
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

Using Bluetooth Low Energy and E-Ink Displays for Inventory Using Bluetooth Low Energy and E-Ink Displays for Inventory

Tracking Tracking

David Whelan
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Computational Engineering Commons, Digital Communications and Networking

Commons, Graphics and Human Computer Interfaces Commons, Numerical Analysis and Scientific

Computing Commons, and the Software Engineering Commons

Citation Citation
Whelan, D. (2022). Using Bluetooth Low Energy and E-Ink Displays for Inventory Tracking. Computer
Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/104

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/104?utm_source=scholarworks.uark.edu%2Fcsceuht%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Using Bluetooth Low Energy
and E-Ink Displays for
Inventory Tracking

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR

by

David Whelan

Contents

1 Introduction 4

1.1 Problem . 4

1.2 Thesis Statement . 5

1.3 Approach . 5

2 Background 6

2.1 Key Concepts . 6

2.1.1 E-Ink Displays . 6

2.1.2 Bluetooth Low Energy . 6

2.1.3 Ionic and Google Firebase . 7

2.2 Related Work . 8

2.2.1 BLE Beacons . 8

2.2.2 BLE Indoor Positioning . 8

2.2.3 BLE Mesh Networking . 9

2.2.4 BLE and E-Ink Hardware . 10

3 Design and Implementation 11

3.1 Bluetooth Services . 11

3.1.1 Inventory GATT . 11

3.1.2 Persistent Storage . 12

3.1.3 GAP . 13

3.2 E-Ink Display . 13

3.3 Control Application . 15

4 Results and Evaluation 19

4.1 Inventory Service . 19

4.2 Display . 19

4.3 Control Application . 20

5 Conclusion 21

5.1 Summary . 21

5.2 Future Work . 21

References 23

1

List of Figures

1.1 Adafruit nRF52840 Development Board . 5

1.2 Adafruit E-Ink Featherwing . 5

2.1 Nordic nRF52 BLE Stack . 7

2.2 Pricer Electronic Shelf Label . 10

2.3 Papyr Wireless display . 10

3.1 Bluetooth Characteristics and the assigned UUID 11

3.2 Container Characteristic Values . 12

3.3 Unit Characteristic Values . 12

3.4 Layout of the Flash File System . 13

3.5 Flowchart depicting the refresh schedule process 14

3.6 E-Ink display of the inventory information . 14

3.7 Login Screen of the Control Application . 15

3.8 Initial view that allows the user to scan for devices 16

3.9 Application showing which devices are available for connection 17

3.10 Data retrieved from the connected BLE device 18

2

Abstract

The combination of Bluetooth Low energy and E-Ink displays allow for a low energy wire-

less display. The application of this technology is far reaching especially given how the

Bluetooth Low Energy specification can be extended. This paper proposes an extension to

this specification specifically for inventory tracking. This extension combined with the low

energy E-Ink display results in a smart label that can keep track of additional meta data

and inventory counts for physical inventory. This label helps track the physical inventory

and can help mitigate any errors in the logical organization of inventory.

3

Chapter 1

Introduction

1.1 Problem

Inventory tracking is vital for business operations [19]. Current inventory drives purchase

orders, manufacturing orders, and future planning. Without accurate inventory keeping,

business will have either too many items in inventory or not enough. When the number of

items are over reported, purchasing and manufacturing orders are created against inventory

that doesn’t exist. This can lead to dissatisfied customers and bad manufacturing planning.

Under reporting the number of items is just of much of a problem. There will always be

additional unneeded inventory that needs to be stored somewhere. Having to store this

inventory increases the overhead cost for that inventory item decreasing the profit margins.

Most business rely on forecasting to get an idea of how much inventory they need to keep

for any given time. If the inventory counts are not correct then the forecast is working off

bad data.

This problem is addressed with Enterprise Resource Planning(ERP) software [22]. These

software packages provide inventory tracking and handles the cost of inventory as well. This

software combined with inventory management practices such as cycle counting help reduce

inventory errors [21]. These software packages break down spaces into inventory locations

and items are tracked and moved between these locations. For example a space on a storage

shelf will have a unique location in the ERP software and every time inventory is added

or removed it is updated. What’s important to note is that is that there is no way to tell

how that inventory is actually stored. It could be a single pallet at that location, multiple

pallets, cases, etc... We know that inventory was removed from the location but we are

unaware what that physical process looked like.

As much as ERP software packages help with inventory management they are just a

tool. Human error does occur when using these tools. They could accidentally type in the

wrong number when performing an inventory move or they could forget to do the inventory

move at all. These errors can and do occur making perfect inventory accuracy very difficult.

Which leads to the problem that is being addressed in this project. Take this scenario for

instance. There are two pallets of items at a specific inventory location. The ERP software

4

Figure 1.1: Adafruit nRF52840 Development Board

Figure 1.2: Adafruit E-Ink Featherwing

knows that there is a certain number of items in that location. As these items are sold

or used in manufacturing items are removed from both pallets in unequal quantities. At

the end of the day the inventory count is accurate in the ERP software but it is unknown

how that inventory is distributed between two pallets. It becomes very difficult to move

these two pallets to separate locations since it is unclear how much inventory is in each. Of

course this can be mitigated with policies but people do make mistakes whether they are

intentional or not. It can be argued that the single location needs to be split logically into

two separate locations. However sometimes it does not make sense to split physical location

into multiple logical locations.

1.2 Thesis Statement

A low power method to track and display inventory counts for containers using a combination

of Bluetooth low energy for communication, E-Ink technology for displays, and a cross

platform application for control.

1.3 Approach

This project is focused on the software running on the smart pallet display rather than

the hardware implementation of the display. With that in mind a Bluetooth low energy

development board was used as well as a prefabricated E-Ink display. The Adafruit Express

nRF52840 development board as well as the Adafruit 2.9” E-Ink Featherwing were specif-

ically chosen for this project. Both of these hardware components were chosen for their

library support and ample documentation.

The proposed solution will implement an inventory specific Bluetooth low energy service

with its accompanying characteristics. These characteristics will be used to track inventory

information such as quantity, unit, and item name. These characteristics are stored locally

and updated using write events. The E-Ink display will be used to show these values and is

refreshed only when these values change.

5

Chapter 2

Background

2.1 Key Concepts

2.1.1 E-Ink Displays

E-Ink [9] displays use a combination of micro-capsules and electricity to display words and

images. These displays only use power when the display is changed and refreshed. This

makes them ideal for low power applications that require a display. However the refresh

rate on E-Ink displays can be slow which limits their application. Refreshing the display

has to be carefully managed or the display might be damaged.

2.1.2 Bluetooth Low Energy

The Bluetooth 4.0 specification introduced a low power protocol called Bluetooth low en-

ergy(BLE) [5]. The BLE protocol is intended for applications requiring low power consump-

tion such as embedded and mobile devices. There are several layers defined by the BLE

specification but for the proposed solution only the two highest level layers, the Generic At-

tribute Profile(GATT) and the Generic Access Profile(GAP), are used. These two profiles

define how connections are made between devices and how data is organized and stored.

Generic Attribute Profile

The BLE specification organizes data into services and characteristics. Services are collec-

tions of characteristics and the BLE specification has defined services for several common

uses such as battery level and heart rate monitor. A BLE server can implement several

services depending on the devices requirements. Each service is distinguished by a unique

UUID and when a service is read or written to the client must provide a specific UUID.

Each service has characteristics associated with it. This can be as few as one character-

istic or it can contain a multitude of characteristics. Each characteristic is given a unique

UUID to distinguish it from other characteristics. The individual characteristics can be

used to represent numbers, strings, Boolean values, etc... These characteristics can be read

and written to by clients. For example the Battery service has a battery percentage charac-

6

Figure 2.1: Nordic nRF52 BLE Stack

teristic. When a device implements this service a client can read that characteristic to get

the current battery percentage

A characteristic also has a set of meta information that describes how that characteristic

should be displayed and interacted with. A characteristic defines values for read, write, and

notify. Read and write determines if a client can read the value or modify the value. If

notifications are enabled then clients can subscribe to a servers characteristic. When this

characteristic changes, these changes are pushed to the subscribed clients.

Generic Access Profile

The Generic Access Profile defines how devices are advertised and connect. A BLE device

can either be open to connections or placed into secure mode which requires the exchange of

pins and encrypted keys. The Generic Access profile can also be set up to advertise available

services, the name of the device, and manufacturer information.

2.1.3 Ionic and Google Firebase

The Ionic Framework [12] was used to implement the cross platform control application.

The Ionic Framework allows developers to write application using JavaScript frameworks

like Angular [3] and generate native mobile applications. This allows the solution to target

multiple platforms that support BLE without having to maintain several distinct code bases.

Part of this solution requires authentication before you can access devices. This authen-

tication is provided by Google Firebase [4]. Google provides libraries that allow developers

to easily integrate Firebase functionality. Google Firebase provides authentication services

that can be easily added to applications.

7

2.2 Related Work

2.2.1 BLE Beacons

BLE devices broadcast their availability using an advertising packets that relay information

such as services and device information. These advertising packets have been used for other

purposes. One purpose is the BLE Beacon. These beacons re-purpose the manufacturer

specific data part of the advertising packet to broadcast information [6]. There are two

different types of beacons. There are non connectable beacons that broadcast internally

stored information at regular intervals. Then there are connectable beacons which allow

device to connect and interact with implemented BLE services.

These beacons have many different uses. For example a beacon can broadcast the current

temperature outside for other devices to read. Then when a device comes within range of a

beacon the user receives a notification alerting them to the weather.

There are several different specifications for BLE beacons. Some of them are platform

specific while other specifications are designed to be used by a wider range of devices.

Regardless these BLE beacons provide a low power way to broadcast small amounts of

information. Then as devices come within range they can read that information as needed.

2.2.2 BLE Indoor Positioning

BLE beacons are not the only use of the advertising packet. There has been research

into using these packets for indoor positioning [14]. The RSSI value for one meter away

can be transmitted as part of the advertising packets. Using this transmitted information

receivers can pick up the advertising packet and triangulate the position of the BLE tag.

The perceived RSSI values do have to be run through several models in order calculate the

position even more accurately [13].

Indoor positioning using BLE is a very interesting research topic. The BLE protocol

allows the BLE tags to run for long periods of time on relatively low power. A concern with

indoor positioning systems is how accurate can the device be placed in the space. Calculating

the location of a device in a room is not very useful if that location is inaccurate. However

the accuracy of BLE based indoor positioning is good enough for practical applications. One

group used BLE tags and an indoor positioning system to construct a student attendance

system [20].

This system shows how applicable indoor positioning with BLE is. Using a simple setup

with BLE station modules placed around the classroom, the researchers were able to get

enough accuracy to tell when a student was at their desk or not. The system was accurate

even though there can be a lot of interference in a classroom environment. They focused on

minimizing costs and complications to make it as simple as possible. They were successfully

able to demonstrate that the system is usable in a real classroom at Rangsit University.

This just goes to show that indoor positioning using BLE can be practical and low cost.

8

2.2.3 BLE Mesh Networking

A relatively recent use of BLE is in mesh networking. The originally BLE specification did

not define how the protocol could be used for mesh networking. However, the newest BLE

specification has defined how the BLE can be used as a mesh networking protocol.

One implementation [11] used the Nordic nRF51822 to design and demonstrate a BLE

wireless mesh networking protocol. They used the soft device application for the Nordic

stack to switch the device between a peripheral and central device in order to route data.

The attached three different sensors to the mesh network to show the data being transferred

across the mesh network. This project showed that the mesh network provided a low power

way to transfer data using BLE.

In 2017 the Bluetooth working grouped announced Bluetooth Mesh which is a mesh

network based on the BLE specification. Using Bluetooth Mesh a research group created a

smart doorbell as a proof of concept implementation of a Bluetooth Mesh Network [16].

They wanted to test the new technology in a realistic environment to determine its

strengths and weaknesses. They chose a smart doorbell because it is a well know office

automation application. They use the BLE mesh network protocol to extend the reach of

event messages associated with the smart doorbell.

They placed nodes at each doorway to act as doorbells with relay nodes to a central

node. This central node that acts as a gateway to the internet. When the request is relayed

to the central node the staff would be notified of the request.

The proof of concept was implemented using the Nordic nRF53832 SoC, Soft Device, and

SDK. These near ubiquitous devices were chosen for their BLE Mesh Networking support

and its very low cost.

They found that there was a relatively high power draw on the devices that relied on

battery power. This could be due the hardware design or the fact the coin cell operated

devices sill acted a relay nodes. They propose several solutions to help offset the power

consumption. The topology of the network is dependant on the layout of the building.

They used one node per 139 m2 but this can be changed depending on the project

9

2.2.4 BLE and E-Ink Hardware

The solution proposed in this paper is not the first E-Ink Display that uses BLE. There are

several commercial products that uses this technology for smart labels.

Pricer [10] has used E-Ink displays to create electronic shelf labels. These shelf labels

display the current price of an item in real time. These tags are updated using an optical

wireless communication standard. These labels can last up to ten years and really highlight

how low energy this technology is. However these shelf labels do not store any kind of

inventory information which limits there usefulness.

Figure 2.2: Pricer Electronic Shelf Label

Papyr [18] is an open source project that combines an E-Ink display with a nRF52832

SoC. Using the BLE SoC devices can connect to the display and change what is displayed.

This combination of hardware shows that these two low energy technologies work well when

combined. The solution in this paper uses this concept and extends it by defining a custom

BLE service and code to interact with it.

Figure 2.3: Papyr Wireless display

What makes this solution different from these related product is the implementation

of an inventory specific BLE service. This extension of the concept allows the device to

actually track inventory information and tie it to physical.

10

Chapter 3

Design and Implementation

3.1 Bluetooth Services

The BLE service was implemented using Adafruit’s BLE Library [2] for the Nordic nRF52840

SoC. This library integrates with the Arduino development environment for fast prototyping

and low startup time. The Nordic Connect SDK [23] was considered for this solution but

setting up the development board for the SDK added additional unneeded complexity.

3.1.1 Inventory GATT

The inventory serve that the proposed solution implements contains four characteristics.

The inventory service could posses multiple more characteristics but for this solution four

was a sufficient number. Each characteristic is set up for both reading and writing with

no additional security requirements. These four characteristics were chosen because the

demonstrate how the BLE service can be used to track inventory information while at the

same time remaining inside the scope of an undergraduate thesis.

Figure 3.1: Bluetooth Characteristics and the assigned UUID

The Item Id characteristic is used to determine what item is being referenced by the label.

The values for this characteristic are represented internally as a variable length sequence of

bytes. This sequence of bytes represents a string identifying the id of the item.

The Quantity characteristic is used to store how many items are physically stored in

the container the label is attached to. This quantity is represented by exactly two unsigned

bytes. This means that the characteristics can take on values from 0 to 65,536. This

maximum value is large enough to represent large quantities of items while also limiting the

amount of data that needs to be stored

The Container Type characteristic is represented by a single byte. Only the first three

are assigned specific meaning while the rest of the 255 values are assigned to none. This

11

leaves plenty of room to grow while at the same time giving us enough data to show how

the proposed solution works. This characteristic is used to help describe how the label is

being used and is an example of how the inventory service can be used to store useful meta

information.

Figure 3.2: Container Characteristic Values

The last implemented characteristic is the Unit Type characteristic. This characteristic

can represent units such as length, weight, and pieces. Internally this characteristic is

resented by an unsigned byte where each value is assigned to a unit type. Currently there

are only seven units that have been implemented leaving room for future growth. Any value

that is chosen that is not used is considered N/A for this proposed solution.

Figure 3.3: Unit Characteristic Values

3.1.2 Persistent Storage

The Bluetooth characteristics are not persistent. This means that on a power cycle the

current data is lost and it reverts back to the default values. The proposed solution is a

battery powered device so at some point power will be lost. If the current data is wiped

each time then the usefulness of the solution is greatly diminished.

The first step was determining where to persist the BLE service data. Since development

was being done with the nRF52840 SoC there was internal flash storage that could be used

to solve this problem. One of the downsides of flash memory is that it wears out after

repeated writes. For this specific device the flash memory can support at minimum 10,000

erase cycles [17]. This number is more than sufficient for this solution.

Flash access is performed by the Adafruit Little FS library [2]. This file system keeps

track of stored files and performs wear leveling to ensure that the flash memory lasts as

long as possible. Each BLE characteristic is stored in a separate file that is named after its

specific UUID. This makes it easy to change the values in flash memory whenever the BLE

characteristic is changed.

The Arduino BLE library allows write callbacks to be set for each Bluetooth character-

istic. This provides an easy mechanism to update the flash memory with the new vales for

the BLE service. Whenever a BLE characteristic is written to the current value is removed

12

Figure 3.4: Layout of the Flash File System

from flash memory and the new value is written. This way the persistent storage always

contains a copy of the current values and it is never written to more than is required. When

the device first loads it reads each value stored in flash memory and sets the BLE charac-

teristics to those initial values. If there is not a stored value then the characteristic is set to

its default value.

3.1.3 GAP

For this solution security wasn’t the main focus. With this in mind the connection to the

smart display was left open to general connections. The access profile is set up to broadcast

the name of the device and advertise the inventory service. The device also advertises RSSI

values for the connection. There is a limit on the number of bytes and advertisement can

contain so it was important to be selective on

It was important to advertise the service so that potential clients can recognize what ser-

vices the smart display can perform. By broadcasting the service, clients can filter potential

connections so only valid options remain. This makes it easier on the end user because it

limits the number of connections they have to parse.

The name is advertised for a very similar reason. Having the name as part of the

advertisement allows for easy parsing of devices. It also makes it easier for end users to

choose which smart label to connect with.

3.2 E-Ink Display

E-Ink displays make for a great low power display method however there are limits on its

refresh rates. For example that Adafruit 2.9” E-Ink Featherwing has a suggested minimum

refresh rate of three minutes [1]. This makes managing the refresh rate a vital task. If not

managed properly the display could be damaged or be of little use since the display never

shows the current data in a reasonable amount of time.

The proposed solution keeps track of two time values and a Boolean. The first time value

is when the display was last refreshed while the second time value is the time to refresh in

the future. The Boolean value determines if the display needs to be refreshed at all. If none

of the BLE characteristics have been changed then the display will not refresh after three

minutes. This helps reduce the power consumption of the solution while extending the live

13

of the E-Ink display.

Whenever one of the BLE characteristics is changed the inventory callback function

sets up the display for a refresh. This is where the Boolean to update the display is so

important. The characteristics are written asynchronously so if multiple characteristics are

changed then that callback is called multiple times. This Boolean values ensures that if

multiple values are changed between refreshes the display is only refreshed once for all of

those changes. Once the display is set to refresh then the time that it will refresh remain

unchanged between inventory write callbacks.

After determining if the display has already been scheduled for a refresh, we determine

what time we need to refresh the display. If it has been less than three minutes since the

last display update then we schedule the next update three minutes after the previous one.

However if it has been more than three minutes since the last update then we schedule

the next screen update three seconds from the time of the request. This delay was chosen

so that if multiple characteristics were changed at once, the first once wouldn’t trigger a

premature refresh and the display has to wait three minutes to display the other changes.

Figure 3.5: Flowchart depicting the refresh schedule process

The display shows the container type, the quantity, name, and unit of the stored inven-

tory. Each of these values is placed on its own line with a label describing the value. This

makes it easy to read the data at a glance and understand what is being stored.

Figure 3.6: E-Ink display of the inventory information

14

3.3 Control Application

The Control Application is implemented using the JavaScript framework Angular and the

Ionic Framework for native cross platform apps. The control application uses the Capacitor

Bluetooth-LE library [7] to connect and manage Bluetooth low energy devices.

The application is split into two main views and have been designed with usability in

mind. The first view is an authentication screen. Here the user is required to login using

their credentials before they can access the rest of the application. Once the user is logged

in the application they remained logged in until their session expires or they log out. The

second view is where a user can connect and manage a Bluetooth smart label.

Figure 3.7: Login Screen of the Control Application

On the second view the user is shown a scan for devices button that launches a selection

screen. This selection screen allows the user to select which BLE device they want to connect

to. Once the mobile device has been connected to the BLE device the user is then shown

what current inventory values are set on the device. They can either disconnect from the

device or update these values.

The quantity and item id fields allow users to enter arbitrary values as long as they are

numbers or strings respectively. However the container type and unit type are implemented

15

Figure 3.8: Initial view that allows the user to scan for devices

16

Figure 3.9: Application showing which devices are available for connection

17

using a drop down to restrict the user to the pre-specified options. The prevents users from

selecting undefined values and causing unwanted behavior.

After filling out the values the user wants to change, they can press the update button.

The application takes those values and writes them to the specific characteristics on the

target device.

Figure 3.10: Data retrieved from the connected BLE device

The authentication screen uses Google’s Firebase SDK and authentication module. The

main screen is protected by an AuthGuard that redirects users back to the logon screen if

they have not been authenticated yet. The login screen takes the users email and password

and uses Google’s SDK to contact Firebase and authenticates the user. If the right password

and email are provided then the user is allowed access to the rest of the application. If the

authentication fails then the user is not given access

Since the UUID’s for the inventory service are not one of the standard services defined by

the BLE specification, the entire 128 bit UUID has to be used instead of the much smaller 16

bit UUID for standard services. In order to organize and keep the code clean these UUID’s

were defined in a separate constants file. This allows easy access without having to provided

the entire UUID every time it is used.

18

Chapter 4

Results and Evaluation

4.1 Inventory Service

The actual inventory service itself operates like its supposed to. The service is broadcast as

part of the advertisement and devices can connect. The characteristics in the service can be

referenced by their UUID handle allowing them to be read and written. The biggest issue

while implementing the service was dealing with the order the bytes were sent. This did not

affect the two characteristics that were one byte long but it did affect the Item Id and the

Quantity characteristics. This was ultimately corrected for but it did differ based on what

kind of client was connected.

The main problem with the given implementation is the how stable the flash file system

is. It can be easy to corrupt the file system especially when interrupted on writes. Once

this occurs the file system has to be removed from memory and re constructed before it will

start working again. This is not ideal for a device that can lose power without very much

warning.

4.2 Display

Utilizing the refresh management scheme described above the display will only update every

three minutes. If multiples characteristics are written at the same time the screen will only

refresh once for all of them. This could be within three seconds of the first value being

changed or it could be three minutes after it was last updated. The implemented refresh

code works as intended to increase the lifetime of the display.

However the restriction on large refresh times does make the display harder to use. There

is no indicator that lets the end user know that the device is working on the update. This

lack of immediacy and transparency is a detriment to ubiquitous devices like this. When the

device does not indicate the the information has been received a user will attempt to send

the data multiple times or report it as an issue. While the E-Ink display greatly reduces the

power consumed by the device it is not as user friendly as it could be.

Another issue with the display is that it is a static display. Once the information is

19

written to the screen it will remain there regardless of power status on the device. This

means it is effectively impossible to tell when the device is on or not. Without the ability

to glance and tell the power status it becomes a problem when the battery dies and there

is no way to update the display.

4.3 Control Application

The control application works exactly how it was intended. It uses the Google Firebase

SDK to authenticate the user and ensures only valid people can use it. However the use

of this SDK requires a network connection. This can lead to problems in large warehouses

where internet connectivity can be spotty. If their is internet connectivity available then

this works exactly as intended.

The application was tested using and Android device. The Android platform was chosen

for its cross platform development and the low cost of entry. The only issue with target-

ing the Android platform occurred when the native application was generated. The Ionic

Framework generates an application that can be run on an Android device. However there

were several instances when this generation step failed. When this occurred all of the an-

droid source code had to removed and generated from scratch before it worked properly.

This only occurs occasionally and once these steps are followed the native app works as

intended.

20

Chapter 5

Conclusion

5.1 Summary

In this paper Bluetooth Low Energy was combined with and E-Ink display to create a low

powered wireless display. This had been done for electronic shelf labels and as a general

purpose display as well. This project took this low powered display and extended it to

include an inventory specific Bluetooth Low Energy service. This service allows the tracking

of inventory items and their quantities. These values are tied to the physical label and the

container they are attached to. This helps shows how inventory is distributed physically

which may differ then how it is organized logically.

The inventory display uses BLE which allows it to be accessed by any platform that

support Bluetooth Low Energy. The labels can then be integrated into whatever system

and devices that a company uses for inventory tracking.

5.2 Future Work

The proposed solution is an extension of previous work involving BLE and E-Ink displays.

Instead of being a wireless display the device was specialized to for inventory information

and quantity tracking. Since Bluetooth Low Energy was chosen there are several directions

that this project can be extended.

Currently this project is using development boards instead of a dedicated hardware

platform. In the future custom hardware can be designed so it fulfils its role as an inventory

label that much better. This can include circuits to disable the display when not in use and

contact points for easy charging.

Bluetooth Low Energy can be used to make beacons. These low power beacons broadcast

information that other devices can pick up. If there are three receiving stations then it is

possible to triangulate the location of the beacon using the differing signal strengths [15].

Since the proposed solution also makes use of the Bluetooth Low Energy it is possible to

make use of beacons. With this extension it would be possible to track the location of tagged

location.

21

Lately work has been done into Bluetooth Low Energy mesh networks [8]. These mesh

networks allow devices to communicate with each other without a central authority. This

technology can be used with the smart labels described in this paper. Using this technology

the labels can be networked together to create a decentralized inventory tracking system. At

any point the network can be queried to retrieve the current state of inventory. As inventory

is added or removed the state of the network will reflect the current inventory status.

22

References

[1] Adafruit eInk Display Breakouts and FeatherWings. en-US. url: https://learn.

adafruit.com/adafruit-eink-display-breakouts/usage-expectations (visited

on 04/13/2022).

[2] Adafruit nRF52 Arduino. url: https://github.com/adafruit/Adafruit_nRF52_

Arduino.

[3] Angular. url: https://github.com/angular/angular.

[4] Angular Fire. url: https://github.com/angular/angularfire.

[5] Bluetooth Core Specification. Dec. 2019. url: https://www.bluetooth.org/docman/

handlers/downloaddoc.ashx?doc_id=478726.

[6] Bluetooth low energy Beacons. Jan. 2015. url: https://www.ti.com.cn/cn/lit/an/

swra475a/swra475a.pdf.

[7] Capacitor Bluetooth Low Energy. url: https://github.com/capacitor-community/

bluetooth-le.

[8] Seyed Mahdi Darroudi, Carles Gomez, and Jon Crowcroft. “Bluetooth Low Energy

Mesh Networks: A Standards Perspective”. In: IEEE Communications Magazine 58.4

(Apr. 2020), pp. 95–101. issn: 0163-6804, 1558-1896. doi: 10 . 1109 / MCOM . 001 .

1900523. url: https://ieeexplore.ieee.org/document/9071998/ (visited on

04/13/2022).

[9] E Ink Electronic Ink. url: https://www.eink.com/electronic-ink.html (visited

on 04/13/2022).

[10] Electronic Shelf Label Solutions for Retail - Digitalize Your Store with Pricer. en-US.

url: https://www.pricer.com/products/ (visited on 04/13/2022).

[11] P. Gomathinayagam and S. Jayanthy. “Implementation of Mesh Network Using Blue-

tooth Low Energy Devices”. In: Intelligent and Efficient Electrical Systems. Ed. by

M.C. Bhuvaneswari and Jayashree Saxena. Singapore: Springer Singapore, 2018, pp. 205–

213. isbn: 978-981-10-4852-4.

[12] Ionic Framework. url: https://github.com/ionic-team/ionic-framework.

[13] Zhu Jianyong et al. “RSSI based Bluetooth low energy indoor positioning”. In: 2014

International Conference on Indoor Positioning and Indoor Navigation (IPIN). 2014,

pp. 526–533. doi: 10.1109/IPIN.2014.7275525.

23

[14] Ankush A. Kalbandhe and Shailaja. C. Patil. “Indoor Positioning System using Blue-

tooth Low Energy”. In: 2016 International Conference on Computing, Analytics and

Security Trends (CAST). 2016, pp. 451–455. doi: 10.1109/CAST.2016.7915011.

[15] Pavel Kriz, Filip Maly, and Tomas Kozel. “Improving Indoor Localization Using Blue-

tooth Low Energy Beacons”. en. In: Mobile Information Systems 2016 (2016), pp. 1–

11. issn: 1574-017X, 1875-905X. doi: 10.1155/2016/2083094. url: http://www.

hindawi.com/journals/misy/2016/2083094/ (visited on 04/13/2022).

[16] Caril Mart́ınez, Leonardo Eras, and Federico Domı́nguez. “The Smart Doorbell: A

proof-of-concept Implementation of a Bluetooth Mesh Network”. In: 2018 IEEE Third

Ecuador Technical Chapters Meeting (ETCM). 2018, pp. 1–5. doi: 10.1109/ETCM.

2018.8580325.

[17] nRF52840 Product Specification. Feb. 2019. url: https://infocenter.nordicsemi.

com/pdf/nRF52840_PS_v1.1.pdf.

[18] Papyr nRF52840 ePaper Display. en. url: https://hackaday.io/project/165467-

papyr-nrf52840-epaper-display (visited on 04/13/2022).

[19] Darya Plinere and Arkady Borisov. “Case Study on Inventory Management Improve-

ment”. In: Information Technology and Management Science 18.1 (Jan. 2015). issn:

2255-9094. doi: 10.1515/itms-2015-0014. url: https://itms-journals.rtu.lv/

article/view/itms-2015-0014 (visited on 04/13/2022).

[20] Apiruk Puckdeevongs et al. “Classroom Attendance Systems Based on Bluetooth

Low Energy Indoor Positioning Technology for Smart Campus”. In: Information 11.6

(2020). issn: 2078-2489. doi: 10.3390/info11060329. url: https://www.mdpi.com/

2078-2489/11/6/329.

[21] Manuel D. Rossetti, Terry R. Collins, and Ravi Kurgund. “Inventory Cycle Counting

– A Review”. In: 2001.

[22] E.M. Shehab et al. “Enterprise resource planning: An integrative review”. en. In:

Business Process Management Journal 10.4 (Aug. 2004), pp. 359–386. issn: 1463-7154.

doi: 10.1108/14637150410548056. url: https://www.emerald.com/insight/

content/doi/10.1108/14637150410548056/full/html (visited on 04/13/2022).

[23] Welcome to the nRF Connect SDK! — nRF Connect SDK 1.9.99 documentation. url:

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/index.

html (visited on 04/13/2022).

24

	Using Bluetooth Low Energy and E-Ink Displays for Inventory Tracking
	Citation

	tmp.1651163914.pdf.94OVU

