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Abstract

The state-of-the-art for pruning neural networks is ambiguous due to poor experi-

mental practices in the field. Newly developed approaches rarely compare to each other, and

when they do, their comparisons are lackluster or contain errors. In the interest of stabi-

lizing the field of pruning, this paper initiates a dive into reproducing prominent pruning

algorithms across several architectures and datasets. As a first step towards this goal, this

paper shows results for foresight weight pruning across 6 baseline pruning strategies, 5 mod-

ern pruning strategies, random pruning, and one legacy method (Optimal Brain Damage).

All strategies are evaluated on 3 different architectures and 3 different datasets. These results

reveal several truths for foresight pruning. First, magnitude-based methods are ill-advised

and perform worse than random pruning in a large percentage of test cases. Second, Hessian-

based methods commonly under-prune by approximately 50%, rendering them slightly worse

than competing methods that prune right at the given compression ratio. Third, Single-shot

Network Pruning (SNIP) is the most consistent method for foresight pruning, followed by

GraSP, Layer-adaptive Magnitude Pruning (LAMP), and the gradient-magnitude baselines.

Finally, the toughest issue for researchers developing new foresight pruning methods will be

how to prevent layer-collapse without significant cost to task accuracy.

Keywords : Supervised learning, computer vision, image classification, unstructured prun-

ing, foresight pruning
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1 Introduction

The modern era of big data and deep learning has seen a plethora of breakthroughs in

advancing the field of machine learning. Deep models can already produce highly accurate

predictions that surpass human capabilities, and they are only getting better with time. The

primary drawback of these developments, however, is the increasing computational expense.

This trade-off is a staple of machine learning model development, where efficiency is improved

at the expense of accuracy. In computer vision, the best-performing models like ResNet [1],

VGG [2], and EfficientNet [3] usually have parameter counts on the scale of 107. Parameter

counts are several orders of magnitude larger for natural language processing, where state-of-

the-art neural networks now boast billions or even trillions of parameters with architectures

like GPT-3 [4] or Switch Transformers [5]. Although modern GPUs give the benefit of

parallelizing operations and thus accelerating neural network passes immensely, the inherent

memory limits of GPU devices makes practical implementations of these algorithms a chore.

As mobile computing has become more ubiquitous, it is necessary to find solutions to the

unwieldy nature of deep neural networks so that they can be used in day-to-day pragmatic

applications. One of the most straightforward of these solutions is pruning.

Neural networks are often explained with terminology that relates them to biological

brains, and this analogy continues to serve well in the context of pruning. Traditionally, a
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neural network was seen as a set of biological neurons with connections known as synapses

between them. Neurons would send information to neighboring neurons with electrical sig-

nals or neurotransmitters via the synapses. The concept of the artificial neural network

took inspiration from this biological example, constructing nodes to emulate neurons and

weights between them to emulate synapses. The extensible nature of the artificial neural net-

work allowed for the representation of complex functions, much like biological counterpart.

Additionally, biological neural networks also undergo a form of pruning known as synaptic

pruning. A 1979 study discovered that over time, starting from about 1-2 years of age,

synaptic density decreases by 50% going into adolescence and adulthood [6, 7]. This trend

corresponds with increases in cognitive functions as a result of redundant neural pathways

being removed and the more important ones strengthened. In artificial neural networks, the

idea is much the same. Redundant weights are deleted at minimal cost to the network’s

overall function, and as a result inference speed is higher. In some cases, the accuracy is

conserved or even improved. Figure 1.1 depicts the results of pruning applied to a fully-

connected network.

In current neural network pruning literature, the prevailing theory is that modern

networks are overparameterized, meaning that they use far more parameters than are nec-

essary to solve the given task. This idea was reinforced by the development of the Lottery

Ticket Hypothesis, a prediction that every neural network contains a randomly initialized

subnetwork, termed a ”winning ticket,” that can be trained to at least the same accuracy

2



(a) Fully-Connected Neural Network (b) Pruned Neural Network

Pruning

Figure 1.1: Network Pruning Performed on a Small Network of Linear Layers

in at most the same number of iterations [8]. Due to simple combinatorics, overparame-

terized networks have more possible ”winning tickets” to choose from during training. The

paper that posited this argument also proposed that standard pruning procedures were able

to eventually find this subnetwork, but only after training. We can intuitively understand

why trained models are easy to prune into a ”winning ticket,” as unneeded parameters will

often have stark differences to the more important connections after training. Conversely,

using traditional pruning methods to prune a freshly-initialized network is difficult because

there is no implicit information related to the task that the pruning strategy can exploit.

Subsequent experiments on the Lottery Ticket Hypothesis all but confirmed the hypothesis,

which now motivates more research into pruning before training, the goal being that if we

can automatically determine optimal network substructures prior to training, then we can

easily speed up training and inference while also improving accuracy. In this work, we de-

note pruning conducted prior to training as foresight pruning and pruning periodically once
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successively smaller networks converge as iterative pruning.

Unfortunately, despite monumental developments like these in the field of neural

network pruning, there is a staggering lack of reproducibility or consistent state-of-the-art

comparisons. A recent survey paper examined 81 pruning papers and found numerous issues,

including omission of comparisons with previous methods, usage of nonstandard metrics,

and inexact descriptions of the experimental setup that would lead to confounding variables,

among many other problems [9]. With the literature being in this state, it is nigh impossible

to determine the state-of-the-art and thus advance the field. To attempt to address this

problem, this work will focus on implementations for foresight pruning in light of the Lottery

Ticket Hypothesis while aiming to lay the foundation for a comprehensive comparison of

pruning methods.

This sections in this paper are outlined in the following manner. Section 2 summarizes

related works on pruning before delving into explanations of the baselines used for the

experiments. Section 3 describes the 6 implemented methods beyond the baselines. Section

4 describes the experimental design, hyperparameter information, and results of the foresight

pruning experiments. Section 5 analyzes the results and proposes further avenues of pruning

research.
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2 Related Works

Neural network pruning was proposed as a concept long before the deep learning

renaissance. The 1989 paper on skeletonization [10] was one of the earliest investigations on

the subject and sparked a multitude of similar papers like Optimal Brain Damage [11] and

Optimal Brain Surgery [12]. Following these initial developments for neural network pruning,

there was a long drought for the field, as pruning seemed to significantly impact the accuracy

of the tiny networks of the time with nigh-negligible gains in efficiency. However, the revival

of neural networks with big data and deep learning following the ImageNet competitions

[13] saw a return to the question of pruning. In 2015, Han et al. revitalized the field and

standardized the algorithmic form to involve training until convergence and then pruning

connections before fine tuning the network again [14]. As the authors suggest, this basic

methodology allows the network to learn important connections based on the loss function

that guides the training as well as the specific pruning strategy. Then, the network is

retrained until convergence with the new, sparse architecture.

In recent years, more focus has been drawn to filter pruning. This trend is due

in large part to the immense success of convolutional neural networks for popular tasks

like image classification. Whereas convolutional layers learn filter matrices that are passed

over the input as a sliding dot product, traditional fully-connected layers consist of a single

5



(a) Weight Pruning (b) Group Pruning (c) Filter Pruning

Figure 2.1: Pruning of Weights, Groups, and Filters

weight matrix used for a linear transformation of the input. Due to this inherent difference

in structure, pruning methods needed to be developed that considered groups of weights,

neurons, or filters for removal. Because this type of pruning entails entire structures being

pruned from a network, it is referred to as structured pruning. Standard weight pruning, on

the other hand, is known as unstructured pruning, because it will prune individual weights

from the network, not structures. An example of the differences of between weight, group,

and filter pruning on convolutional filters is shown in Figure 2.1.
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2.1 Filter Pruning

Filter pruning is relatively recent in conception but has quickly garnered widespread

attention in pruning literature. [15] put forward the first filter pruning method, which

prunes filters with small l1-norms. This is conceptually equivalent to pruning weights based

on their magnitude. Soft filter pruning was suggested by [16] so as to retain the model

capacity during the successive pruning of filters. This was accomplished by setting pruned

filters to zero based on their l2-norm and then continuing to train them before the final

pruning step. [17] used batch normalization scaling to induce sparsity in filters. Another

approach was proposed by [18] whereby filters close to the geometric median were selected

for pruning. Many other filter pruning methods [19, 20, 21, 22] rely on using training data

and layer activations to determine the best filters to prune.

2.2 Weight Pruning

As weight pruning comparisons will be the focus of this work, most of the important

methods are outlined in Section 3. There are, however, a variety of useful baselines against

which every weight pruning algorithm must be compared. The familiar magnitude-based

pruning is a simple example, but we can also look at gradient-based and activation-based

scoring functions. Finally, random pruning is the most straightforward pruning baseline to

be included in this work.

Another consideration for our study of weight pruning is baselines is how we choose

7



to apply them. There are 2 primary strategies for conducting a weight pruning algorithm:

global and layer-wise. A global pruning algorithm will consider every weight in the network

simultaneously for pruning based on their scores. A layer-wise pruning algorithm will prune

each layer separately according to a given pruning ratio. For example, given a pruning ratio

of 0.2, a global method will prune 20% of a network’s total parameters, whereas a layer-

wise method will prune 20% of the parameters in the first layer, 20% of the parameters

in second layer, and so on for every layer. While global pruning normally performs better

than its layer-wise counterpart, it is guaranteed to suffer from layer-collapse, the pruning

of all parameters in a layer, at some pruning ratio threshold. Layer-collapse as an issue is

expounded upon further in Section 3.6.

With each baseline (magnitude, gradient, activation) having a global and layer-wise

version, we have a total of 6 baseline pruning strategies plus random pruning.

2.2.1 Magnitude-based Pruning

Seeing as standard magnitude-based approaches have continued to be competitive

with the state-of-the-art over the years, it should serve as a baseline for every comparison.

For magnitude-based pruning, the motivation is that smaller weights will have less of an

impact on the overall network output, and thus they are less important. Assuming that

smaller scores are pruned first, the magnitude-based score function is defined in Equation

2.1,

8



s(θ) = |θ|, (2.1)

where θ is a solitary parameter in a given neural network.

2.2.2 Gradient-based Pruning

The baseline gradient method simply uses the gradients for each parameter after

backpropagating the loss on a single batch of data. The score function is defined in Equation

2.2,

s(θ) = |θg|, (2.2)

where g is the gradient for parameter θ.

2.2.3 Activation-based Pruning

There are several ways to prune based on activations, but for this paper we average

the activation outputs at each layer across the batch dimension. The activations are then

normalized before being passed into the score function defined in Equation 2.3,

s(θ) = |θa|, (2.3)

where a is the batch-averaged output of the activation function following the layer containing

parameter θ.

9



2.2.4 Random Pruning

Random pruning has no score function and skips instead to the pruning step. Ac-

cording to some specified pruning ratio, that percentage of parameters are randomly selected

from the network to be pruned. Random pruning will serve as a good indicator of whether

the other methods are performing better than random chance.
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3 Implemented Methods

Each section in this chapter will cover one of the popular pruning methods. Although

this work does not provide comparisons of every supposed state-of-the-art pruning method,

it does focus on those related to foresight pruning and can then offer a good introductory

analysis of the field and the performance of its various methods. The typical steps for

foresight pruning are shown in Algorithm 1.

Algorithm 1 Foresight Pruning

Require: Network f , network parameters θ, pruning ratio p, parameter scoring function g

Compute scores for every parameter s = g(θ)

Compute pth percentile of scores s as threshold τ

Initialize binary parameter mask m such that mi ≡


1 if si ≥ τ

0 else
,

Train the network fm⊙θ until convergence

3.1 Optimal Brain Damage (OBD)

OBD, proposed by Le Cun et al. in 1990 [11], is included as a comparison in this

work to give insight on the differences between modern and legacy methods. OBD functions

in the context of network pruning by calculating a saliency measure for every parameter that

makes use of second-derivative information. Parameters with small saliency values can be

11



pruned from the network due to their minimal impact on the overall training error. In this

way, a large network can be compressed by to half the number of parameters or more without

losing much accuracy. The saliency metric, which is equivalent to the scoring function g in

Algorithm 1, is calculated as such:

sk =
hkku

2
k

2
. (3.1)

Here, k is the index of the parameter in question, and hkk is the second derivative for

parameter k found on the diagonal of the Hessian matrix. Finally, uk is the perturbation

applied to parameter k that would delete it from the network (i.e. set it to 0). The Hessian

matrix of second order partial derivatives has space complexity O(n2) where n is the number

of parameters in the network, which the authors claimed was too difficult to compute. For

the time when the authors developed this method, this was already true with their 2,600

parameter network resulting in a matrix of 6.76×106 elements. Nowadays, the space problem

is exacerbated with million-parameter networks resulting in trillion-element Hessian matrices.

Assuming every floating point number in a million-parameter network is 4 bytes in memory,

the complete Hessian matrix would require 4 terabytes of temporary memory. Although

there are approximations that will calculate only the Hessian diagonal, these still suffer

from O(pn3) time complexity [23]. Therefore, OBD is useful for legacy comparison on small

networks and datasets, but it is prohibitively expensive in a modern context.

12



3.2 Lookahead Pruning (LAP)

Lookahead pruning builds directly off of the basic magnitude pruning concept by

aggregating the previous and following connections of a particular weight [24]. Assuming a

neural network with L layers and associated weight tensors W1, . . . ,WL, a standard mag-

nitude pruning strategy will remove low-magnitude weights first. The goal is to produce

a mask for each layer’s weight tensor that minimizes the Frobenius norm of the difference

between the original weights and the masked weights:

min
M :∥M∥0=p

∥W −M ⊙W∥F . (3.2)

In this minimization objective, ⊙ is the Hadamard product, ∥·∥0 is the entrywise

l0-norm, and p is the pruning ratio. The authors of lookahead pruning proposed a block

approximation version of this magnitude pruning objective that considers a weight tensor

Wi as well as its adjacent weight tensors Wi−1 and Wi+1. Assuming an edge weight w

connected to the j-th input neuron and the k-th output neuron of layer i, this score-based

pruning strategy is computed according to

Li(w) = |w| · ∥Wi−1[j, :]∥F · ∥Wi+1[:, k]∥F (3.3)

where |w| is the magnitude of weight w, W [j, :] is the vector of weights pulled from the j-th

output neuron, and W [:, k] is the vector of weights pulled from the k-th input neuron. The

13



score Li is termed the lookahead distortion, which is a measure of the distortion resulting

from pruning a particular weight and keeping its adjacent weights the same. In lookahead

pruning, the distortion is first computed for every weight in the network, and then the

weights with the smallest distortions are pruned simultaneously up until the desired pruning

ratio is met.

3.3 Layer-adaptive Magnitude Pruning (LAMP)

LAMP follows the same logic as lookahead pruning with network layers being treated

as operators. Lee et al. derive a score function based on minimizing the model-level l2

distortion caused by pruning, since the Frobenius distortion can be seen as a relaxation

of the l2 distortion [25]. Their approach first sorts the weights in each flattened weight

tensor W1, . . . ,WL in ascending order so that for any two indices u and v where u < v, the

associated weights hold the at least the same inequality |W [u]| ≤ |W [v]|. The score is then

computed as

LAMP(u,W ) =
(W [u])2∑
v≥u(W [v])2

(3.4)

where W is a weight tensor and u is the index of the weight for which the score is being

computed. This score function ensures that only one weight in each layer will receive a score

of 1, this weight being the one with the highest magnitude. Conceptually, LAMP measures

the importance of a connection with respect to the surviving, unpruned connections summed

14



in the denominator.

3.4 Single-shot Network Pruning (SNIP)

Moving away from the modern magnitude-based approaches, SNIP is a pruning

method that was devised with more versatility in mind [26]. The major drawbacks of

magnitude-based and Hessian-based approaches were that they required some form of expen-

sive iterative pruning and were heavily sensitive to different layer types; normalization layers

in particular are not considered by these methods despite vastly affecting the importance

estimations of weights. SNIP is robust to these sorts of architectural choices, and it is also

single-shot, meaning that the pruning is performed all at once, after weight initialization in

this case. SNIP can prune a model without referring to the weights of the connections, but

it is, however, data-dependent, as a batch of data must be passed through the network in

order to compute gradients. Fortunately, this is inexpensive when compared to methods like

OBD that require second order derivatives to be averaged over the entire dataset.

The magnitudes of the first derivatives of the parameters were chosen as the SNIP

saliency criterion so as to promote the discovery of sensitive connections. Connection sensi-

tivity, which operates as SNIP’s score function, is defined as

si =
|gi|∑m
k=1|gk|

. (3.5)

where gi is the first derivative for weight i, and m is the number of weights in the network.
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The logic is that if the magnitude of derivative gi is high, then connection ci has a strong

effect on the loss and is thus important. The final component of SNIP is its variance scaling

initialization of network weights. To ensure that SNIP functions independent of architecture

choice, the authors proposed that a variance scaling initialization like Xavier initialization

be used [27]. This approach keeps the variance the same throughout the network, in turn

keeping the gradients from being reliant on the architecture.

3.5 Gradient Signal Preservation (GraSP)

GraSP was developed as a direct examination and improvement upon SNIP, and

the GraSP authors identified an issue with SNIP’s connection sensitivity criterion: it only

examined gradients in isolation [28]. Since complex networks can induce complex interactions

between gradients, it is necessary to preserve not merely the most important gradients when

viewed in isolation, but instead those that are integral to the gradient flow of the holistic

model. For example, since SNIP only considers a parameter’s own gradient when calculating

its score, it is susceptible to the pruning of almost entire layers, which would inhibit the

subsequent training process. GraSP seeks to address this problem with a criterion that

measures the effect of a connection’s removal on the training in the rest of the network.

In light of this goal, GraSP’s score function depends on a degree of Hessian compu-

tation borrowing from the methodology of OBD. The difference however, is that instead of

using the explicit Hessian matrix, GraSP uses the Hessian-gradient product, which is easier
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and more efficient to calculate using higher-order automatic differentiation [29, 30]. The

score function can be calculated for all parameters through a Hadamard product between

the weights θ and the Hessian-gradient product Hg:

s(−θ) = −θ ⊙Hg. (3.6)

The weights are negated in order to remove connections with higher scores, since

those with positive values before the negation will impede the gradient flow. Conversely,

connections with negative values before the negation facilitate gradient flow, and their re-

moval would reduce it. Since our pruning algorithm is built to prune connections with the

lowest score values, this negation is necessary.

3.6 Iterative Synaptic Flow Pruning (SynFlow)

SynFlow was motivated by the issue of layer-collapse, a common fail-state of global

foresight pruning algorithms [31]. This occurs when all of the parameters in a single layer

are pruned, rendering the network impossible to train. Although SNIP and GraSP suffered

less from layer-collapse compared to magnitude-based methods, they still reached compres-

sion thresholds where layer-collapse was inevitable. SynFlow tackles this problem by first

introducing a theoretical basis for maximal compression.

The SynFlow paper coins two terms relating to compression limits for pruning net-

works. Max compression (ρmax) is the maximal compression ratio that a network can with-
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stand without layer-collapse occurring. Since only one parameter must be retained for each

layer to prevent layer-collapse, this value becomes a simple function of the number of the

parameters n and the number of layers L in the network, giving ρmax = n/L. Critical

compression (ρcr), on the other hand, refers to the maximal compression ratio that a given

pruning algorithm can achieve without layer-collapse. The authors formulated an axiom from

these terms called Maximal Critical Compression, which states that for a given pruning al-

gorithm and network, the critical compression should always equal the max compression.

This would imply that a successful pruning algorithm will never prune a set of connections

ck into layer-collapse if another set of k connections can be pruned without layer-collapse.

Building off the observation that no prior pruning algorithm satisfied this constraint, the

authors proposed SynFlow, a data-agnostic, global algorithm for pruning at initialization.

A new objective is used for SynFlow:

RSF = 1T (
L∏
l=1

|θ[l]|)1, (3.7)

where 1 is the all-ones vector, and θ[l] represents the parameters in the l-th layer. The Syn-

Flow score is then evaluated by differentiating the objective with respect to the parameters:

SSF =
∂R
∂θ

⊙ θ. (3.8)

The SynFlow algorithm takes inspiration from the iterative magnitude pruning (IMP) al-

gorithm suggested by the Lottery Ticket Hypothesis, which follows a three-step process
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of training, pruning, and then resetting the unpruned parameters to their initial random

weights. SynFlow differs in that it requires no data nor training. Instead, the network is

iteratively pruned according to the data-agnostic SynFlow objective in Equation 3.7. The

number of pruning iterations is a hyperparameter, and the SynFlow authors note that an

exponential pruning schedule with N = 100 pruning iterations is the best setup to prevent

layer-collapse.
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4 Experiments and Results

4.1 Experimental Design

4.1.1 Datasets

MNIST: The MNIST dataset is a classic benchmark for image classification. The dataset

is relatively small in size and lacking the complexity of other datasets since its images are

grayscale. Nonetheless, this simplicity induces more similarity between training runs, mak-

ing comparison of pruning methods easier. MNIST consists of 70,000 grayscale images of

handwritten digits from 0 to 9, each in 28 × 28 resolution. 60,000 of the images comprise

the training set, and the remaining 10,000 comprise the testing set [32].

CIFAR-10: The CIFAR-10 dataset consists of 60,000 color images, each in 32×32 resolution,

with 6000 images per class. The 10 classes are labelled as such: airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, truck. 50,000 of the images comprise the training set, and

the remaining 10,000 comprise the testing set [33].

CIFAR-100: The CIFAR-100 dataset consists of 60,000 color images, each in 32 × 32

resolution, with 600 images per class. There are 100 classes, and 50,000 of the images

comprise the training set, and the remaining 10,000 comprise the testing set [33].
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Table 4.1: Simple CNN Architecture

Layer Type Input Features/Channels Output Features/Channels Kernel Stride Activation

Conv 2D 1 20 5 1 ReLU

Max Pool 2D 2 2

Conv 2D 20 50 5 1 ReLU

Max Pool 2D 2 2

Flatten 4× 4× 50 800

Linear 800 500 ReLU

Linear 500 10 None

4.1.2 Architectures

Three different architectures are evaluated: VGG-16, ResNet-56, and a standard

convolutional neural network (CNN) as defined in Table 4.1. VGG-16 and ResNet-56 are

popular architectures that achieve good performance on many image classification datasets,

so they are useful for gauging the effectiveness of pruning algorithms in a common environ-

ment. The MNIST-CNN dataset-architecture pair is used in order to test OBD, which is

too computationally expensive to run on VGG-16 or ResNet-56. In addition, a less powerful

architecture is necessary for experiments on MNIST, since it is relatively easy to achieve

near 100% accuracy with deep networks, which would muddle comparisons.
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4.1.3 Hyperparameters

We optimize the network weights with stochastic gradient descent (SGD) using Nes-

terov momentum set at 0.9 and a learning rate of 10−4. Cross entropy loss is used for all

experiments. Each batch contains 128 images. Every network is trained for 25 epochs on

CIFAR-10 and 50 epochs on CIFAR-100. The standard CNN is trained for 5 epochs on

MNIST. Every network is initialized with PyTorch’s default Kaiming weight initialization,

which ends up being a uniform distribution U(−
√
k,
√
k) where k is the reciprocal of the

input size of the layer. We only use a Xavier initialization for SNIP. We fix the random seed

in PyTorch to 42 across all runs.

4.1.4 Metrics

Unstructured pruning methods do not lend well to practical speedups, so compres-

sion sizes will be the primary metric for comparison in this work. Compression sizes are

comparable to the compression ratio r defined as

r =
1

p
, (4.1)

where p is the pruning ratio. For example, a pruning ratio of 0.5 will prune half of the

network parameters, resulting in a compression ratio of 2. We use the compression ratio

as the independent variable. The dependent variables are top-5 classification accuracy and

top-1 classification accuracy, where top-5 accuracy indicates that the top-5 predictions of
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the network included the true label, and top-1 accuracy indicates that the top-1 prediction

matched the true label. We evaluate the top-5 and top-1 accuracies for compression ratios

ranging from 1 to 64 using the aforementioned dataset-architecture combinations.

Since empirical compressions can differ from the compression ratios, we calculate the

empirical compression re according to the following,

re =
n

nnz

, (4.2)

where n is the number of parameters in the original network, and nnz is the number of

nonzero parameters following pruning.

4.2 Results

4.2.1 VGG-16

We first evaluated VGG-16 on CIFAR-10 and CIFAR-100 under various compression

ratios. The accuracies of every implemented method, including the baselines, are shown

for the high sparsity (r = {32, 64}) scenarios in Table 4.2 and Table 4.3. We note GraSP

with an asterisk in these tables because of its high compression error rendering it an unfair

comparison. Figures 4.1 – 4.4 show the accuracy vs. compression trade-offs, and 4.5 displays

the compression error on CIFAR-10. The compression error for CIFAR-100 was not included

because the differences between the two graphs were negligible.
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Table 4.2: Results: Pruning VGG-16 at a Compression Ratio of 32

CIFAR-10 CIFAR-100

Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%)

GlobalMag 49.45 9.89 4.94 0.99

GlobalGrad 81.41 45.57 34.24 11.09

GlobalAct 49.45 9.89 4.94 0.99

GlobalLAP 49.45 9.89 4.94 0.99

LayerMag 63.80 24.50 27.08 7.71

LayerGrad 60.23 23.13 32.04 10.16

LayerAct 60.92 19.02 15.61 3.81

LayerLAP 64.28 16.63 8.97 2.66

LAMP 77.77 31.80 25.45 6.51

SNIP 88.57 56.00 24.04 6.71

GraSP∗ 89.62 52.03 4.94 0.99

SynFlow 49.45 9.89 4.94 0.99

Random 66.91 29.00 11.82 3.36
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Table 4.3: Results: Pruning VGG-16 at a Compression Ratio of 64

CIFAR-10 CIFAR-100

Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%)

GlobalMag 49.45 9.89 4.94 0.99

GlobalGrad 55.02 11.37 4.94 0.99

GlobalAct 49.45 9.89 4.94 0.99

GlobalLAP 49.45 9.89 4.94 0.99

LayerMag 54.00 21.06 6.70 1.62

LayerGrad 50.61 14.83 14.65 3.56

LayerAct 53.78 12.33 5.94 1.63

LayerLAP 54.49 14.89 9.21 2.40

LAMP 75.55 30.54 21.77 4.87

SNIP 58.20 12.71 5.56 1.32

GraSP∗ 88.55 53.97 4.94 0.99

SynFlow 49.45 9.89 4.94 0.99

Random 58.53 20.45 6.66 1.83
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Figure 4.1: Top-1 Accuracy vs. Compression for VGG-16 on CIFAR-10
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Figure 4.2: Top-5 Accuracy vs. Compression for VGG-16 on CIFAR-10
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Figure 4.3: Top-1 Accuracy vs. Compression for VGG-16 on CIFAR-100
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Figure 4.4: Top-5 Accuracy vs. Compression for VGG-16 on CIFAR-100
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Figure 4.5: Compression Error vs. Compression for VGG-16 on CIFAR-10

4.2.2 ResNet-56

We next evaluated ResNet-56 on CIFAR-10 and CIFAR-100 under the same condi-

tions. The accuracies for the high sparsity (r = {32, 64}) scenarios are shown in Table 4.4

and Table 4.5. We note GraSP and SynFlow with an asterisk in these tables because of

their high compression error rendering them unfair comparisons. Figures 4.6 – 4.9 show the

accuracy vs. compression trade-offs, and 4.10 displays the compression error on CIFAR-10.

Once again, the compression error for CIFAR-100 was not included because the differences

between the two graphs were negligible.
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Table 4.4: Results: Pruning ResNet-56 at a Compression Ratio of 32

CIFAR-10 CIFAR-100

Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%)

GlobalMag 93.54 53.17 46.42 19.47

GlobalGrad 94.59 56.53 47.45 20.17

GlobalAct 49.45 9.89 4.94 0.99

GlobalLAP 93.61 52.27 46.27 19.32

LayerMag 91.67 46.21 43.88 18.67

LayerGrad 91.97 46.81 45.42 18.99

LayerAct 92.32 47.88 41.39 16.37

LayerLAP 91.55 46.55 43.96 18.13

LAMP 93.35 52.26 47.26 20.00

SNIP 96.14 64.64 56.36 24.83

GraSP∗ 96.46 67.88 61.32 29.81

SynFlow∗ 96.97 69.73 73.29 42.60

Random 94.82 59.08 55.36 26.33
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Table 4.5: Results: Pruning ResNet-56 at a Compression Ratio of 64

CIFAR-10 CIFAR-100

Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%)

GlobalMag 92.48 47.78 34.56 12.60

GlobalGrad 92.61 49.23 35.80 13.06

GlobalAct 49.45 9.89 4.94 0.99

GlobalLAP 92.50 47.96 34.12 12.16

LayerMag 86.87 38.35 20.47 6.11

LayerGrad 89.79 43.34 15.44 4.18

LayerAct 86.59 37.55 21.62 6.46

LayerLAP 88.67 39.44 29.22 9.85

LAMP 92.16 47.68 33.03 11.81

SNIP 95.46 59.56 43.80 16.69

GraSP∗ 95.56 62.55 45.41 18.02

SynFlow∗ 96.76 70.37 72.41 41.76

Random 91.51 49.20 4.94 0.99
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Figure 4.6: Top-1 Accuracy vs. Compression for ResNet-56 on CIFAR-10
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Figure 4.7: Top-5 Accuracy vs. Compression for ResNet-56 on CIFAR-10
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Figure 4.8: Top-1 Accuracy vs. Compression for ResNet-56 on CIFAR-100
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Figure 4.9: Top-5 Accuracy vs. Compression for ResNet-56 on CIFAR-100
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Figure 4.10: Compression Error vs. Compression for ResNet-56 on CIFAR-10

4.2.3 CNN on MNIST

Finally, we evaluated the basic CNN outlined in Table 4.1 on MNIST. Figures 4.11

and 4.12 show the accuracy vs. compression trade-offs, and 4.13 displays the compression

error. This experiment was conducted to achieve a comparison with OBD, which has a

Hessian computation that is otherwise too inefficient.
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Figure 4.11: Top-1 Accuracy vs. Compression for CNN on MNIST
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Figure 4.12: Top-5 Accuracy vs. Compression for CNN on MNIST
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Figure 4.13: Compression Error vs. Compression for CNN on MNIST

4.3 Discussion

Looking first at the table results for VGG-16, we note that SNIP has the best trade-off

at r = 32 on CIFAR-10, but it is surpassed by LAMP at r = 64. At r = 32 on CIFAR-

100, the global gradient baseline achieved the top performance. Moving to the high sparsity

regime of r = 64 once again, we see LAMP win out by a very solid margin, the only method

coming near being the layer-wise gradient baseline. This last point is not surprising if we

observe the accuracy trend of multiple methods having a top-1 accuracy of 9.89 on CIFAR-10

and 0.99 on CIFAR-100. These accuracies correspond to random chance classification, which

occurs as a result of layer-collapse. As such, any method with these values has failed. Global

methods are notoriously susceptible to this failure, otherwise the global gradient baseline
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may have beaten LAMP on CIFAR-100. Instead we see the layer-wise version survive, since

it will not see layer-collapse unless the compression ratio is larger than the size of one of the

non-classifier layers.

The accuracy-compression trade-off charts paint the same picture, with LAMP re-

maining more consistent at the higher sparsities while other methods encounter either large

drops in accuracy or sudden layer-collapse. Regardless, SNIP proves to be the most consis-

tent foresight pruning algorithm across all sparsity ranges.

The compression error results reveal another interesting fact: GraSP nearly always

under-prunes the compression ratio by 50%. This means that GraSP at r = 32 is actually

pruning around r = 16. This result means that we have no proper comparison of GraSP

at r = 64, making it difficult to compare to LAMP, which we know performs well at higher

sparsities. If we readjust GraSP’s accuracies to match the actual compression on CIFAR-10,

it turns out to be approximately competitive with SNIP at higher sparsities. On CIFAR-100,

however, GraSP almost immediately hits layer-collapse despite the method being developed

to somewhat alleviate this effect from SNIP.

Examining the ResNet-56 results, we get a clearer picture. The trade-off curves are

smoother, and only the global activation and random pruning baselines encounter layer-

collapse. From the tables, SNIP is the definitive state-of-the-art when we consider com-

pression error. Although SynFlow seems to perform remarkably well, it’s compression error

suggests that it is hardly pruning at all, especially at high sparsity. This makes it unfair to
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compare it to any other method. Since GraSP compresses at half the rate of other methods,

it must be compared to other algorithms’ performances at half the compression, which has

it losing to SNIP in most cases and sometimes even random pruning.

In fact, most of the methods lose to random pruning on VGG-16 and ResNet-56.

Surprisingly, even SNIP is surpassed by it at some compression ratios on CIFAR100. In

general, it seems that magnitude-based methods apart from LAMP work extremely poorly

for foresight pruning, as they rarely beat random pruning. Among the methods that use the

magnitude of weights, the best performers are those that at least multiply by the gradient.

Finally, we ran the experiment with a CNN on MNIST. The compression error once

again shows that GraSP is under-pruning by 30-50%. However, OBD appears to follow

the same error curve, under-pruning by 20-50%. We hypothesize that this is due to both

methods’ usage of second order derivatives. Higher order derivatives inevitably become 0 at

some point, so it is likely that the GraSP and OBD scores are being calculated by multiplying

by a 0 for most parameters. In such a case, there may be too many parameters with the

same score, and the algorithm, not wanting to over-prune, decides not to prune all the zero

scores that make up more than half of the network.

Despite these compression error problems, both GraSP and OBD start to recover

back to the correct compression ratio with higher sparsities. It is thus easier to compare

them to the competing methods. The top 4 methods for this experiment are GraSP, OBD,

the global gradient baseline, and SNIP. Every other methods hits layer-collapse by r = 64.

37



5 Conclusion

This work’s aim has been to provide an empirical basis for stabilizing the field of

neural network pruning. While it does not cover other subsections of pruning like filter

pruning or iterative pruning, the results for foresight pruning are promising. The finding

that magnitude is worse than random for foresight pruning gives definitive insight on what

actually works, so researchers can formulate their future algorithms with not only theoretical

foundations, but practical experiments as well.

On a more specific level, this thesis found that the most consistent foresight pruning

algorithms were SNIP and GraSP, and LAMP performed better at higher compression ratios

r ≥ 64. Hessian-based methods tended to suffer from high compression error and under-

pruning, making it difficult to compare. With the development of new methods for pruning,

the compression error induced should always receive some consideration. Experiments on

ResNet-56 also appeared to give less volatile results compared to VGG-16. This probably

just indicates that ResNet is a better image classification architecture and was thus easier

to train, even with the missing parameters.

One of the most erratic methods tested was SynFlow, which did compete well despite

being the most recent method published. Although SynFlow claimed to fix layer-collapse,

it sometimes was one of the first methods to experience it in our experiments. Frankly,
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when we were re-implementing the various methods included in this thesis, we referenced

any available code provided by the original authors. Of all the code we reviewed, SynFlow’s

had several errors in its implementation of other state-of-the-art methods. The SynFlow

code had re-implementations of SNIP and GraSP, the front-runners of foresight pruning, but

we located mathematical errors in both of them. For SNIP, they used a score function that

calculated the gradient multiplied by the weight, but this is not the case based on the SNIP

paper, which simply uses the normalized magnitude of the gradient as the score. For GraSP,

they neglected to negate the score, which is the core tenet of GraSP’s method. Interestingly

enough, the GraSP authors made the same mistake when implementing SNIP. Altogether,

these errors render the results of these two papers rather questionable.

Nonetheless, this work should serve as a good baseline for future research on pruning.

We aim to expand the experiments listed here to include larger datasets like ImageNet, other

architectures in the same family (like ResNet-12, ResNet-34, etc.), and modern architectures

like EfficientNet. We also plan to investigate the state-of-the-art for iterative pruning, which

has a larger corpus of algorithms to compare. For those developing new pruning methods,

we suggest to consider ways to mitigate layer-collapse while retaining a global scope. We

predict this problem will bound most methods that neglect to consider it.
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