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Abstract—Graphics processing units (GPUs) have become a 

widely used technology for various purposes. While their intended 

use is accelerating graphics rendering, their parallel computing 

capabilities have expanded their use into other areas. They are 

used in computer gaming, deep learning for artificial intelligence 

and mining cryptocurrencies. Their rise in popularity led to 

research involving several security aspects, including this paper’s 

focus, memory vulnerabilities. Research documented many 

vulnerabilities, including GPUs not implementing address space 

layout randomization, not zeroing out memory after deallocation, 

and not initializing newly allocated memory. These vulnerabilities 

can lead to a victim’s sensitive data being leaked to an attacker, an 

impactful threat considering the usages of GPU computing 

presented. In this paper, we attempt to implement these 

vulnerabilities on an NVIDIA GPU to determine if any 

advancements in memory architecture have been made since the 

documentation of such vulnerabilities. This work demonstrates 

that the lack of attention to security in early GPU development has 

been adjusted to appropriately match a level of concern for a 

computing component that numerous industries rely on. 

Keywords—Graphics Processing Unit (GPU), Address space 

layout randomization (ASLR), Allocation/Deallocation, Global 

memory, Memory leakage, Host, Device 

I. INTRODUCTION 

Graphics Processing Units (GPUs) have come a long way 
since their inception. While NVIDIA popularized the term 
“GPU” in 1999, their invention came long before that. 
NVIDIA’s original definition of the GPU was a single chip 
processor with integrated transform, lighting, triangle 
setup/clipping, and rendering engines capable of processing a 
minimum of 10 million polygons per second [14]. Since this 
definition describing their accelerated graphics rendering 
capabilities, they have had an extreme increase in popularity and 
function. Today they are used for mining cryptocurrency, 
training neural networks for artificial intelligence, and even 
common web browsers use GPUs rendering capabilities when 
available [10, 11]. Browsers such as Chrome use GPUs for video 
encoding and playback acceleration to lighten the load on CPUs 
[1]. This growth in popularity can be attributed to these parallel 
computing devices being fully programmable with a high 
throughput, efficiency, and ability to offload CPU work [3]. 
However, with all of their advantages, security was not 
investigated enough in early development, and they were 
thought of as the weakest link in the security chain. Any problem 

with GPUs can also affect all GPU accelerated applications, and 
today the list continues to grow. The original data they dealt with 
may not be considered sensitive, but it certainly is today. Many 
problems discovered early on had to do with their memory 
architecture. Threats on GPU memory were overlooked at first, 
and it was discovered that sensitive data could be extracted from 
memory residues [3]. This extraction process largely dealt with 
GPUs not initializing newly allocated memory [2]. In this work, 
we focus on these documented vulnerabilities in GPU memory, 
specifically global memory. 

The contributions of this work are: (1) proving that GPUs 
now implement the security feature of address space layout 
randomization (ASLR). (2) GPU global memory is now zeroed 
out after deallocation. (3) Newly allocated GPU global memory 
is now initialized to zero. 

The following section discusses the related work of GPU 
memory vulnerabilities and how these vulnerabilities can be 
used to extract various forms of sensitive data. The presented 
related work was used heavily to test vulnerabilities in near exact 
ways and then expanded and altered in this work. Section III 
describes the characteristics of early GPU memory architecture 
that permitted these vulnerabilities. In Section IV, we highlight 
key functions in CUDA that deal with memory management. 
Section V introduces the theories behind the attacks on global 
memory. The evaluation of these attacks is presented in Section 
VI, followed by our conclusions in Section VII. 

II. RELATED WORK 

Many researchers noticed memory leakage security issues 
and exploited them in different ways. The authors in [1] first 
noticed the lack of address space layout randomization (ASLR), 
a policy that aids in process isolation which is impactful to 
computer security. They address that CPUs implement process 
isolation with ASLR and virtual memory, and they demonstrate 
that GPUs implemented neither at the time. Through GPU 
programming with CUDA, they prove that same memory 
allocations result in the exact same address in different program 
executions. Additionally, they present a proof-of-concept attack 
that steals information between CUDA programs due to this lack 
of ASLR paired with memory not being zeroed out prior to 
allocation or after deallocation. 

Similarly, the authors in [2] disclosed sensitive data 
remaining in GPU memory through end of context and end of 



kernel attacks. They revealed uninitialized memory problems 
through these attacks that read all global memory right after a 
victim finishes execution on a shared GPU. In other words, they 
successfully obtained data released after the destruction of a 
victim programs GPU context. Their attacks could retrieve 
results of kernel computations such as decrypted plaintext and 
rendered images. Other data forms released include kernel code, 
constant data, and call-by-value arguments of kernels. 
Furthermore, they exhibited an ability to infer web browsing 
history of victims using pixel analysis on the recovered data. 

Taking a different approach than memory leakage, the 
authors in [3] discovered that the execution time of a GPU kernel 
is linearly proportional to the number of unique cache line 
requests generated during kernel execution on GPU 
architectures. This architectural flaw allowed for a timing attack 
on GPUs. They used this property to extract AES encryption 
keys when cryptography is implemented by GPUs. 

Another example of memory leakage is presented by the 
authors in [4]. They demonstrated direct sensitive information 
recovery from real-world applications including Chrome and 
Adobe due to memory management vulnerabilities. They found 
GPU memory inference attacks to be much more serious than 
researchers had previously thought. They explained that GPU 
memory is managed by the GPU itself and thus may violate 
some security policies that are normally enforced by the 
operating system and CPU. Like others, they also documented 
that newly allocated memory is not cleared to zero and that the 
GPU does not erase memory data before the released memory 
space gets reallocated. They performed a similar attack of filling 
global memory with a predefined value, monitoring available 
memory, and performing a memory dump to analyze what had 
been left over from the victim. Doing this, they were able to 
obtain usernames, credentials, and credit card numbers. They 
furthered their attack to recover victims’ data after they viewed 
webpages or PDFs and implemented image analysis on the 
recovered data. Their attack was shown to work on Chrome and 
Adobe as previously mentioned, but also GIMP and MATLAB. 

As the early 2010s progressed and papers such as these 
continued to be published, the authors in [5] published a survey 
of techniques for improving GPU security. Several of the 
aforementioned papers are cited in this publication as well. New 
vulnerabilities mentioned include the ability to perform a 
register spilling attack. Such an attack is performed by reserving 
more registers than available and the overflow goes to global 
memory, allowing an attacker to access this data even though it 
is not registered to them and has not been deallocated. This 
publication features no work of their own but have nearly 50 
sources of GPU security issues and an entire section on the focus 
of this work, memory leakages. 

The most recent paper we present in related work comes 
from the authors in [6]. They illustrate even more memory 
concerns including GPUs lacking prevention of threads of a 
kernel to access the contents stored in local and private 
memories written by threads of other kernels. Written in 2020, 
they cite that when multiple users share a GPU, information 
leakage can still occur between concurrently running processes 
or from recently terminated process because of allocation issues, 
despite their documentation for at least 7 years. This dissertation 

goes as in depth as providing mitigations to some of these 
vulnerabilities. 

Despite all this previously published work on the same 
memory leakage vulnerabilities, they persisted for many years. 
We believe these issues still deserve attention, as we are 
unaware of any work proving their elimination. 

III. EARLY MEMORY ARCHITECTURE 

To gain a full understanding of the content of this work, a 
brief discussion of the characteristics of early architecture of 
GPU memory is beneficial. GPUs had little caching but a large 
and fast RAM system to feed data into the many cores. 
Additionally, they did not initially implement virtual memory, a 
policy to aid in process isolation [1]. They also featured no 
preemptive scheduling, allowing for the previously mentioned 
end of kernel attack. GPUs contain a large amount of 
independent memory as well [2]. GPUs also contain integrated 
off-chip DRAM memory called device memory. CPUs transfer 
data to and from this device memory before and after they 
launch the kernel. The global memory we focus on is found in 
this device memory. Another component of GPUs, streaming 
multiprocessors, of which there are many, all share this global 
memory [13]. Compared to CPUs, cache sizes are much smaller 
but have much higher bandwidth [3]. GPUs also have memory 
space dedicated to them and it is used and managed exclusively 
by the GPU, explaining the need for data to be transferred to and 
from host to device [4]. Finally, all streaming multiprocessors 
share an L2 cache while they each have their own L1 caches 
which are write-back by default [6]. 

IV. CUDA MEMORY MANAGEMENT 

The vulnerabilities that this work assessed were performing 
using an application called CUDA. This toolkit is a parallel 
computing platform and programming model created by 
NVIDIA to interact with their GPUs [15]. It has allowed users 
to perform research and build GPU-accelerated applications for 
many years, and this work takes advantage of this platform’s 
flexibility. We spent a large amount of time learning and 
understanding CUDA memory management through 
documentation, so we find that a description of some common 
syntax and functions to be valuable. 

The primary syntax rule that permitted memory management 
on the GPUs specific memory was the __global__ declaration. 
This declaration before a function signals the CUDA compiler 
that you are declaring kernel [8]. This means that the function is 
called on the host (CPU) but executed on the device (GPU). In 
these functions, normal C-like variables such as arrays indicated 
reading or writing from the GPU global memory, which were 
needed features for our purposes. In these kernel functions, you 
could simulate victim activities or perform attacker actions 
depending on your purpose. 

Many functions found in the CUDA Toolkit documentation 
were highly used as well. The most impactful function was 
cudaMalloc. This function allocated memory on the device. Its 
parameters were a predefined pointer that the function would 
return the allocated memory location and the size of your 
requested allocation in bytes. It is trivial to understand this 
function, but it was used in several different contexts. This could 
be a victim storing their sensitive information or an attacker 



allocating the same memory to see what raw data remained. 
Knowing the memory size of the vulnerable GPU would also 
allow you to allocate the entirety of global memory due to the 
size parameter. 

The function of next importance was cudaMemcpy. This 
function copies data between the host and the device. Its 
parameters were the destination memory address, the source 
memory address, the size in bytes to copy, and a CUDA specific 
identifier to indicate the type of transfer. The types of transfer 
include host to device, device to host, device to device, or even 
host to host. This work primarily used host to device and vice 
versa. The memory regions requested must be registered with 
CUDA so you cannot try and access deallocated memory. Our 
purposes for this function included writing to global memory 
with host to device transfers and reading from global memory 
with device to host transfers. 

Another trivial function, the complement to cudaMalloc, is 
cudaFree. This function simply frees the memory on the device. 
Its only parameter is the device pointer to the memory to be 
freed. If the pointer was invalid or to unregistered memory, a 
cudaError variable with a value of invalid value was returned 
referring to the pointer. Similarly, a successful deallocation of 
memory returned a cudaError variable with a value of success. 
Many of these memory management functions returned this 
cudaError variables and error checking functions could be 
written easily if the desire or need was there. This simple 
function was used critically because in order to test how the 
GPU handled deallocation, this function had to be called 
properly. 

A much less frequently used function was cudaMemset. This 
function initializes or sets device memory to a specified value. 
Its parameters are a pointer to device memory, a value to set for 
each byte of specified memory, and a size in bytes to set. This 
function is perfect for filling global memory with a value known 
only to you, but knowledge of the exact memory size of your 
device is required, which is easy to find. Use in this context 
allows for quick analysis of a global memory dump to find 
victims’ data. 

The final function of importance was cudaMemGetInfo. 
This function was crucial for attack algorithms as it returns the 
amount of free and total device memory. The parameters are two 
variables that indicate the returned free memory in bytes, and 
the returned total memory in bytes. The returned memory 
attributes are of the current context of the GPU. This function 
can be used to monitor memory by constant polling to detect if 
a victim has used memory. When the amount of free memory 
changes, you can infer whether victims have allocated or 
deallocated memory. There are many other functions found in 
the CUDA documentation for memory management, but these 
were of high significance to the work performed [7]. 

V. ATTACKS ON GLOBAL MEMORY 

In this section, we cover the theories and concepts behind the 
attacks implemented in this work. They can be categorized 
based on whether the attack is dependent on ASLR or not. There 
are six attacks that attempt to exploit lack of ASLR, or lack of 
zeroed out memory by allocation/deallocation, from many 
different angles. Some are taken from the related work section 

to see if they are still applicable, and some are adaptations of 
those attacks or similar to them. 

A. ASLR Dependent 

The first attack presented in this work attempts to show the 
lack of ASLR because of its proven absence in previous work 
[1]. Address space layout randomization is a computer security 
technique that randomizes the location where system 
executables are loaded into memory. It makes buffer overflow 
attacks difficult because they involve the attacker knowing the 
location of an executable in memory [12]. A simple program can 
show the lack or presence of ASLR. Code that shows the exact 
same memory allocations will result in different addresses 
during different program executions demonstrates the function 
of ASLR. The code we used to prove or disprove ASLR is 
acquired from the authors in [1] due to its simplicity yet 
undeniable results. 

The next attack theory exploited the lack of ASLR paired 
with memory not being cleared after deallocation or with 
allocation. A simple proof of concept attack also from the 
authors in [1] was used to fulfill this theory. This attack involved 
two CUDA programs where one leaks information from 
memory to the other. In this scenario, the first program is the 
victim, who saves/writes information to memory. The second 
program, the attacker, allocates new memory, which from the 
lack of ASLR would be the same location, and retrieves the 
information that the victim wrote to memory. If there is no 
implementation of ASLR or clearing of memory, this attack 
should work just as it did for the creators. This attack is small 
and simple, but if it is successful the vulnerability can easily be 
utilized in much more dangerous and destructive attacks. 

Another attack exploits the scenario if the victim forgets to 
deallocate their memory. If victims forget to free their sensitive 
information, would it be possible to expose a memory leakage 
as others have done as seen in the related work section? A simple 
attack can be created by modifying the proof-of-concept attack 
mentioned earlier. This attack still features two CUDA 
programs, a victim and attacker. However, in this scenario the 
victim does not deallocate their memory usage. If this attack 
works, there is proof that newly allocated memory is not 
initialized. This is important because it is often hard to determine 
whether deallocation, allocation, or even program termination is 
the cause of zeroed out memory. Once again, this attack is 
dependent on the enforcement of ASLR. 

The last attack that depends on the policy of ASLR attempts 
to eliminate a previously mentioned issue, whether memory is 
cleared after program termination, regardless of the freeing of 
memory. This attack combines all the previously used code into 
the same program, creating some new possibilities due to the 
victim and attacker working under the same program execution. 
In this attack, we try to access the same memory right after it has 
been deallocated to see if it remains. In this setting, the unknown 
way a GPU handles memory after program termination is 
eliminated. Simple changes to the code can also test a few other 
angles. The victim code could not free their memory, but this 
would only be fruitful if ASLR is not in play. A final thought on 
this attack was removing the second allocation statement, which 
would be performed by the attacker. However, this will only 
prove successful if the GPU allows access to memory that has 



been deallocated in the same program, which is not a concept 
we concentrated on. Essentially, the attacker would be trying to 
access non-registered memory using a pointer from the victim’s 
allocation statement, which CUDA documentation states should 
return an error. 

B. ASLR Independent 

The next two attack scenarios will work independent of 
ASLR enforcement and focus primarily on data being left over 
in global memory after deallocation. The first attack we present 
was creating using a template provided in the CUDA toolkit 
samples. This example program takes an array on the host, fills 
it with values increasing sequentially, transfers this array to 
global memory on the GPU, performs some multithreaded 
calculations on the GPU, and ends by transferring those results 
back to the host. This template project was perfect to modify 
because it dealt with memory allocation and deallocation using 
GPU global memory, all pillars of this research. Another reason 
was that this was a proper CUDA project, written by the creators 
themselves, so any attempts to exploit vulnerabilities were sure 
to be official. The first addition we made was adding a kernel 
function that takes in a pointer to the GPU array and tries to steal 
values after its deallocation. When we call this function, we use 
a captured pointer value before the array’s deallocation. This 
function attempts to bypass some of features of previously used 
CUDA functions that do not allow for access to unregistered 
memory. This is because it appears to access array values just 
like a non CUDA program would, but its kernel declaration 
means it runs on the GPU. In this same project we also attempt 
a non-kernel function approach using the same captured pointer, 
but this approach does depend on the most likely secure CUDA 
memory management functions. 

The final attack program is a modification of the end of 
context attack published by the authors in [2]. The code for the 
attack was also published [9]. In their work, they use this attack 
to steal victims web browsing data. This attack essentially fills 
global memory with a value known only to the attacker, 
deallocates that memory, and waits for a victim to come use 
GPU global memory. They do this by monitoring the amount of 
free memory using CUDA memory management functions 
previously discussed. As soon as the victim programs context is 
terminated, they perform a memory dump of all global memory. 
This strategy eliminates the issues of unregistered memory 
because all global memory is accessed. When analyzing the 
memory dump, any data that does not match the prefilled value 
is considered a victim’s sensitive data. Some small changes we 
made in our implementation involve memory being filled with 
1s, changed memory specifics to match our GPU, and the 
victims were CUDA toolkit examples that access device 
memory. If memory is not zeroed out as cited many times, this 
attack should work as it did in this related work. However, if 
results showed that memory was zeroed out, you could change 
the memory dump analysis code to only check for non-zero data. 
If there was none, you could prove that this vulnerability no 
longer remains. Another feature added to this attack was 
compiling it with compilation flags that disabled the L1 caches 
of the GPU [16]. This was done to eliminate the possibility that 
data was never reaching global memory. Additionally, a 
separate victim program was compiled with the same flags and 
had unique victim data to ensure the data was making it to global 

memory. This data was 2 GB allocations and was initialized 
based on a unique key array like the way the authors in [2] filled 
global memory. The same method was applied to the victim data 
instead of prefilled values. 

VI. EVALUATION 

A. Experimental Setup 

In this section we show the experimental results of the 
experiments we performed to evaluate our proposed programs. 
The evaluation setup consisted of a NVIDA Quadro P4000 GPU 
running on an Ubuntu operating system. This GPU had 8 GB of 
memory. The CUDA toolkit was downloaded on this 
workstation according to installation instructions, ensuring for 
proper compiling and running of code. The code was compiled 
and ran in the terminal in a directory created in the toolkit 
samples directory to confirm all needed libraries were present. 
Terminal compiling was done using the nvcc command in all 
cases except for the program that used the template project. This 
provided project folder contained its own make file to run for 
compiling. 

B. Results 

The experiments consisted of six programs attempting to 
exploit memory vulnerabilities. The first program, intended to 
prove the absence of ASLR, resulted in the finding that the setup 
did implement ASLR, as seen in Fig. 1 where different program 
executions resulted in different memory locations. However, the 
other programs that depended on ASLR were still ran to see if 
pairing this documented vulnerability with other vulnerabilities 
such as memory leakage would result in a successful attack. 

 

Fig. 1. ASLR implementation on CPU and GPU. 

The second attack theory tried to exploit the uncleared 
memory vulnerability along with a lack of ASLR. We found that 
no memory leakage occurred and that only the value 0 could be 
recovered, indicating memory was zeroed out either after 
deallocation or along with new allocations. An example of this 
can be found in Fig. 2. 

 

Fig. 2. Value of 0 recovered prior to and after writing to memory. 

The next program, where a victim does not deallocate their 
memory, ended with identical results, indicating that either 
memory is cleared after program termination or with new 
allocations. These findings are in Fig. 3. 



 

Fig. 3. Value of 0 recovered with no deallocation of memory. 

The final program to cover all scenarios of ASLR 
implementation and memory clearing vulnerabilities, involved 
work in the same program execution. The first test has a victim 
writing to memory, deallocating it, and an attacker attempts to 
retrieve that data immediately. We found that similarly, only 
values of 0 could be retrieved, as seen in Fig. 4. The second test 
with this program has a victim forgetting to deallocate their 
memory by simply commenting out the freeing of memory 
statement, but once again, the same results occurred. These can 
be found in Fig. 5. The final test with this program had the 
attacker not using a new allocation statement but instead using 
the victim’s pointer to the deallocated memory. Here, if a default 
value was provided in the code, that was the value that was 
retrieved, and in our test the arbitrary value of 2.5 was default. 
This was because attempting to read from unregistered memory 
returns an error, and the default value never actually changes. 
These results can be seen in Fig. 6. All attempts to exploit the 
documented vulnerabilities were unsuccessful in these discussed 
attempts. However, they all have the possibility of being 
thwarted due to ASLR. For this reason, we carried out the final 
two attacks that ASLR cannot affect. 

 

Fig. 4. Value of 0 recovered in same program execution. 

 

Fig. 5. Value of 0 recovered with no deallocation of memory. 

 

Fig. 6. Default value of 2.5 retrieved. 

The next two attacks, although independent of ASLR, 
showed similar results. The attack using the template CUDA 
project was unable to recover any values after deallocation. We 
found this to be because the GPU policies implemented 
prevented any attempts to access deallocated memory, even in 
the kernel function that was independent of CUDA memory 
management functions. The error thrown was an invalid value 
error in the cudaMemcpy function. The end of context attack, if 
ran exactly as the original authors in [2] coded it, would print 
the entire global memory which was zeros. This was because 
they printed any values different from the prefilled values, which 
were not zero. This proved that memory was cleared out 
sometime between deallocation and allocation of the entire 
global memory. These results can be seen in Fig. 7. The 
alteration of the attack exhibited the same findings. We changed 
the program to print any data that was not zero, to see if any 
victim data could be found. This resulted in nothing from the 
memory dump being printed out, indicating the entirety of the 
global memory that we recently allocated were zeros. These 
findings are found in Fig. 8. The same results occurred in the 

extra runs when executing this attack with L1 caches disabled 
for the attacker and the victim. No victim data was able to be 
recovered, even when using data larger than the L2 cache size 
of 2 MB that was sure to be found in global memory, not the 
cache. 

 

Fig. 7. Global memory full of 0s printed out. 

 

Fig. 8. No data printed due to zeroing out. 

C. Issues 

The primary issue we faced in this work was that the reason 
for the failure to exploit a certain vulnerability was sometimes 
unclear. In other words, there are multiple reasons for a failed 
attack and sometimes it was impossible to determine the exact 
reason. Therefore, we tried to take every approach angle and 
focused on only three specific vulnerabilities. For some of the 
attacks that relied on ASLR, it would be unclear whether 
memory leakage was not occurring due to proper memory 
zeroing, or the implementation of ASLR. Other reasons for 
failure could include data being cached and not actually making 
it to global memory, a fact not heavily considered in this work. 
Another issue was the lack of documentation by NVIDIA to find 
if policies have been implemented to fix these vulnerabilities 
and when. 

VII. CONCLUSION 

In this work, several approaches were taken to exploit the 
GPU vulnerabilities of no address space layout randomization 
implementation, and no zeroing of global memory after 
deallocation or with new allocations. However, all these 
previously documented attacks appear to be fixed. The work 
demonstrated this through six different CUDA programs which 
were a compilation of related work code, modifications to this 
code, and a new program using a NVIDIA provided template 
project. The documented security issues with global memory 
up to 2020 appear to have been successfully mitigated, a 
relieving statement given the substantial use of GPUs today. It 
is worth noting that caches were taken into consideration to the 
best of our ability, but there is a possibility that some victim 



data would be cached in L2 which cannot be disabled like L1, 
leading to attack failures because the data never makes it to 
global memory, where these vulnerabilities were documented. 
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