
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2022

Analysis of GPU Memory Vulnerabilities Analysis of GPU Memory Vulnerabilities

Jarrett Hoover
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Artificial Intelligence and Robotics Commons, Data Storage Systems Commons, Digital

Communications and Networking Commons, Graphics and Human Computer Interfaces Commons, and

the Information Security Commons

Citation Citation
Hoover, J. (2022). Analysis of GPU Memory Vulnerabilities. Computer Science and Computer Engineering
Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/csceuht/102

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/102?utm_source=scholarworks.uark.edu%2Fcsceuht%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Analysis of GPU Memory Vulnerabilities

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
April 2022

by

Jarrett Hoover

Analysis of GPU Memory Vulnerabilities

Jarrett D. Hoover

Department of Computer Science and Computer Engineering

University of Arkaansas

Fayetteville, AR, 72701, USA

jdh074@uark.edu

Dale R. Thompson

Department of Computer Science and Computer Engineering

University of Arkansas

Fayetteville, AR, 72701, USA

drt@uark.edu

Abstract—Graphics processing units (GPUs) have become a

widely used technology for various purposes. While their intended

use is accelerating graphics rendering, their parallel computing

capabilities have expanded their use into other areas. They are

used in computer gaming, deep learning for artificial intelligence

and mining cryptocurrencies. Their rise in popularity led to

research involving several security aspects, including this paper’s

focus, memory vulnerabilities. Research documented many

vulnerabilities, including GPUs not implementing address space

layout randomization, not zeroing out memory after deallocation,

and not initializing newly allocated memory. These vulnerabilities

can lead to a victim’s sensitive data being leaked to an attacker, an

impactful threat considering the usages of GPU computing

presented. In this paper, we attempt to implement these

vulnerabilities on an NVIDIA GPU to determine if any

advancements in memory architecture have been made since the

documentation of such vulnerabilities. This work demonstrates

that the lack of attention to security in early GPU development has

been adjusted to appropriately match a level of concern for a

computing component that numerous industries rely on.

Keywords—Graphics Processing Unit (GPU), Address space

layout randomization (ASLR), Allocation/Deallocation, Global

memory, Memory leakage, Host, Device

I. INTRODUCTION

Graphics Processing Units (GPUs) have come a long way
since their inception. While NVIDIA popularized the term
“GPU” in 1999, their invention came long before that.
NVIDIA’s original definition of the GPU was a single chip
processor with integrated transform, lighting, triangle
setup/clipping, and rendering engines capable of processing a
minimum of 10 million polygons per second [14]. Since this
definition describing their accelerated graphics rendering
capabilities, they have had an extreme increase in popularity and
function. Today they are used for mining cryptocurrency,
training neural networks for artificial intelligence, and even
common web browsers use GPUs rendering capabilities when
available [10, 11]. Browsers such as Chrome use GPUs for video
encoding and playback acceleration to lighten the load on CPUs
[1]. This growth in popularity can be attributed to these parallel
computing devices being fully programmable with a high
throughput, efficiency, and ability to offload CPU work [3].
However, with all of their advantages, security was not
investigated enough in early development, and they were
thought of as the weakest link in the security chain. Any problem

with GPUs can also affect all GPU accelerated applications, and
today the list continues to grow. The original data they dealt with
may not be considered sensitive, but it certainly is today. Many
problems discovered early on had to do with their memory
architecture. Threats on GPU memory were overlooked at first,
and it was discovered that sensitive data could be extracted from
memory residues [3]. This extraction process largely dealt with
GPUs not initializing newly allocated memory [2]. In this work,
we focus on these documented vulnerabilities in GPU memory,
specifically global memory.

The contributions of this work are: (1) proving that GPUs
now implement the security feature of address space layout
randomization (ASLR). (2) GPU global memory is now zeroed
out after deallocation. (3) Newly allocated GPU global memory
is now initialized to zero.

The following section discusses the related work of GPU
memory vulnerabilities and how these vulnerabilities can be
used to extract various forms of sensitive data. The presented
related work was used heavily to test vulnerabilities in near exact
ways and then expanded and altered in this work. Section III
describes the characteristics of early GPU memory architecture
that permitted these vulnerabilities. In Section IV, we highlight
key functions in CUDA that deal with memory management.
Section V introduces the theories behind the attacks on global
memory. The evaluation of these attacks is presented in Section
VI, followed by our conclusions in Section VII.

II. RELATED WORK

Many researchers noticed memory leakage security issues
and exploited them in different ways. The authors in [1] first
noticed the lack of address space layout randomization (ASLR),
a policy that aids in process isolation which is impactful to
computer security. They address that CPUs implement process
isolation with ASLR and virtual memory, and they demonstrate
that GPUs implemented neither at the time. Through GPU
programming with CUDA, they prove that same memory
allocations result in the exact same address in different program
executions. Additionally, they present a proof-of-concept attack
that steals information between CUDA programs due to this lack
of ASLR paired with memory not being zeroed out prior to
allocation or after deallocation.

Similarly, the authors in [2] disclosed sensitive data
remaining in GPU memory through end of context and end of

kernel attacks. They revealed uninitialized memory problems
through these attacks that read all global memory right after a
victim finishes execution on a shared GPU. In other words, they
successfully obtained data released after the destruction of a
victim programs GPU context. Their attacks could retrieve
results of kernel computations such as decrypted plaintext and
rendered images. Other data forms released include kernel code,
constant data, and call-by-value arguments of kernels.
Furthermore, they exhibited an ability to infer web browsing
history of victims using pixel analysis on the recovered data.

Taking a different approach than memory leakage, the
authors in [3] discovered that the execution time of a GPU kernel
is linearly proportional to the number of unique cache line
requests generated during kernel execution on GPU
architectures. This architectural flaw allowed for a timing attack
on GPUs. They used this property to extract AES encryption
keys when cryptography is implemented by GPUs.

Another example of memory leakage is presented by the
authors in [4]. They demonstrated direct sensitive information
recovery from real-world applications including Chrome and
Adobe due to memory management vulnerabilities. They found
GPU memory inference attacks to be much more serious than
researchers had previously thought. They explained that GPU
memory is managed by the GPU itself and thus may violate
some security policies that are normally enforced by the
operating system and CPU. Like others, they also documented
that newly allocated memory is not cleared to zero and that the
GPU does not erase memory data before the released memory
space gets reallocated. They performed a similar attack of filling
global memory with a predefined value, monitoring available
memory, and performing a memory dump to analyze what had
been left over from the victim. Doing this, they were able to
obtain usernames, credentials, and credit card numbers. They
furthered their attack to recover victims’ data after they viewed
webpages or PDFs and implemented image analysis on the
recovered data. Their attack was shown to work on Chrome and
Adobe as previously mentioned, but also GIMP and MATLAB.

As the early 2010s progressed and papers such as these
continued to be published, the authors in [5] published a survey
of techniques for improving GPU security. Several of the
aforementioned papers are cited in this publication as well. New
vulnerabilities mentioned include the ability to perform a
register spilling attack. Such an attack is performed by reserving
more registers than available and the overflow goes to global
memory, allowing an attacker to access this data even though it
is not registered to them and has not been deallocated. This
publication features no work of their own but have nearly 50
sources of GPU security issues and an entire section on the focus
of this work, memory leakages.

The most recent paper we present in related work comes
from the authors in [6]. They illustrate even more memory
concerns including GPUs lacking prevention of threads of a
kernel to access the contents stored in local and private
memories written by threads of other kernels. Written in 2020,
they cite that when multiple users share a GPU, information
leakage can still occur between concurrently running processes
or from recently terminated process because of allocation issues,
despite their documentation for at least 7 years. This dissertation

goes as in depth as providing mitigations to some of these
vulnerabilities.

Despite all this previously published work on the same
memory leakage vulnerabilities, they persisted for many years.
We believe these issues still deserve attention, as we are
unaware of any work proving their elimination.

III. EARLY MEMORY ARCHITECTURE

To gain a full understanding of the content of this work, a
brief discussion of the characteristics of early architecture of
GPU memory is beneficial. GPUs had little caching but a large
and fast RAM system to feed data into the many cores.
Additionally, they did not initially implement virtual memory, a
policy to aid in process isolation [1]. They also featured no
preemptive scheduling, allowing for the previously mentioned
end of kernel attack. GPUs contain a large amount of
independent memory as well [2]. GPUs also contain integrated
off-chip DRAM memory called device memory. CPUs transfer
data to and from this device memory before and after they
launch the kernel. The global memory we focus on is found in
this device memory. Another component of GPUs, streaming
multiprocessors, of which there are many, all share this global
memory [13]. Compared to CPUs, cache sizes are much smaller
but have much higher bandwidth [3]. GPUs also have memory
space dedicated to them and it is used and managed exclusively
by the GPU, explaining the need for data to be transferred to and
from host to device [4]. Finally, all streaming multiprocessors
share an L2 cache while they each have their own L1 caches
which are write-back by default [6].

IV. CUDA MEMORY MANAGEMENT

The vulnerabilities that this work assessed were performing
using an application called CUDA. This toolkit is a parallel
computing platform and programming model created by
NVIDIA to interact with their GPUs [15]. It has allowed users
to perform research and build GPU-accelerated applications for
many years, and this work takes advantage of this platform’s
flexibility. We spent a large amount of time learning and
understanding CUDA memory management through
documentation, so we find that a description of some common
syntax and functions to be valuable.

The primary syntax rule that permitted memory management
on the GPUs specific memory was the __global__ declaration.
This declaration before a function signals the CUDA compiler
that you are declaring kernel [8]. This means that the function is
called on the host (CPU) but executed on the device (GPU). In
these functions, normal C-like variables such as arrays indicated
reading or writing from the GPU global memory, which were
needed features for our purposes. In these kernel functions, you
could simulate victim activities or perform attacker actions
depending on your purpose.

Many functions found in the CUDA Toolkit documentation
were highly used as well. The most impactful function was
cudaMalloc. This function allocated memory on the device. Its
parameters were a predefined pointer that the function would
return the allocated memory location and the size of your
requested allocation in bytes. It is trivial to understand this
function, but it was used in several different contexts. This could
be a victim storing their sensitive information or an attacker

allocating the same memory to see what raw data remained.
Knowing the memory size of the vulnerable GPU would also
allow you to allocate the entirety of global memory due to the
size parameter.

The function of next importance was cudaMemcpy. This
function copies data between the host and the device. Its
parameters were the destination memory address, the source
memory address, the size in bytes to copy, and a CUDA specific
identifier to indicate the type of transfer. The types of transfer
include host to device, device to host, device to device, or even
host to host. This work primarily used host to device and vice
versa. The memory regions requested must be registered with
CUDA so you cannot try and access deallocated memory. Our
purposes for this function included writing to global memory
with host to device transfers and reading from global memory
with device to host transfers.

Another trivial function, the complement to cudaMalloc, is
cudaFree. This function simply frees the memory on the device.
Its only parameter is the device pointer to the memory to be
freed. If the pointer was invalid or to unregistered memory, a
cudaError variable with a value of invalid value was returned
referring to the pointer. Similarly, a successful deallocation of
memory returned a cudaError variable with a value of success.
Many of these memory management functions returned this
cudaError variables and error checking functions could be
written easily if the desire or need was there. This simple
function was used critically because in order to test how the
GPU handled deallocation, this function had to be called
properly.

A much less frequently used function was cudaMemset. This
function initializes or sets device memory to a specified value.
Its parameters are a pointer to device memory, a value to set for
each byte of specified memory, and a size in bytes to set. This
function is perfect for filling global memory with a value known
only to you, but knowledge of the exact memory size of your
device is required, which is easy to find. Use in this context
allows for quick analysis of a global memory dump to find
victims’ data.

The final function of importance was cudaMemGetInfo.
This function was crucial for attack algorithms as it returns the
amount of free and total device memory. The parameters are two
variables that indicate the returned free memory in bytes, and
the returned total memory in bytes. The returned memory
attributes are of the current context of the GPU. This function
can be used to monitor memory by constant polling to detect if
a victim has used memory. When the amount of free memory
changes, you can infer whether victims have allocated or
deallocated memory. There are many other functions found in
the CUDA documentation for memory management, but these
were of high significance to the work performed [7].

V. ATTACKS ON GLOBAL MEMORY

In this section, we cover the theories and concepts behind the
attacks implemented in this work. They can be categorized
based on whether the attack is dependent on ASLR or not. There
are six attacks that attempt to exploit lack of ASLR, or lack of
zeroed out memory by allocation/deallocation, from many
different angles. Some are taken from the related work section

to see if they are still applicable, and some are adaptations of
those attacks or similar to them.

A. ASLR Dependent

The first attack presented in this work attempts to show the
lack of ASLR because of its proven absence in previous work
[1]. Address space layout randomization is a computer security
technique that randomizes the location where system
executables are loaded into memory. It makes buffer overflow
attacks difficult because they involve the attacker knowing the
location of an executable in memory [12]. A simple program can
show the lack or presence of ASLR. Code that shows the exact
same memory allocations will result in different addresses
during different program executions demonstrates the function
of ASLR. The code we used to prove or disprove ASLR is
acquired from the authors in [1] due to its simplicity yet
undeniable results.

The next attack theory exploited the lack of ASLR paired
with memory not being cleared after deallocation or with
allocation. A simple proof of concept attack also from the
authors in [1] was used to fulfill this theory. This attack involved
two CUDA programs where one leaks information from
memory to the other. In this scenario, the first program is the
victim, who saves/writes information to memory. The second
program, the attacker, allocates new memory, which from the
lack of ASLR would be the same location, and retrieves the
information that the victim wrote to memory. If there is no
implementation of ASLR or clearing of memory, this attack
should work just as it did for the creators. This attack is small
and simple, but if it is successful the vulnerability can easily be
utilized in much more dangerous and destructive attacks.

Another attack exploits the scenario if the victim forgets to
deallocate their memory. If victims forget to free their sensitive
information, would it be possible to expose a memory leakage
as others have done as seen in the related work section? A simple
attack can be created by modifying the proof-of-concept attack
mentioned earlier. This attack still features two CUDA
programs, a victim and attacker. However, in this scenario the
victim does not deallocate their memory usage. If this attack
works, there is proof that newly allocated memory is not
initialized. This is important because it is often hard to determine
whether deallocation, allocation, or even program termination is
the cause of zeroed out memory. Once again, this attack is
dependent on the enforcement of ASLR.

The last attack that depends on the policy of ASLR attempts
to eliminate a previously mentioned issue, whether memory is
cleared after program termination, regardless of the freeing of
memory. This attack combines all the previously used code into
the same program, creating some new possibilities due to the
victim and attacker working under the same program execution.
In this attack, we try to access the same memory right after it has
been deallocated to see if it remains. In this setting, the unknown
way a GPU handles memory after program termination is
eliminated. Simple changes to the code can also test a few other
angles. The victim code could not free their memory, but this
would only be fruitful if ASLR is not in play. A final thought on
this attack was removing the second allocation statement, which
would be performed by the attacker. However, this will only
prove successful if the GPU allows access to memory that has

been deallocated in the same program, which is not a concept
we concentrated on. Essentially, the attacker would be trying to
access non-registered memory using a pointer from the victim’s
allocation statement, which CUDA documentation states should
return an error.

B. ASLR Independent

The next two attack scenarios will work independent of
ASLR enforcement and focus primarily on data being left over
in global memory after deallocation. The first attack we present
was creating using a template provided in the CUDA toolkit
samples. This example program takes an array on the host, fills
it with values increasing sequentially, transfers this array to
global memory on the GPU, performs some multithreaded
calculations on the GPU, and ends by transferring those results
back to the host. This template project was perfect to modify
because it dealt with memory allocation and deallocation using
GPU global memory, all pillars of this research. Another reason
was that this was a proper CUDA project, written by the creators
themselves, so any attempts to exploit vulnerabilities were sure
to be official. The first addition we made was adding a kernel
function that takes in a pointer to the GPU array and tries to steal
values after its deallocation. When we call this function, we use
a captured pointer value before the array’s deallocation. This
function attempts to bypass some of features of previously used
CUDA functions that do not allow for access to unregistered
memory. This is because it appears to access array values just
like a non CUDA program would, but its kernel declaration
means it runs on the GPU. In this same project we also attempt
a non-kernel function approach using the same captured pointer,
but this approach does depend on the most likely secure CUDA
memory management functions.

The final attack program is a modification of the end of
context attack published by the authors in [2]. The code for the
attack was also published [9]. In their work, they use this attack
to steal victims web browsing data. This attack essentially fills
global memory with a value known only to the attacker,
deallocates that memory, and waits for a victim to come use
GPU global memory. They do this by monitoring the amount of
free memory using CUDA memory management functions
previously discussed. As soon as the victim programs context is
terminated, they perform a memory dump of all global memory.
This strategy eliminates the issues of unregistered memory
because all global memory is accessed. When analyzing the
memory dump, any data that does not match the prefilled value
is considered a victim’s sensitive data. Some small changes we
made in our implementation involve memory being filled with
1s, changed memory specifics to match our GPU, and the
victims were CUDA toolkit examples that access device
memory. If memory is not zeroed out as cited many times, this
attack should work as it did in this related work. However, if
results showed that memory was zeroed out, you could change
the memory dump analysis code to only check for non-zero data.
If there was none, you could prove that this vulnerability no
longer remains. Another feature added to this attack was
compiling it with compilation flags that disabled the L1 caches
of the GPU [16]. This was done to eliminate the possibility that
data was never reaching global memory. Additionally, a
separate victim program was compiled with the same flags and
had unique victim data to ensure the data was making it to global

memory. This data was 2 GB allocations and was initialized
based on a unique key array like the way the authors in [2] filled
global memory. The same method was applied to the victim data
instead of prefilled values.

VI. EVALUATION

A. Experimental Setup

In this section we show the experimental results of the
experiments we performed to evaluate our proposed programs.
The evaluation setup consisted of a NVIDA Quadro P4000 GPU
running on an Ubuntu operating system. This GPU had 8 GB of
memory. The CUDA toolkit was downloaded on this
workstation according to installation instructions, ensuring for
proper compiling and running of code. The code was compiled
and ran in the terminal in a directory created in the toolkit
samples directory to confirm all needed libraries were present.
Terminal compiling was done using the nvcc command in all
cases except for the program that used the template project. This
provided project folder contained its own make file to run for
compiling.

B. Results

The experiments consisted of six programs attempting to
exploit memory vulnerabilities. The first program, intended to
prove the absence of ASLR, resulted in the finding that the setup
did implement ASLR, as seen in Fig. 1 where different program
executions resulted in different memory locations. However, the
other programs that depended on ASLR were still ran to see if
pairing this documented vulnerability with other vulnerabilities
such as memory leakage would result in a successful attack.

Fig. 1. ASLR implementation on CPU and GPU.

The second attack theory tried to exploit the uncleared
memory vulnerability along with a lack of ASLR. We found that
no memory leakage occurred and that only the value 0 could be
recovered, indicating memory was zeroed out either after
deallocation or along with new allocations. An example of this
can be found in Fig. 2.

Fig. 2. Value of 0 recovered prior to and after writing to memory.

The next program, where a victim does not deallocate their
memory, ended with identical results, indicating that either
memory is cleared after program termination or with new
allocations. These findings are in Fig. 3.

Fig. 3. Value of 0 recovered with no deallocation of memory.

The final program to cover all scenarios of ASLR
implementation and memory clearing vulnerabilities, involved
work in the same program execution. The first test has a victim
writing to memory, deallocating it, and an attacker attempts to
retrieve that data immediately. We found that similarly, only
values of 0 could be retrieved, as seen in Fig. 4. The second test
with this program has a victim forgetting to deallocate their
memory by simply commenting out the freeing of memory
statement, but once again, the same results occurred. These can
be found in Fig. 5. The final test with this program had the
attacker not using a new allocation statement but instead using
the victim’s pointer to the deallocated memory. Here, if a default
value was provided in the code, that was the value that was
retrieved, and in our test the arbitrary value of 2.5 was default.
This was because attempting to read from unregistered memory
returns an error, and the default value never actually changes.
These results can be seen in Fig. 6. All attempts to exploit the
documented vulnerabilities were unsuccessful in these discussed
attempts. However, they all have the possibility of being
thwarted due to ASLR. For this reason, we carried out the final
two attacks that ASLR cannot affect.

Fig. 4. Value of 0 recovered in same program execution.

Fig. 5. Value of 0 recovered with no deallocation of memory.

Fig. 6. Default value of 2.5 retrieved.

The next two attacks, although independent of ASLR,
showed similar results. The attack using the template CUDA
project was unable to recover any values after deallocation. We
found this to be because the GPU policies implemented
prevented any attempts to access deallocated memory, even in
the kernel function that was independent of CUDA memory
management functions. The error thrown was an invalid value
error in the cudaMemcpy function. The end of context attack, if
ran exactly as the original authors in [2] coded it, would print
the entire global memory which was zeros. This was because
they printed any values different from the prefilled values, which
were not zero. This proved that memory was cleared out
sometime between deallocation and allocation of the entire
global memory. These results can be seen in Fig. 7. The
alteration of the attack exhibited the same findings. We changed
the program to print any data that was not zero, to see if any
victim data could be found. This resulted in nothing from the
memory dump being printed out, indicating the entirety of the
global memory that we recently allocated were zeros. These
findings are found in Fig. 8. The same results occurred in the

extra runs when executing this attack with L1 caches disabled
for the attacker and the victim. No victim data was able to be
recovered, even when using data larger than the L2 cache size
of 2 MB that was sure to be found in global memory, not the
cache.

Fig. 7. Global memory full of 0s printed out.

Fig. 8. No data printed due to zeroing out.

C. Issues

The primary issue we faced in this work was that the reason
for the failure to exploit a certain vulnerability was sometimes
unclear. In other words, there are multiple reasons for a failed
attack and sometimes it was impossible to determine the exact
reason. Therefore, we tried to take every approach angle and
focused on only three specific vulnerabilities. For some of the
attacks that relied on ASLR, it would be unclear whether
memory leakage was not occurring due to proper memory
zeroing, or the implementation of ASLR. Other reasons for
failure could include data being cached and not actually making
it to global memory, a fact not heavily considered in this work.
Another issue was the lack of documentation by NVIDIA to find
if policies have been implemented to fix these vulnerabilities
and when.

VII. CONCLUSION

In this work, several approaches were taken to exploit the
GPU vulnerabilities of no address space layout randomization
implementation, and no zeroing of global memory after
deallocation or with new allocations. However, all these
previously documented attacks appear to be fixed. The work
demonstrated this through six different CUDA programs which
were a compilation of related work code, modifications to this
code, and a new program using a NVIDIA provided template
project. The documented security issues with global memory
up to 2020 appear to have been successfully mitigated, a
relieving statement given the substantial use of GPUs today. It
is worth noting that caches were taken into consideration to the
best of our ability, but there is a possibility that some victim

data would be cached in L2 which cannot be disabled like L1,
leading to attack failures because the data never makes it to
global memory, where these vulnerabilities were documented.

REFERENCES

[1] Patterson, Michael, "Vulnerability analysis of GPU computing" (2013).
Graduate Theses and Dissertations. 13115.
https://lib.dr.iastate.edu/etd/13115

[2] S. Lee, Y. Kim, J. Kim and J. Kim, "Stealing Webpages Rendered on
Your Browser by Exploiting GPU Vulnerabilities," 2014 IEEE
Symposium on Security and Privacy, 2014, pp. 19-33, doi:
10.1109/SP.2014.9.

[3] Z. H. Jiang, Y. Fei and D. Kaeli, "A complete key recovery timing attack
on a GPU," 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016, pp. 394-405, doi:
10.1109/HPCA.2016.7446081.

[4] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang and R. Liu, “Vulnerable GPU
Memory Management: Towards Recovering Raw Data from GPU,”
Proceedings on Privacy Enhancing Technologies, 2017, pp. 57-73, doi:
10.1515/POPETS.2017.0016.

[5] S. Mittal, S. B. Abhinaya, M. Reddy and I. Ali, “A Survey of Techniques
for Improving Security of GPUs,” Hardware and Security Systems
Journal 2, 2018, pp. 266-285, doi: 10.1007/s41635-018-0039-0.

[6] Naghibijouybari, H. (2020). Security of Graphics Processing Units
(GPUs) in Heterogeneous Systems. UC Riverside. ProQuest ID:
Naghibijouybari_ucr_0032D_14214. Merritt ID: ark:/13030/m5h475c2.
Retrieved from https://escholarship.org/uc/item/6jx346hq

[7] CUDA Tookit Documentation v11.6.2.
https://docs.nvidia.com/cuda/index.html (accessed Nov. 16, 2021).

[8] CUDA syntax. http://www.icl.utk.edu/~mgates3/docs/cuda.html
(accessed Dec. 9, 2021).

[9] Sangho Lee Github Code. https://github.com/sangho2/gpu-uninit-
mem/blob/master/attack.cu (accessed Feb. 15, 2022)

[10] A. Kordek. “Uses for GPUs: 4 Reasons Other Than Gaming.” Inmotion
Hosting. https://www.inmotionhosting.com/support/product-
guides/private-cloud/additional-resources/uses-for-gpus-other-than-
gaming/ (accessed Mar. 3, 2022).

[11] H. Klein. “Impact of GPU Acceleration on Browser CPU Usage.” Helge
Klein. https://helgeklein.com/blog/impact-gpu-acceleration-browser-
cpu-
usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C
%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20re
ndering.&text=Especially%20during%20video%20playback%2C%20bu
t,GPU%20is%20still%20used%20extensively (accessed Mar. 7, 2022).

[12] S. Shea. “address space layout randomization (ASLR).” TechTarget.
https://www.techtarget.com/searchsecurity/definition/address-space-
layout-randomization-ASLR (accessed Feb. 24, 2022).

[13] A. Priyadarshana. “CUDA – GPU Memory Architecture.” Medium.
https://ashanpriyadarshana.medium.com/cuda-gpu-memory-architecture-
8c3ac644bd64 (accessed Mar. 1, 2022).

[14] “History of GPUs.” XOTIC PC. https://xoticpc.com/blogs/news/history-
of-
gpus#:~:text=Back%20in%201999%2C%20NVIDIA%20popularized,ca
rd%20to%20rule%20them%20all (accessed Mar. 2, 2022).

[15] F. Oh. “What is CUDA?” NVIDIA.
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/ (accessed Feb.
22, 2022).

[16] CUDA Toolkit Documentation. “4.2.9.1. Ptxas Options.” NVIDIA.
https://docs.nvidia.com/cuda/cuda-compiler-driver-
nvcc/index.html#ptxas-options (accessed Apr. 19, 2022).

https://docs.nvidia.com/cuda/index.html
http://www.icl.utk.edu/~mgates3/docs/cuda.html
https://github.com/sangho2/gpu-uninit-mem/blob/master/attack.cu
https://github.com/sangho2/gpu-uninit-mem/blob/master/attack.cu
https://www.inmotionhosting.com/support/product-guides/private-cloud/additional-resources/uses-for-gpus-other-than-gaming/
https://www.inmotionhosting.com/support/product-guides/private-cloud/additional-resources/uses-for-gpus-other-than-gaming/
https://www.inmotionhosting.com/support/product-guides/private-cloud/additional-resources/uses-for-gpus-other-than-gaming/
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://helgeklein.com/blog/impact-gpu-acceleration-browser-cpu-usage/#:~:text=Chrome%3A%20GPU%20Usage&text=Obviously%2C%20Chrome%20uses%20the%20GPU,but%20also%20for%202D%20rendering.&text=Especially%20during%20video%20playback%2C%20but,GPU%20is%20still%20used%20extensively
https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-ASLR
https://www.techtarget.com/searchsecurity/definition/address-space-layout-randomization-ASLR
https://ashanpriyadarshana.medium.com/cuda-gpu-memory-architecture-8c3ac644bd64
https://ashanpriyadarshana.medium.com/cuda-gpu-memory-architecture-8c3ac644bd64
https://xoticpc.com/blogs/news/history-of-gpus#:~:text=Back%20in%201999%2C%20NVIDIA%20popularized,card%20to%20rule%20them%20all
https://xoticpc.com/blogs/news/history-of-gpus#:~:text=Back%20in%201999%2C%20NVIDIA%20popularized,card%20to%20rule%20them%20all
https://xoticpc.com/blogs/news/history-of-gpus#:~:text=Back%20in%201999%2C%20NVIDIA%20popularized,card%20to%20rule%20them%20all
https://xoticpc.com/blogs/news/history-of-gpus#:~:text=Back%20in%201999%2C%20NVIDIA%20popularized,card%20to%20rule%20them%20all
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options

	Analysis of GPU Memory Vulnerabilities
	Citation

	tmp.1651176882.pdf.Qw9gf

