
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2023

Linux Malware Obfuscation Linux Malware Obfuscation

Brian Roden
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Information Security Commons, OS and Networks Commons, and the Other Computer

Sciences Commons

Citation Citation
Roden, B. (2023). Linux Malware Obfuscation. Computer Science and Computer Engineering
Undergraduate Honors Theses Retrieved from https://scholarworks.uark.edu/csceuht/112

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/112?utm_source=scholarworks.uark.edu%2Fcsceuht%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Linux Malware Obfuscation

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering

College of Engineering

University of Arkansas

Fayetteville, AR

May 2023

 by

Brian Roden

Thesis title: Linux Malware Obfuscation

Thesis author: Brian Roden

This thesis is approved by:

Thesis Advisor:

Signature: Date: April 20, 2023

Printed: Dale R. Thompson, Ph.D.

Thesis Committee:

Signature: Date: April 20, 2023

Printed: Brajendra Panda, Ph.D.

Signature: Date: April 20, 2023

Printed: Yanjun Pan, Ph.D.

ABSTRACT

Many forms of malicious software use techniques and tools that make it harder for their

functionality to be parsed, both by antivirus software and reverse-engineering methods.

Historically, the vast majority of malware has been written for the Windows operating system

due to its large user base. As such, most efforts made for malware detection and analysis have

been performed on that platform. However, in recent years, we have seen an increase in malware

targeting servers running Linux and other Unix-like operating systems resulting in more

emphasis of malware research on these platforms. In this work, several obfuscation techniques

for Linux malware were analyzed. The goal of this thesis is to examine how they operate, how

they differ from Windows obfuscation techniques, and their effectiveness in obstructing analysis,

including some methods for analysts to circumvent them.

ACKNOWLEDGMENTS

 I would like to thank my advisor, Dr. Dale Thompson. He has been of great help

throughout the creation of this thesis, and I had a wonderful time working with him.

Table of Contents

1 INTRODUCTION ... 1

2 BACKGROUND ... 3

2.1 MALWARE ANALYSIS .. 3

2.1.1 Overview .. 3

2.2 LINUX MALWARE .. 4

2.2.1 Overview of Linux malware ... 4

2.2.2 Sources of Malware Samples ... 6

3 METHODOLOGY AND IMPLEMENTATION .. 8

3.1 ENVIRONMENT SETUP ... 8

4 RESULTS AND ANALYSIS .. 10

4.1 OVERVIEW .. 10

4.2 UPX COMPRESSION ... 10

4.3 MIRAI’S TECHNIQUES .. 11

4.3.1 ELF corruption .. 11

4.3.2 Anti-dynamic-analysis measures ... 14

4.4 BASH SCRIPT OBFUSCATION ... 18

5 CONCLUSION AND FUTURE WORK ... 21

REFERENCES .. 22

1

1 INTRODUCTION

As efforts grow for writing malicious software, it becomes increasingly important for the

users of those devices to be protected against it. Malware analysis is a field that aims to identify

malicious software and gain a better understanding of it so that preventative measures can be

developed. Malware analysis can come in the forms of static and dynamic analysis. Static

analysis involves analyzing features of a program that are present without execution; this can

involve comparing file hashes to other known malware samples, looking at a binary’s headers,

decompiling a binary to see the actions taken by its code, and other techniques. Many of these

methods can be automated, and therefore can be incorporated into antivirus software. Dynamic

analysis involves analyzing features of a program as it is running; this can involve observing its

memory with a debugger, inspecting any network traffic it generates, looking at any filesystem

IO it causes, etc. Parts of this process can be automated, though it typically involves manual

analysis by a malware researcher.

Since malware analysis aims to decrease the effectiveness of malicious software, some

malware authors will apply obfuscation techniques to their programs to stop this from happening.

Some examples are discussed in [2]; techniques like encrypting the software, adding and

reordering code sections, and other techniques can be used to evade detection from static

analysis methods that rely on comparing a given sample to other samples that are known to be

malicious, since the features that they are looking for have been modified. Obfuscation

techniques can also target dynamic analysis in different ways, such as executing different code

paths if it is being run with a debugger or inside of a virtual machine, which are commonly used

by researchers when running malicious software.

2

Historically, the majority of malware has targeted the Windows operating system due to

its large user base in proportion to other OSs. However, as discussed in [3], there has been an

exponential growth in “Internet of Things” (IoT) devices in use by the general public, the

majority of which run Unix-like operating systems such as Linux. This has caused an increase in

malicious software that targets these platforms, and malware research is not developed as well

there as it is for Windows. Not only has academia only recently started to give attention to this

threat, but anti-malware tools for users exist in lower numbers than on Windows. Analysis of

Linux malware involves similar concepts to that of Windows malware, though differences in

execution formats and tools used by researchers require the exact methods used to be adjusted.

The goal of this thesis is to examine several obfuscation techniques used by recent Linux

malware to understand how they operate, their differences from similar Windows counterparts,

and an analysis of how difficult they are to overcome. The rest of the thesis is organized in the

following manner. Chapter 2 will cover the related work. Chapter 3 will provide an overview of

the obfuscation techniques that will be observed in this thesis. Chapter 4 will provide details of

their functionality and their effectiveness. Chapter 5 will then conclude the thesis and provide

details on future work.

3

2 BACKGROUND

2.1 Malware Analysis

2.1.1 Overview

An overview of practices done by malware analysts is provided in [1]. This study identifies

several areas of key interest, including their objectives, their workflow, and their configurations

for dynamic analysis. Malware analysts can have different objectives in mind when doing their

research, including identifying malicious behavior, labelling “families” of malware to assign

samples to different categories, and tracking techniques used by different malware samples, such

as specific sets of communication protocols or algorithms. An analysis of obfuscation techniques

would fall under that last category. The different workflows involve varying steps of observing

static strings present in binaries as well as static and dynamic analysis. Two workflows are

identified for tracking the techniques used, both of which involve running dynamic execution

first to observe the sample’s behavior, followed by static analysis if the sample evades detection.

One of those two workflows adds a stage to emulate the malware, which can involve reversing a

communication protocol then observing how a sample gains information as it spreads. The paper

also identifies how environments for dynamic analysis are set up. This involves setting up a

virtual machine to create a sandbox for malware to run in, and the paper notes the differences

between open-source and closed-source sandboxing solutions, which mainly come down to ease-

of-use versus customization potential. Although the environment needed will vary greatly

between malware targeting end users versus malware targeting IoT devices and servers running

Linux, it notes the importance of setting up a simulated environment; malware which relies on

tools like email clients and Microsoft office utilities will require these components to be installed

on the virtual machine.

4

2.2 Linux malware

2.2.1 Overview of Linux malware

A comprehensive overview of Linux malware specifically is given in [3]. The researchers

identify the differences in execution formats from Windows, then perform an automated

malware analysis process on over 10,000 binary executables and classify the evasion techniques

used by them. Additional information is also given on the differences and challenges that come

with analyzing malware for Linux specifically.

Binary executables on Linux use the Executable and Linkable Format (ELF) file format.

Additional details on the ELF header format are given in [4]; a file defines segments for

identifying what OS it should be run on (Linux, BSD, etc.), addresses for code entry points,

dependencies on dynamically linked libraries, strings for output and debugging, and other

important information for program execution. When comparing Linux to other operating

systems, there can be a large variance in the environments that a program is expected to run on:

the same software can be compiled for different CPU architectures, different operating systems,

different choices between static and dynamic linking, and different implementations of core

system libraries such as libc. This can be problematic when looking for malware samples. The

researchers in [3] note that many samples will not run on a generic Linux system, and more

effort in general is required to find the appropriate environments for all collected samples. This

can also be exploited by obfuscation techniques that aim to mangle file headers in a way which

makes them harder to detect in analysis, which are discussed below.

Details into specific obfuscation techniques are given in [2][3]. In 2010, the researchers in

[2] gave a brief summary of obfuscation techniques that aim to decrease signature detection

rates, classifying them into three categories: encrypted malware which embed a decryptor into

5

the code to extract an encrypted piece of software which is then executed, oligomorphic and

polymorphic malware which create mutations of the decryptor to make it more difficult for

malware scanners to search for a specific decryptor signature, and metamorphic malware which

mutate the body of the code itself at runtime. The paper gives an overview of techniques used to

vary file signatures as a defense against antivirus software, such as inserting dead code,

reordering code sections, etc. It also makes predictions for future areas, one of which is

smartphone malware which is one of many IoT devices that have had a notable increase in

malware as noted in [3].

The researchers in [3] describe obfuscation techniques that are more specific to ELF

binaries. This includes techniques that aim to evade signature detection. Many of them use the

Ultimate Packer for Executables (UPX) to compress ELF files and unpack them at runtime. This

serves a similar purpose to encryption-based solutions since it changes the file hash and binary

structure. Anti-debugging techniques are present as well. A large portion of their samples had the

ELF header sections corrupted in such a way that the program was able to be executed, but

unable to be run in debuggers like GDB. Processes are also able to listen to PTRACE system

calls which are run when the process is being debugged, and different code paths can be

executed if it detects that this is the case.

The paper notes that many of these techniques have similar Windows counterparts but vary

in execution. Anti-debugging methods involve processes listening to their own Linux-specific

system calls, and they target quirks in debuggers like GDB specifically, such as its inability to

run binaries with corrupted ELF information. Since Linux platforms are less consistent in their

components than Windows, Linux malware tends to take advantage of programs that are

common to most distributions, like cron and ssh, and either use them to perform the necessary

6

obfuscations or infect them so that the malware can be executed again when the user makes use

of them. The different environment also affects the way malware is built: most malware is

statically linked to mitigate the problem of different distributions having different sets of

available dynamic libraries, and most malware also assumes that it is being run with root

privileges, which is less common on Windows.

2.2.2 Sources of Malware Samples

As mentioned in [1], malware samples can be obtained from repositories such as

VirusTotal [5], Malpedia [6], Malware Bazaar [7], etc. They can offer a large quantity of

samples to choose from, though they do not always offer context to go along with download

links and file hashes. Observing high-profile malware attacks can supplement malware

databases, and this has the advantage of having the attention of other malware analysts to offer

their analysis, including explanations of how a sample functions and sometimes reverse-

engineered code as well. One such high profile sample from 2016 is the Mirai Botnet, which is

given a detailed analysis in [8]. Mirai is notable for its rapid growth, infecting nearly 65,000 IoT

devices in its first 20 hours, and the fact that it has spawned many derivatives from other

malware authors. In addition to being a common sample for research, the source code is

available [9] which allows for a simpler analysis process without having to reverse-engineer the

binary. Another high-profile attack took place in 2021 with the CronRAT malware [10]. It stores

an invalid entry in the crontab file used for scheduling jobs, and a bash script uses data from that

entry to establish a TCP connection to download malicious dynamic libraries which can be used

for arbitrary code execution. Bash is a command shell which is installed by default on most

Linux distributions, and malware written in it can avoid the problems of the variances in binary

7

formats mentioned above. The original CronRAT sample was heavily obfuscated to decrease

readability, and researchers have made an annotated copy to make its functionality clearer [11].

8

3 METHODOLOGY AND IMPLEMENTATION

3.1 Environment Setup

Since this research involves handling live malware samples, the setup of a sandbox

environment is important. Establishing a barrier between the researcher’s system (known as the

host system) and the virtual environment (known as the guest system) reduces the odds of the

researcher’s host system being put at risk and allows for a more controlled environment for tests

to be performed. Several programs exist for creating virtual machines, with Oracle’s VirtualBox

[12] being a common one. For this thesis, QEMU [13] was used since the host system was

running a Linux-based OS which allowed for Linux’s Kernel-based Virtual Machine (KVM)

[14] to be used. This allowed for more performant virtualization than what would have been

offered by VirtualBox on the same system, since it cannot take advantage of KVM. QEMU is a

command-line-interface (CLI) application which can be used by many different GUI frontends to

allow for more intuitive setup and customization. Virt-manager [15] is a common choice that

was used for this thesis.

Ubuntu 22.04 [16] was then installed onto a QEMU virtual machine. This choice was

made because Ubuntu is a popular distribution that is targeted by most Linux software, including

malware. The fact that it runs on the x86_64 CPU architecture, uses bash as the default command

shell, and uses GNU libc means it exhibits characteristics that are needed by most samples

targeting desktops.

Two main malware samples that were used in this thesis were CronRAT and Mirai

mentioned above. CronRAT relies on the bash shell and a crontab file being present on the

system, which is already true for a stock Ubuntu installation. Mirai was analyzed using the

source code [9] which needed additional setup since it is compiled to a binary. Mirai and its tools

9

are written in C and Go, which requires GCC’s C compiler and the Go compiler to be installed.

On the initial attempt to run the build.sh script to compile all of Mirai’s components, errors were

given when compiling the Go code due to a go.mod file not being found. This was due to a

change in Go’s module system that was made after Mirai was written. Adding the line “export

GO111MODULE=”off”” at the top of the script allowed for this behavior to be reverted and

resulted in successful compilations.

10

4 RESULTS AND ANALYSIS

4.1 Overview

After the environment was set up, the source code of Mirai and the annotated copy of

CronRAT were inspected for obfuscation methods. These samples contained techniques

mentioned in [3], such as ELF corruption, and techniques that are unique to these samples. This

section will cover these techniques, explain their functionality, and the impact they have on static

and dynamic analysis when applicable.

4.2 UPX Compression

In [3], it is noted that many malware samples use the UPX tool to compress ELF binaries

to reduce detection by static analysis. Applying this compression to both binaries of Mirai,

mirai.x86 and miraint.x86, a reduction can be seen in detections in Table 1. The paper also notes

that many samples apply “cosmetic” modifications to UPX by editing two magic constants used

in src/conf.h of the UPX source code. On Mirai, changing these constants appears to have no

significant impact at all. A comparison between the detections of an unmodified development

build of UPX (git commit 3ff5dbd1797a8c0ee7a25c904529f1737d0bd826) with a modified build

are shown in Table 1, and the number of engines detecting the file, as well as the classifications

given by these engines, all fall within a similar range of each other.

11

Table 1: VirusTotal detections for Mirai with UPX compression applied

File and compressor Detections (out of 62)

Mirai.x86 - uncompressed 44

Mirai.x86 – UPX 3.96 26

Mirai.x86 – Development UPX 22

Mirai.x86 – Development UPX with modified magic constants 29

Miraint.x86 - uncompressed 42

Miraint.x86 – UPX 3.96 24

Miraint.x86 – Development UPX 26

Miraint.x86 – Development UPX with modified magic constants 28

4.3 Mirai’s techniques

4.3.1 ELF corruption

Within Mirai’s source repository, there is a source file in the mirai/tools/ directory named

nogdb.c. It is a self-contained program that loads an ELF32 header into memory, writes the value

0xffff to three of its members e_shoff, e_shnum, and e_shstrndx, and overwrites the original

file’s header with this modified version. This uses a technique mentioned in [3] where corrupting

certain sections of an ELF header results in invalid ELF files that can still be run by the operating

system but cause issues for debugging tools. In this case, this technique is used to prevent

debugging via GDB. Compiling a 32-bit executable with GCC and running this tool on the

output binary resulted in a file that could still be executed normally through the terminal but gave

the error “not in executable format: file format not recognized” when attempting to run it in

GDB.

12

The three values that were modified are related to the section header table: e_shoff defines

the offset in bytes to locate the start of the section header table, e_shnum defines the number of

segments contained in the table, and e_shrndx defines the location of the strings used in the table.

In Figure 1, the output of readelf on both the original and corrupted binary is shown, with the

corrupted executable displaying a value of 65535 for the modified values and an error message

for the section header table. When these three fields are modified to be 0xffff, software like GDB

will get an error when attempting to read past the size of the executable.

13

FIGURE 1: Running readelf on unmodified executable (left) and on corrupted executable

(right)

There are ways to circumvent this technique. In [3], the researchers note several

alternatives to GDB that were able to read corrupted files, and while lacking implementation

details, they were also able to create a tool to automatically repair the corrupted files. Manual

repair could involve using a hex-dump tool such as xxd [17] to find the location of the strings for

14

the section header table as shown in Figure 2. The location and number of strings found could be

used to fix the e_shnum and e_shrndx values.

Figure 2: Section header strings in xxd

4.3.2 Anti-dynamic-analysis measures

In addition to the ELF corruption tool, Mirai also contains obfuscation techniques within

its main source file. The first one of these can be seen in lines 134-138 of mirai/bot/main.c as

shown in Figure 3. When these lines are executed, the process name is set to a string of random

characters. This string will be displayed in commands such as ps to get a list of running

processes, and this makes it more difficult to tell what the purpose of this program is.

15

FIGURE 3: Code to randomize process name

There also exists another anti-GDB measure within main.c. On lines 63-68 shown in

Figure 4, the program initializes a “Signal based control flow,” and sets the SIGTRAP signal to

lead to an anti-GDB entry function which sets an address needed for the program to function

properly.

FIGURE 4: “Signal based control flow”

The SIGTRAP signal is not raised by any external program, but rather by lines 113-114

when the program detects that it is not being run by a debugger, which is determined by the

unlock_tbl_if_nodebug function in lines 480-533 shown in Figure 5.

16

FIGURE 5: Check to raise SIGTRAP signal (top) and function to check for

debugging (bottom)

17

This function executes a complex method of checking if the initial program name from

argv[0] is equal to “./dvrHelper”. By default, GDB executes programs using their absolute path,

e.g. “/home/username/dvrHelper” rather than “./dvrHelper”, so this function will report that the

process is being debugged if this is the case. The function performs several operations that are

designed to be unclear while debugging as well. The buf_src variable that stores the

“./dvrHelper” string has each sequence of two bytes flipped and has a zero appended, as seen

with the bytes “0x2e 0x2f 0x64 0x76” becoming “0x2f 0x2e 0x00 0x76 0x64 0x00”, and the

function’s for loop rearranges these to be copied correctly to the buf_dst variable which is used

to make the comparison with argv[0]. The loop also contains a “meaningless tautology” to

modify the index variable: in each loop iteration, the i variable has four operations applied to it

which always result with the value it originally started as. Finally, with each loop iteration, the

fold variable has a value assigned to it based on argv[0], which is later used to call one of seven

functions in the obf_funcs array. If fold is the correct value (which will be the case when argv[0]

= “dvrHelper”), then the table_init() function will be called, which initializes the full table of

addresses needed for the program to function. While table_init() will be executed when fold % 9

= 3, which can be the case for strings other than “./dvrhelper”, it is more likely that a different,

unrelated function will be executed depending on the program’s name, which is intended to

mislead the person debugging the program. Additionally, the function will only return TRUE,

and thus raise the SIGTRAP signal used to execute the anti_gdb_entry function, if argv[0] is

equal to “./dvrHelper”, so the full initialization of the program can still fail to occur even if the

correct function in the array is executed.

All these obfuscations are designed to make it harder to tell what the function is doing

when it is run with a debugger, since it will perform different actions across execution

18

environments and perform unconventional methods of initializing needed variables. While GDB

can be configured to run the program using a relative path rather than an absolute path, the

malware analyst would have to know to do this beforehand and know that the program needs to

be named dvrHelper. The fact that this string is stored with the bytes swapped makes this harder

to determine when searching the binary for strings.

4.4 Bash Script obfuscation

With CronRAT, we can see the obfuscation of a script rather than a binary. Comparing the

original and annotated versions of the script, two large differences between the two are the lack

of whitespace indentation in the original and the naming of all functions and variables being less

intuitive in the original, with most names taking the form of the letter “O” followed by a number,

rather than a human-friendly description. The script also uses its own format for communicating

with a remote server as seen in Figure 6. It sends values for checksums followed by a payload

encoded with base64 to obscure the contents of the payload being sent.

19

FIGURE 6: Annotated and original CronRAT functions for remote server

communication

It is likely that the renaming was done with an automated script. There are many tools for

the purpose of obfuscating bash scripts. One example would be Bashfuscator [18], which has a

list of separate “mutators” that can be applied to a script and are documented in [19]. Since bash

is an interpreted language, modifications can be made to the text used in the script, then that text

can be run through a command that outputs the original text, then run with either the “eval” or

“bash” commands to run the desired code. Examples would be Bashfuscator’s base64 mutator,

which stores the bash code in a base64 encoded format and runs it through a decoder before

running it, and the “forcode” mutator which splits the text into separate sections and reconstructs

them using a for loop. Using a tool like Bashfuscator would make the script harder for humans to

detect and help in evading static analysis by tools that are looking for specific patterns in the

code. As seen in Table 2, running some of the more complex mutators on CronRAT allowed the

20

modified script to evade detection from most antimalware engines. If these variants were to be

picked up by malware analysts, then these new file signatures could be added to the database and

they would be classified amongst other variants of the software, but it would briefly extend the

period where the script is able to evade detection and classification.

Table 2: VirusTotal detections for CronRAT with Bashfuscator mutators applied

Mutator Detections (out of 60)

None 13

Bashfuscator defaults, “—payload-size 1” flag 4

Bashfuscator defaults, “--payload-size 2” flag 0

Bashfuscator defaults, “--payload-size 3” flag 0

Encode/Base64 0

Token/ForCode 3

Command/Case Swapper 15

Command/Reverse 15

21

5 CONCLUSION AND FUTURE WORK

Linux malware has seen an increase in recent years, and so has the need to analyze the

software and the techniques they use to evade detection. Most of the techniques used have

similar counterparts in Windows malware, but have accommodations made to be more effective

in Linux-specific environments, such as taking advantage of behaviors in debugging tools like

GDB which are more popular on Linux systems. Techniques are used to make malware more

resilient against static analysis to avoid being detected by antimalware engines and against

dynamic analysis to slow down attempts by malware analysts to document the functionality of

the malicious software in question.

Future work could cover more techniques that are used in Linux malware and cover a wider

range of samples. More work could also be dedicated towards the detection of malicious

software and the processes used by antimalware engines to flag samples based on the behaviors

exhibited by them. In particular, the researchers in [4] have documented several ways of

automating dynamic detection of malware in a Linux environment, but expanding on their work

was out of the scope of this thesis.

22

REFERENCES

[1] M. Yong Wong, M. Landen, M. Antonakakis, D. M. Blough, E. M. Redmiles, and M.

Ahamad, “An Inside Look into the Practice of Malware Analysis,” in Proceedings of the

2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp.

3053–3069. doi: 10.1145/3460120.3484759.

[2] I. You and K. Yim, "Malware Obfuscation Techniques: A Brief Survey," 2010

International Conference on Broadband, Wireless Computing, Communication and

Applications, Fukuoka, Japan, 2010, pp. 297-300, doi: 10.1109/BWCCA.2010.85.

[3] E. Cozzi, M. Graziano, Y. Fratantonio and D. Balzarotti, "Understanding Linux

Malware," 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,

USA, 2018, pp. 161-175, doi: 10.1109/SP.2018.00054.

[4] G. Damri and D. Vidyarthi, "Automatic dynamic malware analysis techniques for Linux

environment," 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), New Delhi, India, 2016, pp. 825-830.

[5] “Virustotal,” VirusTotal. [Online]. Available: https://www.virustotal.com/. [Accessed:

07-Mar-2023].

[6] F. FKIE, “Hi!,” Malpedia (Fraunhofer FKIE). [Online]. Available:

https://malpedia.caad.fkie.fraunhofer.de/. [Accessed: 07-Mar-2023].

[7] “Malware Sample Exchange,” MalwareBazaar. [Online]. Available:

https://bazaar.abuse.ch/. [Accessed: 07-Mar-2023].

[8] M. Antonakakis et al., “Understanding the Mirai Botnet,” in 26th USENIX Security

Symposium (USENIX Security 17), Aug. 2017, pp. 1093–1110. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/antonakakis

[9] “JGAMBLIN/mirai-source-code: Leaked Mirai source code for Research/IOC

development purposes,” GitHub. [Online]. Available: https://github.com/jgamblin/Mirai-

Source-Code. [Accessed: 07-Mar-2023].

[10] “Cronrat malware hides behind February 31st,” Sansec, 24-Nov-2021. [Online].

Available: https://sansec.io/research/cronrat. [Accessed: 07-Mar-2023].

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

23

[11] “cronrat-annotated.sh,” Github. [Online]. Available:

https://gist.github.com/gwillem/fbe3e6b98e2e10d7f1f271ca4b6e813f#file-cronrat-

annotated-sh. [Accessed: 07-Mar-2023].

[12] “VirtualBox,” Oracle VM VirtualBox. [Online]. Available: https://www.virtualbox.org/.

[Accessed: 08-Mar-2023].

[13] QEMU. [Online]. Available: https://www.qemu.org/. [Accessed: 08-Mar-2023].

[14] “What is KVM?,” Red Hat Documentation. [Online]. Available:

https://www.redhat.com/en/topics/virtualization/what-is-KVM. [Accessed: 08-Mar-

2023].

[15] “Virtual Machine Manager,” Virtual Machine Manager Main Page. [Online]. Available:

https://virt-manager.org/. [Accessed: 08-Mar-2023].

[16] “Ubuntu,” Ubuntu Main Page. [Online]. Available: https://ubuntu.com/. [Accessed: 08-

Mar-2023].

[17] “Xxd(1) - linux man page,” die.net. [Online]. Available: https://linux.die.net/man/1/xxd.

[Accessed: 26-Mar-2023].

[18] “Bashfuscator Repository,” GitHub. [Online]. Available:

https://github.com/Bashfuscator/Bashfuscator. [Accessed: 26-Mar-2023].

[19] “Bashfuscator Mutator documentation,” readthedocs. [Online]. Available:

https://bashfuscator.readthedocs.io/en/latest/Mutators/index.html. [Accessed: 26-Mar-

2023].

	Linux Malware Obfuscation
	Citation

	tmp.1682693579.pdf.kGu2v

