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DEVELOPMENT OF A DISTRIBUTED ARTIFICIAL NEURAL NETWORK FOR HYDROLOGIC MODELING 

By Rebecca Logsdon 

Department of Biological Engineering 

Faculty Mentor: Sreekala G. Bajwa 

Department of Biological Engineering 

Abstract 

Hydrological models are used to represent the rainfall­
runoff and pollutant transport mechanisms within watersheds. 
Accurate representation of these dynamic and complex natural 
processes within a watershed is an important step in managing 
and protecting a watershed Artificial neural network (ANN) 
models are often used in hydrologic modeling. Typical ANN 
models are trained to use lumped data. However, watershed 
characteristics used as inputs in hydrological modeling are 
spatially and often temporally dynamic. Therefore, a lumped 
model does not have the ability to represent changes in spatial 
dynamics of a watershed. Therefore, the purpose of this study 
was to develop and test a distributed ANN model for simulating 
the rainfall-runoff process in the L 'Anguille River Watershed 
located in Eastern Arkansas. The watershed was divided 
into nine sub-basins to account for the spatial dynamics of 
flow within the watershed Inputs for the model were rainfall, 
average temperature, antecedent flow and curve number. 
Output was runoft collected from gage-stations at Colt and 
Palestine representing two of the sub-basins. Daily SCS curve 
numbers were developed and adjusted for crop planting and 
harvesting dates and crop rotation practices in each sub-basin. 
The model had nine layers with one neuron each to represent 
the nine sub-basins. The layers were connected so that if one 
sub-basin spatially flowed into another, its output would be 
an input for the downstream sub-basin. The model peiformed 
well, showing R2 values of0.93 and 0.98 and Nash-Sutcliffe 
Efficiency values of0.92 and 0.97 for the validation and test 
datasets. 

Introduction 

Watersheds and Watershed Management 

Water is one of the most important natural resources. It 
"drives all human systems and those of most other organisms 
as well" (Heathcote, 1998). Watersheds are particularly 
important in managing water resources, as they are broadly 
defined as the area ofland that contributes runoff to a particular 
point. Managing a watershed is crucial for maintaining 
good ecosystems and human health. Runoff is an important 
aspect of watershed management. Runoff is precipitation 
that falls onto the earth but does not infiltrate into the soil, 
evapotranspire through plants, or get stored. Runoff carries 
with it nutrients, sediments, and pollutants until it eventually 
reaches a body of water. Nutrients, sediments, and pollutants 
that do not get deposited along the way may end up in water 

bodies. Simulation of runoff is an initial step in watershed 
management. 

Hydrological Models 

Hydrological modeling is a field of study that attempts 
to utilize mathematical and analytical models to model 
watersheds and predict watershed characteristics. Many 
hydrologic models have been developed in attempts to model 
different aspects of watersheds. One very common model 
is the Soil and Water Assessment Tool (SWAT). SWAT 
models are often used for modeling watersheds, but they 
have difficulty accounting for LULC changes other than crop 
rotation. This is a problem because these parameters not only 
vary within a watershed, but are also interrelated with one 
another. For example, the runoff in one section of a watershed 
may contribute flow into a different section of the watershed. 
Therefore, typical models are incapable in handling complex 
relationships between large amounts of data efficiently. 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) were designed to 
process and transfer information similarly to the neurons in a 
human brain. Broadly, a neural network is given a variety of 
inputs and corresponding outputs (Figure 1). These inputs enter 
into a hidden layer or layers that contain neurons. As the inputs 
pass through the hidden layer, weights and biases are added . 
to the data. When the weighted data goes through a neuron, tt 
is processed with a non-linear function in an attempt to relate 
the input data to the target data. Simply put, ANNs have the 
ability to relate input and output variables in complex systems 

figure 1. Location ofLRW in Arkansas and counties encompassed. 
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(Daw on et al., 2001 ). 

Artificial eural etwork are relatively new to 
hydrologic modeling, but have the ability to handle multiple 
data inputs and relate them in non-linear patial ways (Dawson 
et al., 200 I). A s also have the capability to accou.nt for 
dynamic changes in a watershed, such as changes in land 
u e and land co er. Thi property is e pecially important for 
watershed management, because increasing human population 
leads to a rapidly changing land cape. Typically, A s used 
in hydrologic model are feed-forward, back-propagation 
networks with one hidden layer of neurons. Input and target 
data along with network parameters are entered. Data Rows 
forward through the network, v here the network compares the 
computed output to the known target by calculating an error 
(u ually mean quared error). If the error goal is not met, the 
network keeps re-running the data, changing the weights and 
biases until a given network parameter is met. The problem 
with this typical use of ANNs is that it does not have the ability 
to patially relate the input parameters. 

In thi research, howe er, a pre-defined network in 
MatLab was not used to model the LRW. Instead, a custom 
ANN with a specific architecture was defined in order to better 
capture the spatial dynamics of the Row within the watershed. 

Significance of Research 

Being able to accurately and efficiently model aspects 
of a watershed. particularly runoff. i very important in 
monitoring and controlling non-point source pollution within 
the watershed. Unlike point- ource pollution, non-point source 
pollution i difficult to pinpoint and quantify. It is carried 
through runoff and sediment Row in and out of watersheds. 
Becau e of the Clean Water Act ( 1972) and its regulation , 
it i important to be able to quantify pollutant and sediment 
transport in a given watershed. Water health and quality i a 
good indication of eco y tern health and health of the human 
population. Water i the mo t e entia! re ource for human 
urvival. It i needed for drinking. for growing food, and 

for clean ing purpo e . A lack of clean water leads to many 
waterborne di ea e and even death. Being able to quantify, 
monitor, and even predict runoff and pollutant load in runoff 
i a great tep toward con erving and managing watershed 
and water resource . 

Objective 

In this rudy, an A model was developed to simulate 
and predict the watershed cafe rainfall-flow process using 
hi torical flow data from U GS gage tations. Other objective 
of this tudy were to perform a en itivity analysis on input 
variables and e\aluate the performance of the ANN model. 

Metbods 

Determining Watershed for Case Study 

L'Anguille River Watershed (LRW) is located in Eastern 
Arkan as. United State and encompasses ix counties (Figure 
I). LRW was divided into nine sub-basins to account for the 

spatial dynamics of flow (Figure 1 ). 

The watershed is mostly agricultural land (rice, soybean, 
and cotton). followed by forest and urban areas (Figure 3). 
LRW was chosen as a case study because, due to its large 
agricultural production, it has some major pollution problems. 

Under section 303(d) of the Clean Water Act, states are 

LULC Summer 1999 

Figure 2. LULC for LRW for summer 1999. 

required to develop a list of impaired waters that are too 
polluted or degraded to meet water quality standards set by that 
state (US EPA, 2009). The states are then required to establish 

teg~nd 

A Input 

• >tidd<nl'Y•• 

Qvlput 

Figure 3. Simplified network architecture sho"'ing bo"' layers were connected 
to account for spatial dynamics of water flo"' within LRW. 

rankings for the impaired water bodies listed and develop 
Total Maximum Daily Loads (TMDLs) for the pollutant that 
i causing the water quality problems. Since 1995. there have 
been even TMDL reports on the L'Anguille River. five for 
turbidity and two for fecal coliforms (U EPA, 2009). ln 
200 the river had twelV"e of its reaches totaling over 98 miles 
design~ted as impaired (Class 5) by the Arkansas Department 
of Env•ronmental Quality (ADEQ, 200 ). griculture was 
the source of the pollutants and problem in all known cases 
(ADEQ. 2008). Five of the twel e reaches designated as 
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impaired in 2008 were classified as 5a streams meaning they 
are "truly impaired" and TMDLs need to be developed for the 
given parameter. 

Determining Input Data for ANN Model 

Runoff is precipitation that does not evapotranspire back 
into the atmosphere, infiltrate into the groundwater, or get 
stored in the soil. Therefore, to precisely quantity the amount 
of runoff entering a water body, it would be ideal to have exact 
values for these four variables. Current technology, however, 
does not allow for exact quantification of these parameters. 
Thus, there is a need to create hydrologic models that can take 
what data is currently available and mathematically relate the 
data so as to estimate runoff. Inputs chosen for this model were 
precipitation, average temperature, Soil Conservation Service 
Curve Number (SCS-CN), and antecedent stream flow where 
available. Precipitation and average temperature data for each 
sub-basin were collected from the nearest weather station; 
data used were from January I, 1995-December 31, 2004. 
Antecedent stream flow data were collected from two different 
USGS gage stations on L' Anguille River at Colt and Palestine 
for the same years. The daily SCS-CN had to be developed 
based on LULC and hydrologic soil type data. 

Development of SCS-CN 

The SCS-CN provides a way to quantity and estimate 
the amount of runoff that an area ofland generates, based on 
the LULC and hydrologic soil type of that land. Since the 
precipitation data were from January I, 1995-December 31, 
2004, daily SCS-CNs needed to be developed for this time 
period for each sub-basin. LULC data for LRW 
were available for spring, summer, and fall of 
1999 from the University of Arkansas' Center 
for Advanced Spatial Technology database, so it 
was assumed to be the base LULC ofthe 1995 
data. Soils data were available for LRW from the 
U.S. National Resource Conservation Service. 
Using ESRI's ArcGlS program, and specifically 
ArcMap, the soils and LULC data were dissolved 
(based on hydrologic soil group and cover name, 
respectively) and intersected for each sub-basin. 
Then, the SCS-CN was calculated for each soil­
LULC complex based on NEH curve number 
tables (USDA, 2008). The area weighted CN was 
then calculated for each sub-basin for the spring, 
summer, and fall datasets. 

1500 l 
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group survey of University of Arkansas Cooperative Extension 
Service agents (Hill et. a!, 2003). The data produced after crop 
rotation adjustment included lO years (Jan. I, 1995- Dec. 31, 
2004) of daily, area-weighted CNs for each sub-basin. 

Determining Network Outputs and Target Data 

Since the purpose of this study was to predict the flow 
in the L' Anguille River, naturally the target output for the 
model was discharge. However, there are only two USGS gage 
stations along the entire reach of the L' Anguille River (at the 
outlets of sub-basins eight and nine). Therefore, only sub­
basins eight and nine were connected to target data and used to 
monitor and evaluate network performance. 

Constructing Network Architecture 

One objective of the project was to create an ANN that 
could account for the spatial dynamics of flow within the 
watershed. Instead of using a pre-defined network in MatLab®, 
a custom, distributed ANN with a unique architecture was 
defined in order to better capture the spatial dynamics of the 
runoff within the watershed. By custom defining the network, 
the architecture was arranged in such a way that the output of 
one sub-basin was an input into another sub-basin if the first 
sub-basin's flow entered into the second sub-basin. 

The network created contained three or four inputs for 
each sub-basin (rainfall, average temperature, SCS-CN, and 
antecedent stream flow for sub-basins 8 and 9), nine layers 
with one neuron representing each sub-basin, and target 
output for sub-basins eight and nine. The network layers were 

I I! "I : 

• (omp1Jted 

Next, the CNs were adjusted in order to 
account for crop planting and harvesting dates 

Figure 4. Hydrologic rime series for validation set for sub-basin 8. 

(USDA, 1997) because the CN changes based on whether 
or not the crop is actually in the ground. The result after this 
adjustment was a daily CN for one year, assumed to be year 
1995 (the beginning of the precipitation, temperature, and gage 
station data). Since crop rotation is a significant management 
practice in agriculture, the first year's daily CNs had to be 
adjusted according to common crop rotation practices. These 
crop rotation practices were determined based on a focus 

connected in such a way as to account for the spatial dynamics 
of water flow between the sub-basins within LRW (Figure 4). 

For network training, the Levenberg-Marquardt algorithm 
was used as the training algorithm and the performance of the 
network was measured by the Mean Squared Error (MSE). 
The data sets were divided into training, testing, and validation 
datasets. Because the training of the network requires the most 

3
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data, 60% (1997-2002) of the dataset was used for training, 
whereas 20% ( 1995-1996) was used for testing and 20% 
(2002-2004) for validation. 

Optimization of Network Parameters 

Because only one neuron was used in each layer, it was 
not necessary to optimize the number of neurons. Thus, 
optimization was performed only on the training parameters. 
Since the training function chosen was the Levenberg­
Marquardt algorithm, the only option for optimization of the 
network was the learning rate. A trial and error procedure was 
followed by varying learning rate at different increments. The 
optimized learning rate was identified as the one that resulted 
in the lowest MSE. 

Sensitivity Analysis 

The sensitivity of the model to each input was determined, 
by examining the weights of the network inputs. It was 
determined that the model was "sensitive" to all inputs of the 
model (rainfall, average temperature, SCS-CN, antecedent 
flow). 

Results 

The custom defined neural network was run, using the 
optimized learning rate of0.15. The simulated flow closely 
followed the actual flow (Figures 5 and 6). The model was 
evaluated at the outputs of sub-basins eight and nine using 
three different criteria: (l) correlation coefficients between 

Table I. Calculated results of neural network model performance. 

Correlation R-
Nash-Sutcliffe 

Coefficient Square 
Efficiency Value 

-~ Training 0.82 0.68 0.68 
"' Testing 0.74 ~ 0.55 0.46 1:. 
~ Validation 0.96 0.93 0.92 
-~ Training 0.98 0.96 0.96 ., 

Testing 0.96 0.93 ~ 0.93 1:. 
~ Validation 0.99 0.98 0.97 

500 ,------------------------------------• 
- 400 +--------------

_. __ 
~ ----L-4 ! 300 +-[-----------_-L--- --y-,o-.s-E-57-.-.-58487 

~ I R2
: 0.9295 

., JOO -----------
~ / ., ' . / 

400 500 

~ >:~/ >OO ·,00 

-100 l_ __ ----------------------

Observed Stream Flow (cfs) 

Figure 6. Linear regression of observed stream flows versus computed stream flows for sub-basin 8. 

computed and observed results, (2) R-square values between 
the computed and observed results, and (3) Nash-Sutclitfe 
Efficiency coefficient. 

Linear regression was performed using Excel© (Figures 
7 and 8). Both the correlation coefficient and R-square value 

300,-------------------------------------
250 

150 200 

Observed Stream Flow (cfs) 

p 1.026x+ 0.1822 
R2 =0.9774 

250 300 

figure 7. Linear regression of observed stream flows versus computed stream flows for sub-basin 9. 

were calculated for sub-basins 8 and 9 for the training, testing, 
and validation datasets (Table I). 

The Nash-Sutcliffe Efficiency value is often used in 
--~-----~------------------------ -, evaluating hydrologic models because it is "insensitive 

rr 
'' 

Figure 5. Hydrologic time series for -,·alidation set for sub-basin 9. 

to additive and proportional differences between model 
simulations and observations" (Harmel et. al, 2007). 
The Nash-Sutcliffe Efficiency value was calculated 
for sub-basins 8 and 9 for the training, testing, and 
validation datasets using equation I (Table I). 

The performance of the model was very good in sub­
basin 9, but poor in sub-basin 8, particularly for training 
and test data. This may be because the model optimized 
itself for sub-basin 9 and not sub-basin 8. 

Summary and Conclusions 

The goal of this project was to develop a spatially 
distributed, custom ANN to model the flow within a 
watershed. The model was trained using historical daily 
rainfall, average temperature, SCS-CN, and stream 
flow data. The model was trained with 6 years of data 4
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and tested and validated using 2 years of data. The results of 
the model show that the model was able to simulate the stream 
flow at sub-basin 9 very well, with all R2 values >0.93 and the 
Nash-Sutcliffe Efficiency values all being greater than 0.93 as 
well. Sub-basin 8 results were not quite as good as sub-basin 9; 
however, the results are acceptable with training and testing R2 
values >.55 and validation R2 = 0.93. Also, the Nash-Sutcliffe 

Efficiency values were all positive and greater than 0.46. The 
better performance of the model at sub-basin 9 could be due to 
the fact that it is spatially further down from sub-basin 8, and 
therefore had more previous inputs. 

Table I. Calculated results of neural network model performance. 

Correlation 
R- Nash-Sutcliffe 

Coefficient 
Square Efficiency 
Value 

. 5 Training 0.82 0.68 0.68 "' "' ..c Testing 0.74 0.55 0.46 .0 
;::J Validation 0.96 0.93 0.92 U) 

.5 Training 0.98 0.96 0.96 "' "' ..c Testing 0.96 0.93 0.93 .0 
;::J Validation 0.99 0.98 0.97 U) 

. !n conclusion, this study has shown that a spatially 
distributed ANN is very capable at accurately simulating 
the stream flow of a river in a watershed. A lumped, SWAT 
~ode! that was developed for LRW using total monthly flows 
lllstead of daily flows had R2 values between measured and 
predicted total flows of0.84 and 0.87 for calibration and 
validation periods, respectively (Srivastava, et. al, 2005}. The 
Nash-Sutcliffe Efficiency values were also 0.86 and 0.91 for 
cali~ration and validation periods, respectively. For both sub­
basm 8 and sub-basin 9 validation data sets the R2 and Nash-
S rrn ' u~c I e Efficiency values were higher than the SWAT model. 
This shows the capabilities and possibilities that a distributed 
artificial neural network has in modeling stream flow. 
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Mentor Comments: 

Professor Sreekala Bajwa reflects on the innovative quality 
of Rebecca Logsdon's work and the reasons why it merits 
publication. 

Rebecca Logsdon s research merits publication in 
the Inquiry journal for a number of reasons. Her work is 
quite innovative as there are no published articles on th~ 
distributed artificial neural network model for representmg 
watershed scale hydrological processes in large watersheds. 
When Rebecca started this project, her background in 
ecological engineering, particularly in hydrology, g~o~raphic 
information systems (GIS), statistics, etc was very mm1ma/. 
She taught herself many of the basic conce?ts, and learned 
the relevant information quickly. The qualrty of the work she 
has done is excellent. The fact that her research is acc~ted 
for presentation at the World Congress on Computer~ m . 
Agriculture and Natural Resources is a testimony to Its qualrty 

and relevance in todays world. 

Artificial neural networks (ANN) models are usually 
fast, accurate and easy to im~/eme~t. Th?' have been used 
in hydrologic modeling for slmulatmg ramfall-nmoff, 
groundwater movement as well as nutrient a~d pollutant 
transport. The practical use of ANN models m hydrology 

fi 
'l l" ·red,·nthepastduetothelumpnatureofthese was amy 1m1 . h 

-..Iefs. Watershed scale hydrologic processes are hr!J; ly 
muu' h ·t to>po,urrmhy, veuetatwn distributed processes as t e SOl , o· -r • o 
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and weather vary spatially and temporally in a watershed. 
Therefore, Rebecca focused on developing a watershed scale 
distributed ANN model to represent the spatial and temporal 
dynamics of rainfall runoff Such a model has the potential 
to broaden its application to flood forecasting, water quality 
modeling, water planning, understanding the impact of urban 
development, etc. Therefore, her research is an important step 
towards utilizing innovative modeling tools that are faster and 
easier to run towards protecting the environment. 

Rebecca's work is high quality and fairly complex for an 
undergraduate research project. She devoted an enormous 
amount of time to complete this work. This work has served as 
a platform for her success in attracting an NSF fellowship and 
admission to graduate school at Purdue University. 
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