypeIParametersPanel = uipanel(app.UIFigure);

 app.TypeIParametersPanel.Title = 'Type I Parameters:';

 app.TypeIParametersPanel.FontWeight = 'bold';

 app.TypeIParametersPanel.FontSize = 13;

 app.TypeIParametersPanel.Position = [13 332 366 97];

 % Create T1EditFieldLabel

 app.T1EditFieldLabel = uilabel(app.TypeIParametersPanel);

 app.T1EditFieldLabel.HorizontalAlignment = 'right';

 app.T1EditFieldLabel.FontWeight = 'bold';

 app.T1EditFieldLabel.Position = [17 46 25 22];

 app.T1EditFieldLabel.Text = 'T1:';

 % Create T1EditField

 app.T1EditField = uieditfield(app.TypeIParametersPanel, 'numeric');

 app.T1EditField.Position = [57 46 48 22];

 % Create T2Label

 app.T2Label = uilabel(app.TypeIParametersPanel);

 app.T2Label.HorizontalAlignment = 'right';

 app.T2Label.FontWeight = 'bold';

 app.T2Label.Position = [18 11 25 22];

 app.T2Label.Text = 'T2:';

 % Create T2EditField

 app.T2EditField = uieditfield(app.TypeIParametersPanel, 'numeric');

 app.T2EditField.Position = [57 11 48 22];

 % Create kWmkLabel

 app.kWmkLabel = uilabel(app.UIFigure);

 app.kWmkLabel.HorizontalAlignment = 'right';

 app.kWmkLabel.FontWeight = 'bold';

 app.kWmkLabel.Position = [20 438 64 22];

 app.kWmkLabel.Text = 'k (W/m*k):';

 % Create kWmkEditField

 app.kWmkEditField = uieditfield(app.UIFigure, 'numeric');

 app.kWmkEditField.Position = [93 438 56 22];

 29

 % Create BC1FluxPanel

 app.BC1FluxPanel = uipanel(app.UIFigure);

 app.BC1FluxPanel.Title = 'BC1 Flux:';

 app.BC1FluxPanel.FontWeight = 'bold';

 app.BC1FluxPanel.FontSize = 13;

 app.BC1FluxPanel.Position = [16 265 227 59];

 % Create FluxJWm2Label_2

 app.FluxJWm2Label_2 = uilabel(app.BC1FluxPanel);

 app.FluxJWm2Label_2.HorizontalAlignment = 'right';

 app.FluxJWm2Label_2.FontWeight = 'bold';

 app.FluxJWm2Label_2.Position = [7 10 95 22];

 app.FluxJWm2Label_2.Text = 'Flux J (W/m^2):';

 % Create JEditField

 app.JEditField = uieditfield(app.BC1FluxPanel, 'numeric');

 app.JEditField.Position = [117 10 42 22];

 % Create TypeIIIBC1ParametersPanel

 app.TypeIIIBC1ParametersPanel = uipanel(app.UIFigure);

 app.TypeIIIBC1ParametersPanel.Title = 'Type III BC1 Parameters:';

 app.TypeIIIBC1ParametersPanel.FontWeight = 'bold';

 app.TypeIIIBC1ParametersPanel.FontSize = 13;

 app.TypeIIIBC1ParametersPanel.Position = [16 181 227 76];

 % Create hWm2KLabel_2

 app.hWm2KLabel_2 = uilabel(app.TypeIIIBC1ParametersPanel);

 app.hWm2KLabel_2.HorizontalAlignment = 'right';

 app.hWm2KLabel_2.FontWeight = 'bold';

 app.hWm2KLabel_2.Position = [8 29 80 22];

 app.hWm2KLabel_2.Text = 'h (W/m^2*K):';

 % Create hEditField

 app.hEditField = uieditfield(app.TypeIIIBC1ParametersPanel, 'numeric');

 app.hEditField.Position = [101 29 58 22];

 % Create TinfEditFieldLabel_2

 app.TinfEditFieldLabel_2 = uilabel(app.TypeIIIBC1ParametersPanel);

 app.TinfEditFieldLabel_2.HorizontalAlignment = 'right';

 app.TinfEditFieldLabel_2.FontWeight = 'bold';

 app.TinfEditFieldLabel_2.Position = [8 1 31 22];

 app.TinfEditFieldLabel_2.Text = 'Tinf:';

 % Create TinfEditField

 app.TinfEditField = uieditfield(app.TypeIIIBC1ParametersPanel, 'numeric');

 app.TinfEditField.Position = [54 1 65 22];

 % Create TypeIIIBC2ParametersPanel

 app.TypeIIIBC2ParametersPanel = uipanel(app.UIFigure);

 app.TypeIIIBC2ParametersPanel.Title = 'Type III BC2 Parameters:';

 app.TypeIIIBC2ParametersPanel.FontWeight = 'bold';

 app.TypeIIIBC2ParametersPanel.FontSize = 13;

 app.TypeIIIBC2ParametersPanel.Position = [257 181 227 76];

 % Create h2Wm2KLabel

 app.h2Wm2KLabel = uilabel(app.TypeIIIBC2ParametersPanel);

 app.h2Wm2KLabel.HorizontalAlignment = 'right';

 app.h2Wm2KLabel.FontWeight = 'bold';

 app.h2Wm2KLabel.Position = [1 29 87 22];

 app.h2Wm2KLabel.Text = 'h2 (W/m^2*K):';

 % Create h2EditField

 app.h2EditField = uieditfield(app.TypeIIIBC2ParametersPanel, 'numeric');

 30

 app.h2EditField.Position = [101 29 58 22];

 % Create Tinf2EditFieldLabel

 app.Tinf2EditFieldLabel = uilabel(app.TypeIIIBC2ParametersPanel);

 app.Tinf2EditFieldLabel.HorizontalAlignment = 'right';

 app.Tinf2EditFieldLabel.FontWeight = 'bold';

 app.Tinf2EditFieldLabel.Position = [1 1 38 22];

 app.Tinf2EditFieldLabel.Text = 'Tinf2:';

 % Create Tinf2EditField

 app.Tinf2EditField = uieditfield(app.TypeIIIBC2ParametersPanel, 'numeric');

 app.Tinf2EditField.Position = [53 1 65 22];

 % Create BC2FluxPanel

 app.BC2FluxPanel = uipanel(app.UIFigure);

 app.BC2FluxPanel.Title = 'BC2 Flux:';

 app.BC2FluxPanel.FontWeight = 'bold';

 app.BC2FluxPanel.FontSize = 13;

 app.BC2FluxPanel.Position = [258 265 227 59];

 % Create FluxJWm2Label_3

 app.FluxJWm2Label_3 = uilabel(app.BC2FluxPanel);

 app.FluxJWm2Label_3.HorizontalAlignment = 'right';

 app.FluxJWm2Label_3.FontWeight = 'bold';

 app.FluxJWm2Label_3.Position = [7 10 95 22];

 app.FluxJWm2Label_3.Text = 'Flux J (W/m^2):';

 % Create J2EditField

 app.J2EditField = uieditfield(app.BC2FluxPanel, 'numeric');

 app.J2EditField.Position = [117 10 42 22];

 end

 end

 methods (Access = public)

 % Construct app

 function app = HeatTransfer1D

 % Create and configure components

 createComponents(app)

 % Register the app with App Designer

 registerApp(app, app.UIFigure)

 % Execute the startup function

 runStartupFcn(app, @startupFcn)

 if nargout == 0

 clear app

 end

 end

 % Code that executes before app deletion

 function delete(app)

 % Delete UIFigure when app is deleted

 delete(app.UIFigure)

 end

 end

end

Appendix Figure 5 Full code for the GUI. Created in MATLAB version R2018b.

 31

	Development of a MATLAB GUI to Assist the Active Comprehension of Biomedical Transport Phenomena Using a Visual Aid
	Citation

	tmp.1588352196.pdf.uUvui

