

45

Examination of the kernel code for the two functions shows no evidence from the

functions‘ codes to support this performance behavior [94]. On the other hand, the shape of

the performance curve suggests that this performance behavior may be caused by

constraints in system resources. To investigate system resource utilization, low-level

profiling of the test system was performed using oProfile [95] while running the I/O

experiments.

Figure 13: Average response time of data

transferring between kernel and user space

The results of L2 cache behavior of the copy_to_user and copy_from_user functions

obtained during I/O benchmark testing are shown in Figure 14. Those measurements show

that the L2 cache misses increase after the block size reaches 64Kbytes and become very

noticeable after the block size of 128Kbytes. The L2 cache misses continue to increase

even after the block size goes beyond 1024Kbytes.

0

1

2

3

4

5

6

7

8

8 16 32 64 128 256 512 1024 2048

R
es

p
o

n
se

 t
im

e
(m

s)

I/O Block size (KB)

kernel/user transfer performance

53

Figure 18: PVFS sequential I/O write

performance

According to the read and write measurement results, after file sizes become large

enough, PVFS I/O performance does not change when the file size changes to a greater

amount. Reaching this stable level, I/O performance is now affected by the block size of

the I/O operations instead. Of course, similar to local file system behavior, the I/O

performance drops sharply when the file size reaches the physical memory capacity of the

machine. This behavior is caused by memory reclaiming and swapping, which in turn

causes disk thrashing, leading to a very large I/O performance degradation.

3.4 Summary

This chapter presents background performance studies of a local file system – the Linux

ext3 file system. Performance characteristics of the ext3 file system are presented. The

6
4 1
2

8 2
5

6 5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

0

20000

40000

60000

80000

4

32

256

2048

16384

File size (KB)

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

54

relations between file sizes, I/O block sizes, and file system performance are investigated.

The performance behaviors of the ext3 file system are also carefully examined. The

relation between CPU L2 cache and the I/O read and write behavior is also pointed out.

The real-world I/O access pattern and production workload on PVFS file systems are also

studied in this part. The performance measurements of the PVFS file system are also

presented.

55

C h a p t e r 4

DESIGN OF A SIMULATION MODEL FOR LOCAL FILE SYSTEM

4.1 Introduction

The simulation model for the local file system is the most basic foundation for file

system modeling. It mimics the behavior of a local file system over a block device. It

interfaces with higher-level software, such as applications or parallel file system servers,

and provides the response time associated with each I/O request. This chapter discusses the

design of a simulation model for a local file system. The file system model is expected to

be able to provide end-to-end file system performance against a pre-defined workload.

System designers could use the model to evaluate file system performance in different

scenarios and to perform bottle-neck analysis. It could also be used for ‗what-if‘ type of

provisioning analysis. The implementation of the simulation model is presented in a top

down fashion, from application level down to the hard disk level, and each level is

described using Colored Petri Nets.

4.2 Assumptions and model limitations

A complex scientific or business application may have both I/O reads and I/O writes at

the same time. However, a typical I/O pattern often seen is a large read operation followed

by computing which is then followed by a large I/O write. Many times, the phase of

execution where the application is reading is separated from the phase where the

application is writing. With that in mind, the simulation model is divided into an I/O read

6
0

bsize

bsize

1`1

(i, j, k)
i

l

if (j = k) then 1`1 else empty

qs

qs^^[i]

i

i if (j = k) then 1`i else empty

(i, j, k)

i

(i, j, k)

j

(i, j, k)

if (j < k) then 1`(i, j+1, k) else empty

(i, j, k)

(i, i, i+ppdegreerand)

i

q i::q

New Cache

Copy

buffer

@+List.nth(cpCost, bsize)

Return

result

@+endloopdelay
Transfer

Update

cache
Disk

DiskApply

Prefetch

@+prefetchdelayrandRequest

[l=1]

bsize

output
Out

INT

bsize

input
In

INT

Next

1

INT

Result

buffer

REQUEST

Temp

INTERNAL

Disk

output

INTERNAL

Do

Prefetch

INTERNAL

Cache

update

REQUEST

Cache

hit

REQUEST

Cache

miss

REQUEST

Wait

REQUEST

Read

In
REQUESTS

Result

Out
REQUESTS

Out

In

InOut

Disk

New Cache

1 1`1

1

1`[]@0

Figure 21: The generic_file_read model

6
7

bsize

bsize

pg

pg

pg

pg

cont

pg

pg

pg

pg

pg

continue

pg

1`1

pg

wrwr^ [̂pg]

pgpg

pg

pg

n

buf

pg

wr pg::wr

update
journal

done
buffer

done
journal

dirty
buffer

@+reentry

Return

code

Write
begin

@+preparewritedelay

Copy
buffer

@+List.nth(cpCost, bsize)

Begin
loop

bsize
out

Out
INT

bsize
in

In
INT

wait
journal

PAGE

from
buffer

In
INT

wait
buffer

PAGE

buffer3

PAGE

from
journal

In
INT

to
journal

Out
PAGE

to

buffer
Out

PAGE

Return

Out
REQUESTS

PAGE

Journal
write

PAGE

buffer2

PAGE

Next

1

INT

buffer1

PAGE

Write

In
REQUESTS

Application
buffer

I/O
BUFFER

I/O

In

Out
Out

Out
In In

In Out

1 1`[]@0

1 1`1

1

Figure 26: generic_file_write model

72

Figure 30 shows a comparison of this model for the L2 cache effect as compared to the

measured data from Figure 13. Figure 30 shows that the response time for the copy_to_user

function is very close to the model calculation in most cases, and that the trend of the effect

of L2 cache on copy_to_user performance is captured well by the model.

Figure 30: L2 cache model validation

4.6 Summary

This chapter presents a set of detailed and hierarchical performance models of the Linux

ext3 file system, using Colored Petri Nets. Studies of the file system read and write

operations, including buffering and caching effect, are performed. A model for the L2

cache behavior captures the behavior of the L2 cache and is used directly in the full model.

Both file read and file write, including buffering effect and caching effect, are modeled. In

future work, this performance model will be extended to model the successor of the ext3

0

1

2

3

4

5

6

7

8

8 16 32 64 128 256 512 1024 2048

R
e

sp
o

n
se

 t
im

e
 (

m
s)

I/O Block size (KB)

copy_to_user performance

model performance

73

file system, ext4. A new detailed I/O scheduler model will be implemented. The ext3

model will be utilized as a basic foundation to model distributed file systems and parallel

file systems.

74

C h a p t e r 5

LOCAL FILE SYSTEM SIMULATION MODEL PERFORMANCE VALIDATION

5.1 Introduction

This chapter discusses the performance validation of the simulation model for a local

file system. Several performance experiments are performed, using different types of

workload. The simulation performance results are compared to the real-world performance

measurements to study the accuracy of the simulation model.

5.2 Validation setup

In order to validate the entire Petri Net file system model against real-world data, the

model hardware parameters, such as memory delay, execution speed, function overhead,

and disk speed, are measured directly from the machines where the real experiments take

place, using kernel traces. This machine is configured with a single SCSI drive Seagate

ST3146707LC. The tracing mechanism used is Ftrace. Ftrace is a powerful kernel-tracing

method and has been a part of the mainline kernel since version 2.6.27. Ftrace supports the

ability to perform function-graph tracing, which tracks both function entry and function

exit as well as providing function duration.

To reduce the simulation time for the L2 cache effect model, the values of the response

function are calculated, using the developed model for a very wide range of block sizes,

and recorded into a table. The values of the function‘s constants (Sthreshold, Spage, TL2,

Tmemory) are measured from the test system. The Petri Net model (Figure 21, top right

75

corner, and Figure 26, center) uses this table in the transition called Buffer Copy to produce

the response time for the data copy from kernel space to user space.

5.3 Synthetic sequential workload

Simulations of sequential workload are run several times, and the average results are

used to compare with iozone benchmark results running on the test system. The simulation

experiments are run, using a set of synthetic I/O requests and simulating sequential I/O.

The I/O requests are grouped into similar block size configurations of the izone benchmark.

Data- write operations in this section are asynchronous. The file system journal mode used

in this section is ordered mode. The result of the I/O read performance model is presented

in Figure 31. The errors bars are set at 10%.

Figure 31: Sequential I/O read performance

validation

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation Experiment

80

Figure 34: I/O read pattern of the first trace

The I/O pattern shows less randomness in I/O read activities. The large block size of the

I/O reads gives the workload a mixed characteristic of both sequential I/O and random I/O.

Figure 35 shows the I/O write request pattern of the first captured trace.

0

500000

1000000

1500000

2000000

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

200

400

600

1

3
6

7
1

1
0

6

1
4

1

1
7

6
2

1
1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

83

Figure 37: I/O write pattern of the second trace

The two captured I/O read traces from Figure 34 and Figure 36 are fed into the model

and the iozone benchmark to produce the I/O read performance comparison. Data-write

operations in this section are asynchronous. The file system journal mode used in this

section is ordered mode. Similar to the previous performance studies, simulations are run

several times and produce the average result. The I/O performances are higher than

previous experiments due to caching effect. Table 7 presents the I/O read performance

results.

0

50000

100000

150000

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

D
at

a
o

ff
se

t
(K

b
yt

es
)

I/O request number

I/O request offset pattern

0

20

40

60

80

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

B
lo

ck
 s

iz
e

(K
b

yt
es

)

I/O request number

I/O request block size

84

Table 7: Captured traces I/O read validation

I/O Read performance result Trace 1 Trace 2

Simulation Throughput (KB/s) 873,238.11 876,237.20

Measure throughput (KB/s) 991,969.14 1,008,167.15

Error 12% 13%

The two I/O write traces from Figure 35 and Figure 37 are also fed into the model and

the iozone benchmark to produce the I/O write performance. Table 8 shows the I/O write

performance result.

Table 8: Captured traces I/O write validation

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 146,644.10 146,813.74

Measure throughput (KB/s) 207,203 180,783.2

Errors percent 29% 19%

5.6 The impact of the dirty-ratio kernel parameter

The kernel parameter—dirty ratio—which is discussed in Chapter 3 influences the I/O

write performance behavior that the model should exhibit correctly. In order to validate this

behavior, an experiment is performed, using a test file with a larger size than the default

value of the dirty-ratio threshold setting on the system (~512MB). Figure 38 shows the

comparison between the measure from the actual system and the simulation result of the

model. The error bars are set to 10%, similar to previous experiments.

85

Figure 38: The impact of dirty ratio parameter

The simulation results are close to the measurements from the actual system. The errors

fall between 10% and 20% for all data points. Similar to the sequential write experiment,

the model consistently underestimates the performance of the actual system for both file

sizes.

5.7 Full data journal mode write performance

In previous validation experiments, from section 5.3 to section 5.6, the file system is

operating under ordered journaling mode. As stated in Chapter 3, the performance

differences of write-back journaling mode and ordered journaling mode are small. Full data

journal mode, however, is a completely different case. Unlike ordered journal mode or

0

50000

100000

150000

200000

250000

300000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment (512M) Simulation (512M)

Experiment (768M) Simulation (768M)

86

write-back journal mode, full-data journal mode writes data as well as metadata to the

journal, which is located on the disk. As a result of this, the same data are actually written

to the disk twice. As data and metadata are being written into the journal, the amount of

free space allocated for the journal become smaller. When the journal free space reaches a

threshold, a journal checkpoint happens. The exact amount of journal free space that

triggers a checkpoint is not derived in a straightforward manner, as Prabhakaran notes [50].

Journal checkpointing occurs when the amount of journal free space is between ½ and ¼ of

the journal size. For the validation experiments in this section, we use a threshold equals to

approximately ½ of the journal size as it seems to produce best results.

Using the same process described in section 5.3, the first validation experiment uses a

synthetic sequential workload. Simulations are run several times, and the average results

are used to compare with iozone benchmark results, running on the test system. The I/O

requests are grouped into similar block size configurations of the izone benchmark. The

result of the I/O read performance model is presented in Figure 39. The errors bars are set

at 10%.

87

Figure 39: Sequential I/O write validation – full

data journal mode

The errors between simulation data and real-world measurement data are close to 10%.

The performance impact of the full-data journal mode is quite clear. The shapes of the

performance curves are different from the shapes of performance curves in section 5.3. The

effect of L2 cache still exists. However, because the response time of the file system is

slow, the effect is not noticeable any longer.

Following the same order previously presented, an experiment similar to the experiment

in section 5.4 is performed. The simulation experiments are run, using synthetic I/O

requests and simulating random I/O with very small block size to minimize the sequential

characteristic of the workload. The result of the experiment is presented in Table 9.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment Simulation

88

Table 9: Random I/O write validation - full data

journal mode

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 30016.45127

Measure throughput (KB/s) 26470.4

Error 13%

The last experiment is similar to the experiment in section 5.5. The two I/O traces are

fed into the model and the iozone benchmark to produce the I/O performance comparison.

Like previous performance studies, simulations are run several times and produce the

average result. The result of the experiment is presented in Table 10.

Table 10: Captured traces I/O write validation -

full data journal mode

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 51417.04 63660.53

Measure throughput (KB/s) 46470.4 56593

Errors percent 11% 12%

5.8 Synchronous write performance

In previous validation experiments, up to this section, I/O write operations all use

asynchronous write mode. It provides the best performance for the system, and under

normal circumstances, is the default operating mode for Linux I/O write operations.

However, synchronous write mode is still being used occasionally in situations where data

89

needs to be written to disk after each write request. In this operating mode, the real system,

as well as the model, issues a data synchronization at the end of the write request. Because

data synchronization is done at the end of every write request, the file system journal mode

does not have any effect.

The same process described in section 5.3 is used. Simulations are run, using a synthetic

sequential workload several times, and the average results are used to compare with iozone

benchmark results, running on the test system. The I/O requests are grouped into similar

block-size configurations of the izone benchmark. The file system journal mode is ordered

mode. The result of the I/O write performance model is presented in Figure 40. The errors

bars are set at 10%.

90

Figure 40: Sequential I/O write validation -

synchronous write

The simulation results are very good, even though the errors are bigger than 10% at

multiple data points. The performance impact of the synchronous write mode is also very

clear. The shapes of the performance curves are different from the shapes of performance

curves in section 5.3. Because of the slow response time of the file system, the L2 cache

effect is also insignificant in this experiment.

The next experiment is similar to the experiment in section 5.4. The simulation

experiments are run, using synthetic I/O requests and simulating random I/O with very

small block size to minimize the sequential characteristic of the workload. The result of the

experiment is presented in Table 11.

0

10000

20000

30000

40000

50000

60000

70000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Experiment simulation

91

Table 11: Random I/O write validation -

synchronous write

Random I/O Write performance result

Block size (Kbytes) 8

Simulation throughput (KB/s) 6689.75

Measure throughput (KB/s) 5388.8

Error 24%

The last experiment is similar to the experiment in section 5.5. The two I/O traces are

fed into the model and iozone benchmark to produce the I/O performance comparison. Like

previous performance studies, simulations are run several times and produce the average

result. The result of the experiment is presented in Table 12.

Table 12: Captured traces I/O write validation -

synchronous write

I/O Write performance result Trace 1 Trace 2

Simulation throughput (KB/s) 18,196.46 25,633.22

Measure throughput (KB/s) 14,856.8 20,628.2

Errors percent 22% 24%

5.9 Summary

This chapter presents a set of detailed performance validation experiments of the Linux

ext3 file system model. To validate the performance behavior of the file system model,

several types of workload are utilized. A synthetic sequential workload is generated to

study the simulation model behavior and to compare the model with real file system

92

performance. A random synthetic workload is also generated to study the behavior of the

simulation model when random accessing is involved. In addition to synthetic workload,

I/O traces captured from production systems are also utilized to study the performance

behavior of the simulation model in a real-world environment.

The validation experiments are run under both ordered journal mode and full data

journal mode. The results for ordered journal mode are very good. For sequential file read

and file write, the simulation performances are within 10% of the real file system in most

cases. For random file read, the simulation performances are within 20% of the real file

system. For random file write, the simulation performances differ less than 35% of the real

file system. For I/O traces captured from live systems, the simulation performances differ

less than 20% in most cases. An additional performance factor— dirty ratio threshold—is

also modeled and validated. The results for full-data journal mode are very good. In all

experiments for this mode, the errors are less than 15%. In good cases, the errors are

between 10% and 12%.

Synchronous I/O write operation is also validated. The results are very good, as the

errors are less than 10% in many cases. However, for random synthetic workload and

captured I/O traces workload, the errors are approximately 24%.

93

C h a p t e r 6

DESIGN OF A SIMULATION MODEL FOR PARALLEL FILE SYSTEM

6.1 Introduction

The first and foremost goal for a parallel file system is to achieve massive I/O

throughput. This is done by providing access to multiple I/O resources in parallel. PVFS as

well as many other parallel file systems implements this by utilizing multiple connected

local file systems as foundation. The simulation model for the parallel file system is

developed using similar concept. It utilizes multiple connected local file system simulation

models as its foundation. It interfaces with higher level applications and provides them the

response time associated with each I/O request. This chapter discusses the design of a

simulation model for PVFS – a parallel file system. The implementation of the simulation

model is presented in a top down fashion, from application level down to the local file

system level, and each level is described using Colored Petri Nets.

6.2 Assumptions and model limitations

Similar to the local file system simulation model, the parallel simulation is also divided

into an I/O read model and an I/O write model. Read operations and write operations are

simulated separately to simplify the multiple conditions when simulating the file system.

A key difference between a parallel file system and a local file system is the network

component. Parallel file systems use network to simultaneously access multiple local file

system at the same time. A parallel file system simulation model must contain a network

model. Although the network simulation model is an important component in the parallel

94

file system simulation model, it only serves as a transport from the client model to the

server model. The network model does not need to model every network operations in

detail. Instead, a resource model is used to simulate network end-to-end performance.

A PVFS cluster has a certain number of I/O servers. This number is determined at the

time the cluster is built. After the cluster goes into production, the number of I/O servers is

relatively fixed. Although, under a certain circumstance, I/O servers can be added or

removed from the cluster, but this procedure usually cause the original data on the cluster

to be destroyed. For the simulation model, the PVFS cluster has 4 I/O servers. In real-world

situation, A 4 I/O servers cluster could house approximately 4 Tbytes of data.

6.3 File read model implementation

From the application standpoint, reading a file from a parallel file system is no different

than reading a file from a local file system. The way an application reads a file is similar to

the following illustration.

From this level, the operation is divided into three main components: the client

component, the network component and the server component.

6.3.1 File read model client component

At the top level, the model is simple. A loop breaks the needed file into multiple blocks

of read requests and passes the list to the client simulation component. The client

component processes the data then passes them on to the network component. The result of

while (!feof(file_handle)) {
 bytes_read = fread(buffer, block_size, number_of_block, file_handle);

}

95

the read operation is an array of data passed back from the network model. The Petri net for

this operation is presented in Figure 41.

The implementation of the client component could be described as dividing the block of

read requests into a list of payloads and passing this list to the network component to send

over the network to the server component. The number of payloads depends on the number

of I/O servers in the file system. The Petri net implementation of the client component is

presented in Figure 42.

Payloads are created by striping request data into multiple chunks according to the file

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The

distribution of data chunks in a payload is done using round-robin mechanism. The Petri

Net implementation of the payload creation process is presented in Figure 43.

9
6

Client

Client

Client

Client

Client

Client

Client

IOD

IOD

IOD

IOD

RX Switch

RX Switch

Client

TX Switch

TX Switch

BUFFER

testload8

FILE

BUFFER

testload7

FILE

BUFFER
testload6

FILE

testload5

FILE

BUFFER

BUFFER
testload4

FILE

BUFFER

testload3

FILE

BUFFERBUFFERBUFFERBUFFERBUFFERBUFFER

PACKET PACKET PACKETPACKETPACKETPACKET

BUFFER

testload2

FILE

BUFFERBUFFER

BUFFER

testload1

FILE

PACKETPACKET

PACKET PACKETPACKETPACKET

PACKETPACKETPACKET PACKET

TX Switch

Client

RX Switch

IOD

IOD

IOD

IOD

Client

Client

Client

Client

Client

Client

Client

1

1

1

1

1

1

1

1

Figure 41: High level PVFS application read model

97

Figure 42: PVFS client component model for file

read

bf

bf

bf

bf

bf

(id, bf, dst)

(4, bf4, 0)(3, bf3, 0)

(2, bf2, 0)(1, bf1, 0)

tbfbf^ t̂bf

sort INT.lt bf

[]

bf

(id, bf, dst)

bf4bf3bf2bf1

bf4

bf3

bf2

bf1

[]

bf4

[]

[]

[]

bf3bf2bf1

sort INT.lt bf4

bf4

sort INT.lt bf3

bf3

sort INT.lt bf2sort INT.lt bf1

bf2bf1

bf

1`1

next

fl bf::fl

@+processingdelay

@+wiredelay

@+wiredelay

[length bf4 > 0][length bf3 > 0][length bf2 > 0][length bf1 > 0]

[length bf1 > 0 orelse length bf2 > 0 orelse length bf3 > 0 orelse length bf4 > 0]

[(iosize <= 3* stripesize andalso length bf4 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf4 = stripesize)
orelse (length bf4 > 0 andalso length bf4 mod stripesize = 0 andalso length bf4 = iosize div clientnum)]

[(iosize <= 2* stripesize andalso length bf3 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf3 = stripesize)
orelse (length bf3 > 0 andalso length bf3 mod stripesize = 0 andalso length bf3 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf2 = 0)
orelse (iosize <= clientnum*stripesize andalso length bf2 = stripesize)
orelse (length bf2 > 0 andalso length bf2 mod stripesize = 0 andalso length bf2 = iosize div clientnum)]

[(iosize <= stripesize andalso length bf1 = iosize)
orelse (iosize <= clientnum*stripesize andalso length bf1 = stripesize)
orelse (length bf1 > 0 andalso length bf1 mod stripesize = 0 andalso length bf1 = iosize div clientnum)]

Create payload

Create payload

[length bf = iosize]

BUFFER

BUFFER

PACKET

Out
BUFFER

[]

BUFFER

In
BUFFER

Out
PACKET

BUFFERBUFFERBUFFERBUFFER

BUFFERBUFFERBUFFERBUFFER

[]

BUFFER

IOD3

[]

BUFFER

IOD2

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

1

INT

In
FILE

In

Out

In

Out

Create payload

1 1`[]@01 1`[]@01 1`[]@01 1`[]@01 1`[]@0

1 1`1

1

98

Figure 43: Payload creation component model for

PVFS file read

After the payloads are created, the client component prepares the packet before sending

them to the network component. This process represents the network stack on the client

computer. While this process could be considered a part of the network component, it uses

physical resources on the client machine and thus is more closely related to the client

BUFFER

INT

1

PAGE PAGE

IOD1

Out
BUFFER

[]

Out

IOD2

Out
BUFFER

[]

Out

PAGE

IOD3

Out
BUFFER

[]

Out Out
BUFFER

[]

Out

PAGE

pg::bf
bf

pagenum

pg pg

bf^^[pg]

bf

bf^^[pg]

bf

pg

bf^^[pg]

bf

pg

bf^^[pg]
bf

InIn

if (length bf = 0) then 1`1 else if (pagenum >= stripesize*clientnum) then 1`1 else 1`(pagenum + 1)

if ((pagenum > stripesize*3) andalso (pagenum <= stripesize*4)) then 1`pg else empty

if ((pagenum > stripesize*2) andalso (pagenum <= stripesize*3)) then 1`pg else empty

if ((pagenum > stripesize) andalso (pagenum <= stripesize*2)) then 1`pg else empty

if (pagenum <= stripesize) then 1`pg else empty

1 1`[]@0 1 1`[]@0 1 1`[]@0 1 1`[]@0

1 1`1

99

component. Taking the payloads and building network packet around this data, the client

component adds the network identifications of the I/O servers to the data. The network

component will later use this information to deliver the packet to the correct I/O server. For

an I/O read operation, the client component only sends read requests to the servers. Read

requests are very small and will not need to be broken down into smaller fragments. After

the network packets are created, they are sent to the network device buffer.

In addition to sending read requests to the I/O servers, the client component also

receives data being sent back from the I/O servers. From the network device receiving

buffer, the client component gathers the network packets. It assembles the data from these

network packets received from different I/O servers into the needed result and sends it back

to the application.

6.3.2 File read model network component

The network component provides the transportation for the data packets from the client

to the I/O servers. Since only end-to-end performance characteristics of the network

component are needed, the network component will not model switches and routers in

detail. Instead, the network component is designed using multiplexer model. The client

packets are examined and routed to the correct I/O servers.

When the result data are sending back to the clients, a similar mechanism is used. The

server component, depends on the result data, will send data packets back to the original

requested client. The network component examines the packet and route them to the correct

clients. The Petri Net models of the sending and the receiving network components for

PVFS file read operation are presented in Figure 44 and Figure 45.

1
0
0

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)
(id, bf, dst)

(id, bf, dst)
(id, bf, outdst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(8);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(7);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(6);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(5);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(4);

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(3);

[id=4][id=3][id=2][id=1]

[id=4][id=3][id=2][id=1]

input ();
output (outdst);
action
(1);

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKETPACKET

PACKET

Out
PACKET

Out
PACKET

Out
PACKET

Out
PACKET

PACKET

Out Out Out Out

(id, bf, dst)

InIn

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

input ();
output (outdst);
action
(2);

InIn InIn InIn InIn InIn InIn

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

Figure 44: Sending network component for PVFS file read

1
0
1

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)(id, bf, dst)
(id, bf, dst)(id, bf, dst)

bfbfbfbfbfbf

(id, bf, dst)

bfbf

(id, bf, dst)

pk
pk

pkpk

pkpkpkpk

[dst=8][dst=7][dst=6][dst=5][dst=4][dst=3][dst=2][dst=1]

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

PACKET

In
PACKET

In
PACKET

In
PACKET

In
PACKET

In In In In

Out Out Out Out Out Out Out Out

Figure 45: Receiving network component for PVFS file read

102

6.3.3 File read model server component

I/O servers are where the actual I/O operations are performed. Each PVFS file system

has multiple I/O servers that work independently in parallel to provide large I/O bandwidth

that local file system could never achieve.

Each I/O server, similarly to the client side, has a network layer to process network

packets from the network component. A network packet, after arriving at the I/O server, is

examined and categorized into different receive buffers, using a first-come-first-served

(FCFS) mechanism. This process is designed following the same implementation in the

real system. Each client has its own receive buffer.

The server component, following a FCFS order, takes read requests from the receive

buffers and sends them to the local file system. The requests are sending in chunk of 64

Kbytes, which is the PVFS default stripe depth. If the PVFS file system is built with a

different stripe depth, this chunk size is changed. The local file system on the I/O server

performs a sequential read operation. Since the I/O server component takes read request

from the receive buffers using FCFS order, the read request chunks are mixed together. The

next chunk of read requests may not be from the same client as the chunk before it. Two

different clients rarely try to read the same file at the same location. This causes the read

requests stream sending to the local file system to have a very special pattern. This pattern

is multiple session of sequential read requests. Each session may start at a random location.

The Petri Net model for the server component for PVFS file read operation is presented in

Figure 46.

1
0
3

In
PACKET

In

Read

entry

FILE

Read

exit

BUFFER

PACKET
FILE

[]

FILE

[]

FILEWDST

INT

1

INT

Out
PACKET

Out

PACKET

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

[dst=1]

S1

Local file systemLocal file system

[(iosize <= stripesize andalso length bf = iosize)

orelse (iosize <= clientnum*stripesize andalso length bf = stripesize)

orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

EncapsulateEncapsulate

[dst=2]

[length fl > 0]

[length fl > 0]

[dst=3]

[length fl > 0]

[dst=4]

[length fl > 0]

[dst=5]

[length fl > 0]

[dst=6]

[length fl > 0]

[dst=7]

[length fl > 0]

[dst=8]

[length fl > 0]

(id, bf, dst)

bf

(0, bf, dst)

(id, bf, dst)

fl̂ ^[bf]fl

fl

fl̂ ^[bf]
fl

fl

(fl, 1) (fl, 2)

(fl, dst)

fl

next

1`1

dst

(0, bf, dst)

(0, bf, dst)(id, bf, dst)

fl̂ ^[bf]fl

fl

(fl, 3)

dst

[]

[]

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 4)

(id, bf, dst)

(fl, 5)

(id, bf, dst)

(fl, 6)

(id, bf, dst)

(fl, 7)

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 8)

1

1`[]@0

1

1`[]@0

1 1`1

1

1`[]@0 1

1`[]@0 1

1`[]@0

1

1`[]@0 1

1`[]@0
1

1`[]@0

Figure 46: Server component for PVFS file read

104

After read requests passing through the local file system component, it returns the result

data read from disk. At this step, the I/O server component sends these data through a

network packet creation process similar to the client component. However, when the client

component send the read requests over the network, the size of these read requests are

relatively small and can fit within a standard frame. The result data, however, do not. They

need to be divided into multiple segments before they are attached the headers and network

addresses. The Petri Net model for dividing data into segments is presented in Figure 47.

Figure 47: Data segmentation component for

PVFS file read

The segment size of a packet is limited by the MTU of the network. Usually, in a

Gigabit Ethernet network, the MTU is set to 1500. This means that a network packet

maximum size is 1500 bytes.

6.4 File write model implementation

From the application standpoint, writing a file to a parallel file system is no different

than writing a file to a local file system. The way an application writes a file is similar to

the following illustration.

In
PACKET

In Out
PACKET

Out

PACKET

[length bf > 0]

(0, bf, dst)

if (length bf > tcp_mss) then (0, List.take(bf, tcp_mss), dst) else (0, List.take(bf, length bf), dst)

if (length bf > tcp_mss) then (0, List.drop(bf, tcp_mss), dst) else (0, List.drop(bf, length bf), dst)

(0, bf, dst)

(0, bf, dst)

105

The top level model is very similar to the I/O read model. The operation is divided into

three main components: the client component, the network component and the server

component. The Petri Net implementation of the top level model is presented in Figure 48.

6.4.1 File write model client component

The top level of the file write model client component is simple. The file data needed to

be written to disk are broken into multiple blocks of write requests. These write requests

are passed to the client simulation component. The client component will process the data

then send the packaged data to the network component. The result of the write operation is

a series of return codes received from the network model.

The implementation of the client component for file write operation is quite similar to

the client component of the file read operation. However, write requests not only contain

requests to write data to disk but also contain the actual data needed to be written. The

client component needs to divide these blocks of data into multiple payloads. The number

of actual payloads is determined by the number of I/O servers in the system. The Petri Net

model for the PVFS client component is presented in Figure 49.

Payloads are created by striping request data into multiple chunks according to the file

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The

distribution of data chunks in a payload is done using round-robin mechanism. The Petri

Net implementation of the payload creation process is presented in Figure 50.

bytes_write = fwrite(buffer, block_size, number_of_block, file_handle);

1
0
6

Client

Client

Client

Client

Client

Client

Client

IOD

IOD

IOD

IOD

Rx switch

Client

TX Switch

Tx switch

BUFFER

testload8

FILE

BUFFER

testload7

FILE

BUFFER

testload6

FILE

BUFFER
testload5

FILE

testload4

FILE

BUFFER

testload3

FILE

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

BUFFER

PACKETPACKETPACKETPACKETPACKETPACKET

BUFFER
testload2

FILE BUFFER

BUFFER

BUFFER

PACKET

testload1

FILE

PACKETPACKETPACKETPACKET

PACKET

PACKET

PACKET

PACKET

PACKET

Tx switch

Client

Rx switch

IOD

IOD

IOD

IOD

Client

Client

Client

Client

Client

Client

Client

1

1

1

1

1

1

1

1

Figure 48: High level PVFS application write model

1
0
7

(id, bf, 0)@+ networkdelay

(id, bf, 0)

(4, bf4, 0)(3, bf3, 0)(2, bf2, 0)

(1, bf1, 0)

bf4bf3bf2bf1

[]

[][]

[]

bf4bf3bf2bf1

bf4bf3
bf2bf1

sort INT.lt bf4sort INT.lt bf3sort INT.lt bf2sort INT.lt bf1

bf4

[]1` 1

sort INT.lt bf

bf

tbfbf^ ^ tbf

bf

bf3bf2bf1

next

bf

fl bf:: fl

@+ processingdelay

[length bf1 > 0 orelse length bf2 > 0 orelse length bf3 > 0 orelse length bf4 > 0]

Encapsulate (2)Encapsulate Encapsulate (4)Encapsulate (3)

[(iosize < = 3* stripesize andalso length bf4 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf4 = stripesize)

orelse (length bf4 > 0 andalso length bf4 mod stripesize = 0 andalso length bf4 = iosize div clientnum)]

[length bf = iosize]

[(iosize < = 2* stripesize andalso length bf3 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf3 = stripesize)

orelse (length bf3 > 0 andalso length bf3 mod stripesize = 0 andalso length bf3 = iosize div clientnum)]

[(iosize < = stripesize andalso length bf2 = 0)

orelse (iosize < = clientnum* stripesize andalso length bf2 = stripesize)

orelse (length bf2 > 0 andalso length bf2 mod stripesize = 0 andalso length bf2 = iosize div clientnum)]

[(iosize < = stripesize andalso length bf1 = iosize)

orelse (iosize < = clientnum* stripesize andalso length bf1 = stripesize)

orelse (length bf1 > 0 andalso length bf1 mod stripesize = 0 andalso length bf1 = iosize div clientnum)]

Create payload

Create payload

Out
PACKET

PACKET

BUFFERBUFFER
BUFFERBUFFER

BUFFER BUFFERBUFFER BUFFER

BUFFER

[]

BUFFER

Out
BUFFER

[]

BUFFER

In
BUFFER

BUFFERBUFFERBUFFER

1

INT

IOD2

[]

BUFFER

IOD3

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

In
FILE

In

In

Out

Out

Create payload

Encapsulate (3) Encapsulate (4)Encapsulate Encapsulate (2)

1 1` []@0

1 1` []@0

1 1` 1

1 1` []@0 1 1` []@01 1` []@0

1

Figure 49: PVFS client component for file write

108

Figure 50: Payload creation component for PVFS

file write

After creating the payloads, the client component attaches network addresses and

control information to the payloads to create network packets. Since the packet size

depends on the MTU of the network, the client component has to split the payloads into

BUFFER

INT

1

PAGE PAGE

IOD1

Out
BUFFER

[]

Out

IOD2

Out
BUFFER

[]

Out

PAGE

IOD3

Out
BUFFER

[]

Out Out
BUFFER

[]

Out

PAGE

pg::bf
bf

pagenum

pg pg

bf^^[pg]

bf

bf^^[pg]

bf

pg

bf^^[pg]

bf

pg

bf^^[pg]
bf

InIn

if ((pagenum > stripesize*2) andalso (pagenum <= stripesize*3)) then 1`pg else empty

if ((pagenum > stripesize) andalso (pagenum <= stripesize*2)) then 1`pg else empty

if ((pagenum > stripesize*3) andalso (pagenum <= stripesize*4)) then 1`pg else empty

if (pagenum <= stripesize) then 1`pg else empty

if (length bf = 0) then 1`1 else if (pagenum >= stripesize*clientnum) then 1`1 else 1`(pagenum + 1)

109

multiple segments. The Petri Net model for dividing data into segments is presented in

Figure 51.

Figure 51: Data segmentation component for

PVFS file write

 Typically, the MTU is set to 1500 in a Gigabit Ethernet network, so the packet size for

data sending from clients to I/O servers is at the maximum size of 1500 bytes.

6.4.2 File write model network component

The network component model in the file write operation is very similar to the network

component model in the file read operation. There are only some slight differences in the

model due to the data flow of the operation being different. The network packets from the

client component are examined, the destination addresses are checked and the packets are

routed to the correct receiver. The network component provides the transportation for the

packets and also simulates the wire-delay on the network medium. The Petri Net model for

the sending and the receiving network component for PVFS file write are presented in

Figure 52 and Figure 53.

In
BUFFER

In Out
BUFFER

Out

BUFFER

[length bf > 0]

bf

if (length bf > tcp_mss) then List.take(bf, tcp_mss) else List.take(bf, length bf)

if (length bf > tcp_mss) then List.drop(bf, tcp_mss) else List.drop(bf, length bf)

bf

bf

1
1
0

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)(id, bf, dst)

(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst)

(id, bf, dst)

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();
output (outdst);

action (8);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (7);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (6);

[id= 4]

[id= 3]

[id= 2]

[id= 1]

input ();

output (outdst);
action (5);

[id= 4][id= 4][id= 4]

[id= 3][id= 3][id= 3]

[id= 2][id= 2][id= 2]

[id= 1][id= 1][id= 1]

input ();

output (outdst);
action (3);

[id= 4]

input ();

output (outdst);
action (4);

[id= 3]

[id= 2]

input ();

output (outdst);
action (2);

[id= 1]

input ();

output (outdst);
action (1);

PACKET

In 8

In
PACKET

PACKET

In 7

In
PACKET

PACKET

In 6

In
PACKET

PACKET

In 5

In
PACKET

In 3

In
PACKET

PACKET PACKET

In 4

In
PACKET

PACKET

In 2

In
PACKET

Out 4

Out
PACKET

Out 3

Out
PACKET

Out 2

Out
PACKET

Out 1

Out
PACKET

PACKET

In 1

In
PACKET

In

Out Out Out Out

In InIn In In In In

Figure 52: The sending network component for PVFS file write

1
1
1

bfbfbfbfbfbfbfbf bfbfbf

bfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst) (0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf bf

bf bf

bfbfbfbfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)
(0, bf, dst)(0, bf, dst)

(0, bf, dst)
(0, bf, dst)

bfbfbfbfbfbfbfbf

bfbfbfbfbfbfbfbf

bf

(0, bf, dst)

bf

bf

bfbfbfbfbf

(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bf

bfbf

(0, bf, dst)(0, bf, dst)

bf

bf

bf

bf

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1][dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8][dst= 7][dst= 6][dst= 5][dst= 4][dst= 3][dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 8]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 7]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 6]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 5]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 4]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 3]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

[dst= 2][dst= 1]

[(iosize < = stripesize andalso length bf = iosize)
orelse (iosize < = clientnum*stripesize andalso length bf = stripesize)
orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER BUFFER

BUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFERBUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

Out
BUFFER

BUFFER

BUFFERBUFFER

Out
BUFFER

BUFFER

Out
BUFFER

Write
exit 4

In
PACKET

Write
exit 3

In
PACKET

Write
exit 2

In
PACKET

BUFFER

Write
exit

In
PACKET

In In In In

Out Out Out Out Out Out Out Out

Figure 53: The receiving network component for PVFS file write

112

6.4.3 File write model server component

The file write server component is built upon the local write model. The local write

model is the foundation of the file write server model. A network packet, after arriving at

the I/O server, is processed and sent to the local file write model. The server creates a

receive buffer for each client sending in requests. The server model examines the network

packets and moves the request data into the correct buffers using FCFS mechanism. This

process is designed to follow the same implementation in the real system.

Since each packet is limited by the maximum segmentation size of the network, the

server component combines multiple packet data into the original request sent by the client.

Unlike the file read server model, the file write server model does not attempt to combine

the original request into 64Kbytes chunk. Instead the server model combines the

fragmented data into the original request and sends it to the local file write model. Because

of this, the block sizes of the write requests sent to the local file write model are not fixed.

PVFS is relied on the delay write mechanism of the local file system to combine multiple

different small write requests into big and sequential write requests. The local file system

on the I/O server performs the write operation. Since the server model sends the write

requests to the local file system model as it receives in a FCFS order, the block size of the

write requests are quite random. Even though, the write requests could be in sequential

order, the block sizes of the requests are not. This creates a special I/O access pattern. The

Petri Net model for PVFS file write server model is presented in Figure 54.

1
1
3

(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(fl, 8)
(fl, 7)

(fl, 6)(fl, 5)

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

(id, bf, dst)

(fl, 4)

(fl, 3)

(id, bf, dst)

(fl, 2)

(id, bf, dst)

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

[]

fl

fl

fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

next

1` 1 dst

dst

[]

(0, bf, dst)

bf

fl

(fl, dst)

(fl, 1)

fl

fl fl^ ^ [sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ ^ tbf

(id, bf, dst)

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)

orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 8]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)

orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 7]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)

orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 6]

[length fl > 0]

[(length tbf > 0)
andalso

((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 5]

[length fl > 0]

[(length tbf > 0)
andalso
((iosize < = stripesize andalso length tbf = iosize)

orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 3]

[length fl > 0]

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 4]

[length fl > 0]

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 2]

[length fl > 0]

Local File System

[(length tbf > 0)

andalso
((iosize < = stripesize andalso length tbf = iosize)
orelse (iosize < = clientnum* stripesize andalso length tbf = stripesize)
orelse (length tbf > 0 andalso length tbf mod stripesize = 0 andalso length tbf = iosize div clientnum))]

[dst = 1]

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

1

INT

INT

Out
PACKET

[]

FILE

FILEWDST

Write
exit

BUFFER

[]

FILE

BUFFER

[]

BUFFER

In
PACKET

In

Out

Local File System

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` []@0

1 1` 1
1 1` []@0

1

1 1` []@0

Figure 54: Server component for PVFS file write

114

After read requests pass through the local file system component, it returns the result

data read from disk.

6.5 Summary

This chapter presents a set of detailed and hierarchical performance models of the PVFS

file system using Colored Petri Nets. PVFS read operation and PVFS write operation are

studied and their models are built. Each operation is divided into sub-components: client,

network and server. The models of these components are presented. The client components

are where the read requests and write requests from applications are received. The client

components take these read requests and write requests and create several network packets.

The network packets are sent to the servers using the network component. The server

component built upon the local file system model processes the request data and performs

actual I/O operations. The results of the I/O operations are sent to the clients using the

network component.

The current PVFS model is setup to have eight clients and four servers. This is equal to

a small size production file system. The model can be extended to have more clients and

servers. The model currently uses TCP/IP protocol over a Gigabit Ethernet network. It can

also be modified to simulate a different network protocol and different network hardware.

115

C h a p t e r 7

PARALLEL FILE SYSTEM SIMULATION MODEL PERFORMANCE

VALIDATION

7.1 Introduction

This chapter presents the performance validation of the simulation model for a PVFS

file system. Because PVFS is a parallel file system, the number of clients accessing the file

system at the same time is important. The file system is designed to provide a massive I/O

bandwidth and throughput by allowing multiple I/O servers to work with multiple clients at

the same time. The performance measurements are performed similarly to the way the local

file system performance experiments are done.

7.2 Validation setup

In order to validate the entire Petri Net file system model against real-world data, the

model hardware parameters, such as memory delay, execution speed, function overhead,

and disk speed, are measured directly from the machines where the real experiments take

place, using kernel traces. The same Ftrace mechanism as described in Chapter 5 is

utilized. Since PVFS is a parallel file system, a network is involved. The performance

parameters of the network stack on the client and server machines are also measured, using

the Ftrace facility. Network performance parameters on the wire are recorded, using

network monitoring tools, including ping, traceroute and packet sniffer. The performance

validations are executed, starting with one client accessing the file system. The number of

clients is increased until the number of clients equals eight. The PVFS file system model is

116

implemented with four I/O servers. With eight clients (double the amount of servers)

accessing the file system simultaneously, the file system level of stress is high enough to

produce good performance results.

7.3 Performance validation experiments

Simulations are run several times, and the average results are used to compare with

iozone benchmark results running on the test system. The simulation experiments are run

using a set of synthetic I/O requests and simulating sequential I/O. The I/O requests are

grouped into similar block-size configurations of the iozone benchmark.

7.3.1 Single client performance experiment

In this performance measurement, one client reads and writes to the PVFS file system.

The result of the I/O read performance in the experiment is presented in Figure 55. The

error bars are set at 20%.

Figure 55: Single client I/O read validation

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation

Experiment

117

All points, except the last one, are within or very close to 20% of the real-world

measurement. Even though the last data point is farther away than other data points, it is

still a very good result, and the error is likely to come from measurement inaccuracy. The

simulation data points are consistently lower than real-world data.

The result of the I/O write performance in the experiment is presented in Figure 56. The

error bars are set at 20%.

Figure 56: Single client I/O write validation

Like the I/O read result, the I/O write result is also very good. The majority of data

points are within 20% of the real system measurement. Simulation data in this experiment

are not consistently lower than real-world data like we have observed in the I/O read result.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation

Experiment

118

At small block size, the simulation results are higher than real-world data, but at bigger

block size, the simulation results become lower.

The reason for this performance behavior comes from the buffer design of the I/O server

model. The I/O server has a receive buffer for every client sending requests to the server.

Data are taken out of the buffers, using a first-come-first-served (FCFS) order. The receive

buffers in the real server are implemented, using a linked-list data structure. The larger the

buffer, the slower an item in the buffer can be accessed. Currently, the buffers of the

simulation model are implemented to have a fixed operating cost. This means that the time

it takes to access an item in the buffer stays the same, regardless of the size of the buffer.

The number of write requests needed to write a file when using a small block size is

much larger than the number of write requests when using a large block size. In the

simulation model, this does not change the time it takes to de-queue requests. This causes

the simulation model to run faster than the real system at the small block sizes and slower

than the real system at the large block sizes.

7.3.2 Two clients performance experiment

In this experiment, two clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 57. The error bars are set at 20%.

119

Figure 57: Two clients I/O read validation

The result is consistent with the I/O read result presented in the single client experiment.

All data points, except two at the highest block size are within or close to 20% of the real-

world data. The shapes of the performance curves are also similar to the single client result.

The simulation data points are consistently lower than the real-world data. The

performances of the clients show only slight differences. This shows the workload is

balanced well in the PVFS file system, and the file system level of stress is still low.

The result of the I/O write performance in the experiment is presented in Figure 58. The

error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Experiment1

Simulation2

Experiment2

120

Figure 58: Two clients I/O write validation

I/O write also exhibits similar behavior as the single client experiment. All data points,

except two at the small block sizes, are within 20% of the real-world data. The two

exception data points are also very close to 20% of the real-world data. The performance

curves are also similar to the single client experiment. The data points for small block-size

simulation are higher than the real-world data, but the data points for bigger block-size

simulation are lower than the real-world data.

7.3.3 Three clients performance experiment

In this experiment, three clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 59. The error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Experiment1

Simulation2

Experiment2

121

Figure 59: Three clients I/O read validation

In general, the performance behavior is similar to what we have observed so far. The

simulation data points are also consistently lower than the real-world data points. The

performance curves are also very close together. This shows the file system is responding

well, and the stress level is not high enough to make a difference.

The result of the I/O write performance in the experiment is presented in Figure 60. The

error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulator1

Experiment1

Simulator2

Experiment2

Simulator3

Experiment3

122

Figure 60: Three clients I/O write validation

The I/O write performance in the experiment confirms what was observed in the I/O

read portion of the experiment. The file system stress level with three clients is still not

high enough to make a difference in performance behavior. However, there are some slight

differences from the previous I/O write performance chart at the bigger block sizes. These

differences become more visible when the stress level becomes high enough. For the most

part, data points are within 20% of the real-world data or very close.

7.3.4 Four clients performance experiment

In this experiment, four clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 61. The error bars are set at 20%.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulator1

Experiment1

Simulator2

Experiment2

Simulator3

Experiment3

123

Figure 61: Four clients I/O read validation

With four clients accessing the PVFS file system at the same time, we start to notice

variations within the data points, especially in the real-world data. The simulation data,

however, are still very consistent. This is due to the simulation model having fewer factors

affecting the result. The more clients accessing the PVFS file system, the more outside

factors are introduced to the real-world data.

Even with the increasing variation of the data points, the experiment result is still very

good. The performance behavior is still similar to what we have observed in previous

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Experiment1

Experiment2

Experiment3

Experiment4

124

experiments. The last two data points are not within 20% of the real-world data, but are still

very close to them.

The result of the I/O write performance in the experiment is presented in Figure 62. The

error bars are set at 20%.

Figure 62: Four clients I/O write validation

The I/O write experiment result also has variations. The amount of variations is slightly

more than in the I/O read experiment. In general, the performance behavior is slightly

different to what we have previously observed. The simulation data points are higher than

the real-world data points at small block sizes. The simulation data points are lower than

the real-world data points at larger block sizes. The cross-over point is slightly shifted

toward the larger block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Experiment1

Experiment2

Experiment3

Experiment4

125

The simulation data points are still within 20% of the real-world data points or close to

them. The two data points at smallest block sizes are somewhat farther away from the real-

world data points.

7.3.5 Five clients performance experiment

In this experiment, five clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 63. The error bars are set at 20%.

Figure 63: Five clients I/O read validation

The experiment result is still very consistent, even when five clients are reading the

PVFS file system at the same time. The variations are there, but they do not badly affect the

overall performance. Most data points, except the last two points at large block sizes, are

within 20% of the real-world data.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

126

The result of the I/O write performance in the experiment is presented in Figure 64. The

error bars are set at 20%.

Figure 64: Five clients I/O write validation

Compared to the I/O read experiment, the I/O write experiment has more variations, and

the effect of them on the overall performance is more visible. This is due to I/O write

operations generating more stress on the file system than I/O read operations. In general,

I/O write operations are slower and more resource intensive than I/O read operations.

The performance curves are still following the same trend. Simulation data points are

higher than real-world data points at small block sizes and lower than real-world data at big

block sizes. However, the stress on the file system has caused the error to become bigger,

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

127

especially the data points at small block sizes. The gap between the simulation data points

and the real-world data points has become significant. There are also more variations at the

large block sizes than previously observed.

7.3.6 Six clients performance experiment

In this experiment, six clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 65. The error bars are set at 20%.

Figure 65: Six clients I/O read validation

Compared to the previous experiment, it is clear that the amount of variations increases

consistently every time the number of clients increases. This supports the assumption,

which seems to be obvious, that the level of stress on the file system increases when the

number of clients, accessing the file system at the same time, increases.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

128

However, the performance curves are still grouped together quite nicely. All data points,

except the last two points, are still within 20% of the real-world data. In the next few

experiments, we start to see significant changes in the performance behavior.

The result of the I/O write performance in the experiment is presented in Figure 66. The

error bars are set at 20%.

Figure 66: Six clients I/O write validation

The variations and the effects of the file-system stress level are very visible in this

experiment. This shows that the file system stress level has become significant. At large

block sizes, simulation data points are still within 20% of real-world data points. However,

at small block sizes, the errors have become quite large. The performance curves are also

not as smooth as before, even though they are still staying very close to each other.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

129

7.3.7 Seven clients performance experiment

In this experiment, seven clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 67. The error bars are set at 20%.

Figure 67: Seven clients I/O read validation

When seven clients are reading the PVFS file system at the same time, the workload has

become high enough to visibly affect the file system performance behavior. Comparing to

the previous experiment with six clients, this experiment shows much more variations and

distortions. Simulation data points started to show outside of the 20% range, not only at the

big block sizes, but also at the small block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

130

The result of the I/O write performance in the experiment is presented in Figure 68. The

error bars are set at 20%.

Figure 68: Seven clients I/O write validation

The variations and distortions are becoming even more visible in this experiment.

However, similarly to previous experiments, the block sizes in the middle are the most

stable. Data points of the middle block sizes are all stay within 20% of the real-world data

points. Errors and distortions are happening at the small block sizes and large block sizes.

At small block sizes, data points stay very close to each other. This allows the errors to be

observed easily. At large block sizes, data points are more dispersed with large variations.

It is harder to observe the error at the large block sizes.

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

131

7.3.8 Eight clients performance experiment

In this experiment, eight clients read and write to the PVFS model. The result of the I/O

read performance in the experiment is presented in Figure 69. The error bars are set at 20%.

Figure 69: Eight clients I/O read validation

When the number of clients simultaneously reading the PVFS file system reaches 8

clients, we expect the stress level of the file system to be very high, and the experiment

supports that expectation. At this level of stress, even the middle block sizes data points,

which have stayed very stable until now, start to show variations and distortions. Many

data points have now fallen well outside of the 20% error range. The biggest changes are at

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Simulation8

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7

132

the big block sizes. As the number of client increases, the errors at the big block sizes also

increase, especially at the largest block size.

As stated in the previous experiment, simulation data points are showing much less

variations and distortions. This makes perfect sense, as the simulation model has much

fewer outside factors. Simulation experiments are also performed under well-controlled and

precise conditions. The result of the I/O write performance in the experiment is presented

in Figure 70. The error bars are set at 20%.

Figure 70: Eight clients I/O write validation

Even at eight clients writing to the PVFS file system at the same time, with the only

exception at the 64Kbytes block size, the simulation performance behavior is still quite

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Simulation8

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

133

consistent with what was observed previously. In this experiment, many data points fall

outside of the 20% error range; however, simulation data points still group together very

well, especially at the small block sizes. Even though there are variations among simulation

data points, the magnitude of errors at the small block size have stayed relatively the same

since the beginning. The magnitude of errors at the large block sizes, however, increases

when the number of clients simultaneously writing to the PVFS file system increases.

7.4 Summary

This chapter presents a set of detailed performance validation experiments of the

simulation model of the PVFS file system. The workload for the parallel file system, as

observed in Chapter 3, primarily consists of very-large-block-size sequential I/O.

Therefore, the performance validation utilizes synthetic sequential I/O workload to study

the simulation model and to compare with real-world data. Performance validations are set

up with eight separate experiments. Each experiment uses a different number of clients

accessing the PVFS file system. The number of clients is increased from one to eight. The

last experiment uses eight clients, which is double the number of I/O servers,

simultaneously accessing the PVFS file system. By increasing the number of clients from

small to large, we observe the behavior of the simulation model when the stress level of the

file system increases.

For the single client experiment, the simulation performances are within 20% of the real

file system in most cases. When the number of clients increases, we observe the

performance curves start to change, as the stress level of the file system increases. Up to

three clients accessing the PVFS file system at the same time, the performance curves stay

134

very close together. When the numbers of clients become equal to or larger than four

clients, the variations and distortions become visible. The simulation data points group

together much better than the real-world data points because the affecting factors are much

less in the simulation environment. The magnitude of errors stays relatively the same at

small block sizes. The errors become larger at the large block sizes when the number of

client increases.

In general, the performance behavior is consistent throughout the performance

validation process. The performance validation results are also very good, considering that

this is a very complex environment, involving a parallel file system and multiple clients

accessing simultaneously.

135

C h a p t e r 8

CONCLUSION

We conclude this dissertation by summarizing the importance of file system simulation

models, presenting some of the implications of this research, discussing what will be

required for file system simulation models to achieve user acceptance in computer systems

analysis, and identifying several promising avenues for continuing work.

8.1 The importance of the file system simulation models

Existing file system evaluation techniques have limitations and disadvantages in

evaluating the role and performance of hypothetical file systems within complex computer

environments. This dissertation describes the simulation models of the local and parallel

file system and its role in providing alternative evaluation techniques in addition to existing

ones. The file system simulation model enables end-to-end performance experiments of

complex file systems, using different workloads which include real-system production

workloads. This technique will provide an opportunity to analyze the interaction of

different system components as well as different performance behavior introduced by the

operating system.

8.2 Implications of this research

The file system simulation models offer the opportunity to investigate the performance

behavior of different file systems in different type of storages in computer systems. It

permits forays into the space of hypothetical file system functionalities without the

difficulties of developing and supporting a prototype system or a proof of concept study. It

136

also helps in eliminating the cost of purchasing and deploying actual hardware to build the

actual system. This is especially relevant when considering the number of technologies

available today and the recent trend toward the development of application-specific storage

systems. Examples of these systems include, but are not limited to, audio and video

recording and playback systems, scientific data processing, business data factory

processing, and database housing, where support for application-specific features in

individual system often play a key role in the success of the products in the market.

8.3 Keys to the acceptance of the file system simulation models

The benefits of the file system simulation models as an evaluation technique will not

come without investments toward the development and maintenance of the simulation

components. These investments include those of developing accurate and computationally

inexpensive simulation models for storage devices and other components of the file

systems. It also includes extending and creating a broader set of evaluation workloads that

are more representative of the systems to be deployed or the existing systems which need to

be analyzed.

For the file system simulation models to remain effective, new storage device models,

new network models, and new operating system models need to continue to be created.

Simulation experiments require validated or high-confidence component models in order to

provide useful experimental results. This is not likely to be a problem, since the current

simulation models are built with expansion and improvement in mind. Simulation

components are designed to be as modular as possible, providing the flexibility and

freedom to improve or replace. Depending on the type of component, in addition to the

137

component architecture, the operating characteristics and performance parameters of the

component also need to be captured. They include, but are not limited to, memory access

time, instructions execution time, device seek time, and device access time. A physical

device‘s attributes and characteristics can be obtained from the technical data of the device

released by the manufacturer. Operating system component parameters can be gathered by

profiling and monitoring tools as well as kernel traces. Looking to the future, Section 8.4

discusses possible advancements in the file system simulation models through

improvements in existing components and explores new component implementation

options.

Additionally, application-level workloads will need to be carefully developed in order to

gain the full usefulness of the file system simulation models. Availability of such

workloads could potentially lead to better characterization of real-system workloads and

better benchmarks for storage systems. Even though well-accepted workloads exist, they

are proprietary and belong to a few organizations. The lack of diverse and representative

workloads for storage evaluation has been and continues to be a problem in the storage

systems community [97, 98].

8.4 Opportunities for future work

In this section we discuss groups of improvements and developments for the simulation

models centered on the themes of existing component improvement and new component

implementation.

138

8.4.1 Improving existing simulation components

As demonstrated by the evaluations in this dissertation, the simulation models could

produce very similar performance results to the real-world measurements. However, many

components within the simulation models could still be improved to create even better

result. An important component whose improvement benefits the simulation models greatly

is the read-ahead mechanism. Usually, regular files are stored on disk in large groups of

adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads.

Therefore, many disk accesses are sequential. Accordingly, read-ahead consists of reading

several adjacent pages of data of a regular file or block device file before they are actually

requested. In most cases, read-ahead significantly improves I/O read operation

performance. Consequently, it improves system performance. An application, when

sequentially reading a file, does not have to wait for the requested data because they are

already available in memory. However, when the application accesses files randomly, read-

ahead does not help improving performance. In the case of random I/O, it is actually

detrimental because it not only wastes space in the page cache with useless information, but

also spends more time to read them into memory. Therefore, the read-ahead component

needs to reduce or stop read-ahead when it detects that the most recently I/O access is not

sequential to the previous one. The current model component could be switched from

sequential I/O access to random I/O access. However, it does not have all needed features

currently implemented. The improved read-ahead component needs to implement the

following features:

139

- Read-ahead may be gradually increased as long as the process keeps accessing the

file sequentially.

- Read-ahead must be scaled down or even disabled when the current access is not

sequential with respect to the previous one (random access).

- Read-ahead should be stopped when a process keeps accessing the same pages over

and over again (only a small portion of the file is being used), or when almost all

pages of the file are already in the page cache.

Another important simulation component to improve is the memory reclaiming

mechanism. This mechanism is currently implemented partially in the page cache

component. A more complete implementation of the memory reclaiming mechanism could

help the model more accurately present the state of the I/O memory buffer.

Unfortunately, due to the empirical nature of the memory reclaiming design in Linux, its

code changes very quickly. However, the general ideas and most major heuristic rules

should continue to be valid. The design ideals of the memory reclaiming mechanism are:

- Pages in disk and memory caches not referenced by any process have priority.

These pages are considered ―harmless.‖ They should be reclaimed before pages

belonging to processes in the user spaces. Also, non-dirty pages have higher

priority than dirty pages because they do not have to be written to disk.

- Except locked pages, all pages of user space processes are reclaimable. The

memory reclaiming process must be able to steal any page of a user space process,

including anonymous pages. If a process has been sleeping for a long period of

time, it will progressively lose all its page frames.

140

- If a page is shared by several processes, the memory reclaiming process clears all

page table entries that refer to the page frame before reclaiming the page.

- The memory reclaiming process uses a Least Recently Used (LRU) replacement

algorithm and two lists (active and inactive) to identify which pages to reclaim. If a

page has not been accessed for a long time, the probability that it will be accessed

in the near future is low, and it can be considered inactive page. On the other hand,

if a page has been accessed recently, the probability that it will continue to be

accessed is high, and it must be considered as active page. The reclaiming process

will only reclaim inactive pages.

On the server component of the simulation models, the receiving buffer component also

needs some improvements. Currently, the receiving buffer component is implemented,

using a cost model with computational complexity of O(1) for inserting and searching

incoming packets. In Linux, the implementations of the network receiving buffer models

are usually a linked list with the computational complexity of O(n) for inserting and

searching packets. This is the reason why the simulation models have slower performance

than the real-world measurement when using small block size and faster performance than

the real-world measurement when using big block size. Due to the flow nature of Petri Net,

there are some difficulties in modifying the model from a constant cost model to a linear

cost model. However, the change can reduce the errors of the simulation models when

comparing to the real-world measurement.

141

8.4.2 Implementing new components

In addition to improving existing model components, implementing new model

components is another direction to extend the capability of the simulation models. One

interesting component that has not been implemented is the Linux I/O scheduler. The I/O

scheduler controls the way I/O reads and writes are committed to disk. The goal of the I/O

scheduler is to provide better optimization for different classes of workload by allowing the

operating system to utilize many different scheduling mechanisms.

Each scheduling mechanism is designed to improve a certain aspect of the I/O

operations. The techniques used by the scheduler to improve performance include, but are

not limited to, merging request, elevator, and prioritization. Merging request is a technique

where adjacent requests are merged together to reduce disk seeking. Elevator is a technique

where requests are ordered, based on their physical location, and the requests are usually

traversed in one direction from the closest location to the farthest or vice versa.

Prioritization is a technique where the priorities of requests are manipulated to improve

performance. There are currently four I/O schedulers available. They are the no-op

scheduler, the anticipatory I/O scheduler (AS), the deadline scheduler and the complete fair

queuing scheduler (CFQ).

The no-op scheduler is the simplest scheduling scheme. It only has the merging request

technique implemented. All I/O requests are put into a simple first-in-first-out (FIFO)

queue. Perhaps, the no-op scheduler works best with solid state devices that do not depend

on mechanical movement to access data.

142

The anticipatory I/O scheduler is the former default scheduling scheme in the Linux

kernel. It implements the merging request technique, the elevator technique and an

anticipating read operation technique. Basically, it pauses for a short time (usually a few

milliseconds) after a read operation in anticipation of another read request.

The deadline scheduler implements request merging and elevator queues. More

importantly, it imposes a deadline on all operations to prevent resource starvation by

maintaining two deadline queues, in addition to the elevator queues (both read and write).

Deadline queues are basically sorted by their deadline, while the elevator queues are sorted

by the sector number. The deadline scheduler decides which queue to use before processing

any request. Read queues are given a higher priority, because processes usually block on

read operations. After that, the deadline scheduler checks if the first request in the deadline

queue has expired. If none of the requests in the deadline queue is close to expiration, the

scheduler will process requests from the elevator queue.

The complete fair queuing (CFQ) scheduler also implements request merging and

elevator queues. It additionally attempts to give all users of a particular device the same

number of I/O requests over a particular time interval. CFQ categorizes incoming requests

into synchronous type and asynchronous type. According to I/O priority of the requesting

process, asynchronous requests are distributed into multiple priority queues, one queue per

I/O priority. Each queue is assigned a time slice which depends on the I/O priority of the

submitting process. The scheduler accesses these queues in a round-robin order.

Synchronous requests are distributed into a number of per-process queues. The number of

requests in a queue is also restricted, based on the I/O priority.

143

Obviously, depending on which scheduling scheme is in use, the I/O performance

behavior of the system can have different characteristics. By implementing the I/O

scheduler, the file system simulation models can accurately mimic the performance

behavior of the actual file system and storage subsystems. The I/O scheduler is complex,

but the current file system simulation models have many existing components that could be

reused to make the implementation easier.

Another interesting component to implement is a simulation model for different network

hardware. InfiniBand is a very good one with which to start, since there are PVFS

modifications to operate successfully, using InfiniBand as the network hardware [99-101].

InfiniBand is a powerful network architecture, designed to support I/O connectivity for the

Internet infrastructure. Uniquely providing both backplane solutions and also traditional

networking interconnects, InfiniBand offers communication and management infrastructure

for inter-processor communication and I/O. By unifying the network‘s interconnect with a

feature-rich managed architecture, it manages to provide native cluster connectivity, thus

simplifying application cluster connections, supporting scalability, and sustaining

reliability. With QoS mechanisms built in, InfiniBand can provide virtual lanes on each

link and define service levels for individual packets.

The current network hardware implemented in the simulation models is Ethernet, which

uses a hierarchical switched topology. Unlike Ethernet, InfiniBand uses a switched fabric

topology. Other commonly-used network topologies are Fat-Tree (Clos), mesh, and 3D-

Torus. Any of the previously mentioned topologies, after implementation, would create a

very different interconnection simulation component, in comparison to the current

144

component. InfiniBand also transmits data in large packets (maximum size of 4 Kbytes).

Packets are used to form messages, which could be as large as 2 Gbytes. There are multiple

types of messages, such as direct memory access (RDMA), channel send or receive,

transaction-based operation, multicast transmission, and atomic operation. Due to

implementation complexity reasons, PVFS over InfiniBand implementations are using

Internet Protocol (IP) over InfiniBand technology [102]. This is also a very good basis for

the PVFS simulation model. Many network components and client components as well as

server components can be reused.

Based on the same principle as PVFS, a much improved PVFS2 is also a very nice

addition to the file system simulation models. A PVFS2 improvement that has a significant

impact on the simulation models is how the file system interacts with networks and

storages. PVFS1 relies on the socket networking interface and local file systems for data

and metadata storage. PVFS2 uses the Buffered Messaging Interface (BMI) and the Trove

storage interface to provide Application Programming Interfaces (APIs) to network and

storage technologies respectively. PVFS2 can support several different network types, such

as TCP/IP, Myricom's GM message passing system, and InfiniBand (both Mellanox VAPI

and OpenIB APIs) via BMI. Supporting multiple networking technologies efficiently is a

very important feature of PVFS2. As a result, implementing the BMI model is a key to

successful implementation of the PVFS2 simulation model.

Similar to network technologies, many different storage technologies are also available.

PVFS2 uses the Trove storage interface to efficiently support multiple storage back-end

technologies. In addition to storing file data, metadata has also received much attention in

145

PVFS2. Instead of using a flat file on the local file system to store metadata as PVFS does,

PVFS2 is using Berkeley DB database technologies for the metadata storage. In PVFS,

there is only one metadata server. This creates a single point of failure, as well as a

performance bottleneck. PVFS2 can distribute metadata to multiple I/O servers (which

might or might not also serve data). This allows metadata for different files to be placed on

different servers and reduces the congestion to the metadata servers.

146

BIBLIOGRAPHY

[1] I. Gorton, P. Greenfield, A. Szalay, and R. Williams, "Data-Intensive Computing in

the 21st Century," Computer, vol. 41, pp. 30-32, 2008.

[2] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations," International Journal of High Performance

Computing Applications, vol. 15, pp. 200-222, 2001.

[3] A. Hutflesz, H.-W. Sis, and P. Wildmayer, "Twin Grid Files: Space Optimizing

Access Schemes," in Proceedings of the 1988 ACM SIGMOD international

conference on Management of data, 1988, pp. 183-190.

[4] E. Morenoff and J. B. McLean, "Application of Level Changing to a Multilevel

Storage Organization," Communications of the ACM, vol. 10, pp. 149-154, 1967.

[5] B. Randell and C. J. Kuehner, "Dynamic Storage Allocation Systems,"

Communications of the ACM, vol. 11, pp. 297-306, 1968.

[6] G. A. Gibson and R. V. Meter, "Network Attached Storage Architecture,"

Communications of the ACM, vol. 43, pp. 37-45, 2000.

[7] K. Jensen, Coloured Petri nets (2nd ed.): basic concepts, analysis methods and

practical use: volume 1. London, UK: Springer-Verlag, 1996.

[8] L. M. Kristensen, S. Christensen, and K. Jensen, "The practitioner's guide to

coloured Petri nets," International Journal on Software Tools for Technology

Transfer, vol. 2, pp. 98-132, 1998.

[9] A. V. Ratzer, et al., "CPN tools for editing, simulating, and analysing coloured Petri

nets," in Proceedings of the 24th international conference on Applications and

theory of Petri nets, Eindhoven, The Netherlands, 2003, pp. 450-462.

[10] M. K. Johnson. (2001). Whitepaper: Red Hat's New Journaling File System: ext3.

Available: http://www.redhat.com/support/wpapers/redhat/ext3/

[11] J. S. Bucy and G. R. Ganger, The DiskSim simulation environment version 3.0

reference manual. Pittsburgh, Pa.: School of Computer Science, Carnegie Mellon

University, 2003.

[12] J. L. Griffin, J. Schindler, S. W. Schlosser, J. C. Bucy, and G. R. Ganger, "Timing-

accurate Storage Emulation," in Proceedings of the 1st USENIX Conference on File

and Storage Technologies, Monterey, CA, 2002, p. 6.

147

[13] J. L. Griffin and G. R. Ganger, "Timing-accurate storage emulation : evaluating

hypothetical storage components in real computer systems," Thesis (Ph D),

Carnegie Mellon University, Carnegie Mellon University, 2004., Pittsburgh, PA,

2004.

[14] K. E. Maghraoui, G. Kandiraju, J. Jann, and P. Pattnaik, "Modeling and simulating

flash based solid-state disks for operating systems," in Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering, San Jose,

California, USA, 2010, pp. 15-26.

[15] Y. Wang and D. Kaeli, "Execution-Driven Simulation of Network Storage

Systems," in Proceedings of the The IEEE Computer Society's 12th Annual

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, 2004, pp. 604-611.

[16] D. S. Batory, "Modeling the Storage Architectures of Commercial Database

Systems," ACM Transactions on Database Systems (TODS), vol. 10, pp. 463-528,

1985.

[17] H. Gomaa, "A Simulation Based Model Of A Virtual Storage System," in

Proceedings of the 12th annual symposium on Simulation, 1979, pp. 273-303.

[18] J. E.G. Coffman and M. I. Reiman, "Diffusion approximations for storage processes

in computer systems," in Proceedings of the 1983 ACM SIGMETRICS conference

on Measurement and modeling of computer systems, 1983, pp. 93-117.

[19] P. Jacobson and E. Lazowska, "Analyzing queueing networks with simultaneous

resource possession," Communications of the ACM, vol. 25, pp. 142-151, 1982.

[20] A. Kraiss and G. Weikum, "Integrated document caching and pre-fetching in

storage hierarchies based on Markov-chain predictions," The VLDB Journal — The

International Journal on Very Large Data Bases, vol. 7, pp. 141-162, 1998.

[21] D. Menasce, O. Pentakalos, and Y. Yesha, "An analytic model of hierarchical mass

storage systems with network-attached storage devices," in Proceedings of the 1996

ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, 1996, pp. 180-189.

[22] L. Zhaobin and L. Haitao, "Modeling and Performance Evaluation of Hybrid

Storage I/O in Data Grid," in Network and Parallel Computing Workshops, 2007.

NPC Workshops. IFIP International Conference on, 2007, pp. 624-629.

[23] X. Molero, F. Silla, V. Santonja, and J. Duato, "Modeling and simulation of storage

area networks," in Modeling, Analysis and Simulation of Computer and

148

Telecommunication Systems, 2000. Proceedings. 8th International Symposium on,

2000, pp. 307-314.

[24] R. Routray, S. Gopisetty, P. Galgali, A. Modi, and S. Nadgowda, "iSAN: Storage

Area Network Management Modeling Simulation," in Networking, Architecture,

and Storage, 2007. NAS 2007. International Conference on, 2007, pp. 199-208.

[25] J. Staley, S. Muknahallipatna, and H. Johnson, "Fibre Channel based Storage Area

Network Modeling using OPNET for Large Fabric Simulations: Preliminary

Work," in Local Computer Networks, 2007. LCN 2007. 32nd IEEE Conference on,

2007, pp. 234-236.

[26] N. Aizikowitz, A. Glikson, A. Landau, B. Mendelson, and T. Sandbank,

"Component-based performance modeling of a storage area network," in

Proceedings of the 37th conference on Winter simulation, Orlando, Florida, 2005,

pp. 2417-2426.

[27] H. Hung-Chang and K. Chung-Ta, "Modeling and evaluating peer-to-peer storage

architectures," in Parallel and Distributed Processing Symposium., Proceedings

International, IPDPS 2002, Abstracts and CD-ROM, 2002, pp. 24-29.

[28] P. DeRosa, K. Shen, C. Stewart, and J. Pearson, "Realism and simplicity: disk

simulation for instructional OS performance evaluation," in Proceedings of the 37th

SIGCSE technical symposium on Computer science education, Houston, Texas,

USA, 2006, pp. 308-312.

[29] A. Ali and R. d. Souza, "Modeling and simulation of hard disk dive final assembly

using a HDD template," in Proceedings of the 39th conference on Winter

simulation: 40 years! The best is yet to come, Washington D.C., 2007, pp. 1641-

1650.

[30] D. Lugones, et al., "High-speed network modeling for full system simulation," in

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on,

2009, pp. 24-33.

[31] N. Agarwal, L.-S. Peh, and N. Jha, "Garnet: A Detailed Interconnection Network

Model inside a Full-system Simulation Framework," Princeton University CE-P08-

001, 2008.

[32] E. Argollo, et al., "COTSon: infrastructure for full system simulation," SIGOPS

Oper. Syst. Rev., vol. 43, pp. 52-61, 2009.

[33] J. Lee, et al., "Modeling communication networks with hybrid systems,"

IEEE/ACM Trans. Netw., vol. 15, pp. 630-643, 2007.

149

[34] S. Bohacek, et al., "A hybrid systems modeling framework for fast and accurate

simulation of data communication networks," SIGMETRICS Perform. Eval. Rev.,

vol. 31, pp. 58-69, 2003.

[35] A. Kavimandan, W. Lee, M. Thottan, A. Gokhale, and R. Viswanathan, "Network

simulation via hybrid system modeling: a time-stepped approach," in Computer

Communications and Networks, 2005. ICCCN 2005. Proceedings. 14th

International Conference on, 2005, pp. 531-536.

[36] J. Liu, "Packet-level integration of fluid TCP models in real-time network

simulation," in Proceedings of the 38th conference on Winter simulation, Monterey,

California, 2006, pp. 2162-2169.

[37] J. Liu, "Parallel Simulation of Hybrid Network Traffic Models," in Proceedings of

the 21st International Workshop on Principles of Advanced and Distributed

Simulation, 2007, pp. 141-151.

[38] T. Verdickt, B. Dhoedt, F. D. Turck, and P. Demeester, "Hybrid performance

modeling approach for network intensive distributed software," in Proceedings of

the 6th international workshop on Software and performance, Buenes Aires,

Argentina, 2007, pp. 189-200.

[39] M. Yu and M. Zhou, "A performance modeling scheme for multistage switch

networks with phase-type and bursty traffic," IEEE/ACM Trans. Netw., vol. 18, pp.

1091-1104, 2010.

[40] D. F. Kassa and A. E. Krzesinski, "A queueing network model of TCP

performance," in Proceedings of the 2005 annual research conference of the South

African institute of computer scientists and information technologists on IT

research in developing countries, White River, South Africa, 2005, pp. 56-65.

[41] T. Katakami, T. Tabata, and H. Taniguchi, "I/O Buffer Cache Mechanism Based on

the Frequency of File Usage," in Convergence and Hybrid Information Technology,

2008. ICCIT '08. Third International Conference on, 2008, pp. 76-82.

[42] Y. Zhou, Z. Chen, and K. Li, "Second-level buffer cache management," Parallel

and Distributed Systems, IEEE Transactions on, vol. 15, pp. 505-519, 2004.

[43] W. Shenggang, C. Qiang, H. Xubin, X. Changsheng, and W. Chentao, "An

Adaptive Cache Management Using Dual LRU Stacks to Improve Buffer Cache

Performance," in Performance, Computing and Communications Conference, 2008.

IPCCC 2008. IEEE International, 2008, pp. 43-50.

[44] X. Ding, S. Jiang, and F. Chen, "A buffer cache management scheme exploiting

both temporal and spatial localities," Trans. Storage, vol. 3, p. 5, 2007.

150

[45] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, "DULO: an effective buffer

cache management scheme to exploit both temporal and spatial locality," in

Proceedings of the 4th conference on USENIX Conference on File and Storage

Technologies - Volume 4, San Francisco, CA, 2005, pp. 8-8.

[46] A. R. Butt, C. Gniady, and Y. C. Hu, "The Performance Impact of Kernel Pre-

fetching on Buffer Cache Replacement Algorithms," IEEE Trans. Comput., vol. 56,

pp. 889-908, 2007.

[47] O. Ozturk, S. W. Son, M. Kandemir, and M. Karakoy, "Pre-fetch throttling and data

pinning for improving performance of shared caches," in Proceedings of the 2008

ACM/IEEE conference on Supercomputing, Austin, Texas, 2008, pp. 1-12.

[48] S. W. Son, et al., "Profiler and compiler assisted adaptive I/O pre-fetching for

shared storage caches," in Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, Toronto, Ontario, Canada, 2008,

pp. 112-121.

[49] S. Subha, "An Algorithm for Buffer Cache Management," in Information

Technology: New Generations, 2009. ITNG '09. Sixth International Conference on,

2009, pp. 889-893.

[50] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, "Analysis and

evolution of journaling file systems," in Proceedings of the annual conference on

USENIX Annual Technical Conference, Anaheim, CA, 2005, pp. 8-8.

[51] P. Vijayan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, "Model-based failure

analysis of journaling file systems," in Dependable Systems and Networks, 2005.

DSN 2005. Proceedings. International Conference on, 2005, pp. 802-811.

[52] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google File System," in

Proceedings of the nineteenth ACM symposium on Operating systems principles,

2003, pp. 29-43.

[53] M. Karlsson, C. Karamanolis, and X. Zhu, "Triage: Performance Differentiation for

Storage Systems Using Adaptive Control," ACM Transactions on Storage (TOS),

vol. 1, pp. 457-480, 2005.

[54] I. K. Georgiev and I. I. Georgiev, "An Information-Interconnectivity-Based

Retrieval Method for Network Attached Storage," in Proceedings of the 1st

conference on Computing frontiers, 2004, pp. 268-275.

[55] M. Andrews, M. A. Bender, and L. Zhang, "New algorithms for the disk scheduling

problem," in Proceedings of the 37th Annual Symposium on Foundations of

Computer Science, 1996, p. 550.

151

[56] D. T. Altilar and Y. Paker, "Optimal Scheduling Algorithms for Communication

Constrained Parallel Processing," in Proceedings of the 8th International Euro-Par

Conference on Parallel Processing, 2002, pp. 197-206.

[57] B. Hillyer, R. Rastogi, and A. Silverschatz, "Scheduling and Data Replication to

Improve Tape Jukebox Performance," in 15th International Conference on Data

Engineering (ICDE'99), 1999, p. 532.

[58] S. Prabhakar, D. Agrawal, and A. E. Abbadi, "Optimal Scheduling Algorithms for

Tertiary Storage," Distributed and Parallel Databases, vol. 14, pp. 255-282, 2003.

[59] C. Moon and H. Kang, "Heuristic Algorithms for I/0 Scheduling for Efficient

Retrieval of Large Objects from Tertiary Storage," in Proceedings of the 12th

Australasian conference on Database technologies, 2001, pp. 145-152.

[60] S. Prabhakar, D. Agrawal, A. E. Abbadi, and A. Singh, "Tertiary Storage: Current

Status and Future Trends," Dept. of Computer Science, Univ. of Calilfornia, Santa

Barbara1996.

[61] S. Prabhakar, D. Agrawal, A. E. Abbadi, and A. Singh, "A brief survey of tertiary

storage systems and research," in Proceedings of the 1997 ACM symposium on

Applied computing, 1997, pp. 155-157.

[62] B. Hillyer and A. Silberschatz, "Random I/O scheduling in online tertiary storage

systems," in Proceedings of the 1996 ACM SIGMOD international conference on

Management of data, 1996, pp. 195-204.

[63] T. Johnson and E. Miller, "Performance Measurements of Tertiary Storage

Devices," in Proceedings of the 24rd International Conference on Very Large Data

Bases, 1998, pp. 50-61.

[64] B. Liu, J. Li, L. Nie, and Y. Zhang, "Non-blocking Disk-Tape Join Algorithm for

Data on Tertiary Storage Systems," in Proceedings of the The Fifth International

Conference on Computer and Information Technology, 2005, pp. 58-64.

[65] S. Christodoulakis, P. Triantafillou, and F. Zioga, "Principles of Optimally Placing

Data in Tertiary Storage Libraries," in Proceedings of the 23rd International

Conference on Very Large Data Bases, 1997, pp. 236-245.

[66] A. Vakali and E. Terzi, "Multimedia Data Storage and Representation Issues on

Tertiary Storage Subsystems" An Overview," ACM SIGOPS Operating Systems

Review, vol. 35, pp. 61-77, 2001.

152

[67] J. No, R. Thakur, and A. Choudhary, "Integrating parallel file I/O and database

support for high-performance scientific data management," in Proceedings of the

2000 ACM/IEEE conference on Supercomputing, 2000, p. 57.

[68] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, "Staggered striping in

multimedia information systems," in Proceedings of the 1994 ACM SIGMOD

international conference on Management of data, 1994, pp. 79-90.

[69] P. Triantafillou and T. Papadakis, "Continuous Data Block Placement in and

Elevation from Tertiary Storage in Hierarchical Storage Servers," Cluster

Computing, vol. 4, pp. 157-172, 2001.

[70] J. Wilkes, R. Gelding, C. Staelin, and T. Sullivan, "The HP AutoRAID hierarchical

storage system," ACM Transactions on Computer Systems (TOCS), vol. 24, pp.

108-136, 1996.

[71] K. Holtman, P. v. d. Stok, and I. Willers, "A cache filtering optimisation for queries

to massive datasets on tertiary storage," in Proceedings of the 2nd ACM

international workshop on Data warehousing and OLAP, 1999, pp. 94-100.

[72] E. Otoo, F. Olken, and A. Shoshani, "Disk cache replacement algorithm for storage

resource managers in data grids," in Proceedings of the 2002 ACM/IEEE

conference on Supercomputing, 2002, pp. 1-15.

[73] A. Shoshani, A. Sim, L. M. Bernardo, D. Rotem, and H. Nordberg,

"Multidimensional Indexing and Query Coordination for Tertiary Storage

Management," in Proceedings of the 11th International Conference on Scientific on

Scientific and Statistical Database Management, 1999, p. 214.

[74] A. Shoshani, A. Sim, L. M. Bernardo, and H. Nordberg, "Coordinating

Simultaneous Caching of File Bundles from Tertiary Storage," in Proceedings of

the 12th International Conference on Scientific and Statistical Database

Management (SSDBM'00), 2000, p. 196.

[75] G. A. Alvarez, et al., "MINERVA: An Automated Resource Provisioning Tool for

Large-Scale Storage Systems," ACM Transactions on Computer Systems (TOCS),

pp. 483-518, 2001.

[76] T. Kagimasa, K. Takahashi, and T. Mori, "Adaptive Storage Management for Very

Large Virtual/Real Storage Systems," in Proceedings of the 18th annual

international symposium on Computer architecture, 1991, pp. 372-379.

[77] H. Tang and T. Yang, "An Efficient Data Location Protocol for Self-organizing

Storage Clusters," in Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, 2003, p. 53.

153

[78] C. Wu and R. Burns, "Tunable Randomization for Load Management in Shared-

Disk Clusters," ACM Transactions on Storage (TOS), pp. 108-131, 2005.

[79] H. Tang, et al., "A Self-Organizing Storage Cluster for Parallel Data-Intensive

Applications," in Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, 2004, p. 52.

[80] S. S. Vazhkudai, et al., "FreeLoader: Scavenging Desktop Storage Resources for

Scientific Data," in Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, 2005, p. 56.

[81] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu, "Kosha: A Peer-to-Peer

Enhancement for the Network File System," in Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, 2004, p. 51.

[82] D. Colarelli and D. Grunwald, "Massive Arrays of Idle Disks For Storage

Archives," in Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

2002, pp. 1-11.

[83] K. Hiraki, et al., "Data Reservoir: Utilization of Multi-Gigabit Backbone Network

for Data-Intensive Research," in Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, 2002, pp. 1-9.

[84] E. K. Lee and C. A. Thekkath, "Petal: Distributed Virtual Disks," in Proceedings of

the seventh international conference on Architectural support for programming

languages and operating systems, 1996, pp. 84-92.

[85] W. H. Min, et al., "Dynamic Storage Resource Management Framework for the

Grid," in Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass

Storage Systems and Technologies (MSST'05), 2005, pp. 286-293.

[86] Y. Feng, Y.-y. Zhang, and R.-y. Jia, "EPYFQ: A Novel Scheduling Algorithm for

Performance Virtualization in Shared Storage Environment," in Proceedings of the

5th international workshop on Software and performance, 2005, pp. 263-264.

[87] A. Gulati and P. Varman, "Lexicographic QoS Scheduling for Parallel I/O," in

Proceedings of the 17th annual ACM symposium on Parallelism in algorithms and

architectures, 2005, pp. 29-38.

[88] L. Huang, G. Peng, and T. Chiueh, "MultiDimensional Storage Virtualization," in

Proceedings of the joint international conference on Measurement and modeling of

computer systems, 2004, pp. 14-24.

154

[89] C. R. Lumb, A. Merchant, and G. A. Alvarez, "Facade: virtual storage devices with

performance guarantees," in Proceedings of the 2nd USENIX Conference on File

and Storage Technologies, 2003, pp. 131-144.

[90] D. A. Ford and J. Myllymaki, "A Log-Structured Organization for Tertiary

Storage," in Proceedings of the Twelfth International Conference on Data

Engineering, 1996, pp. 20-27.

[91] M. Zhao, J. Zhang, and R. J. Figueiredo, "Distributed File System Virtualization

Techniques Supporting On-Demand Virtual Machine Environments for Grid

Computing," Cluster Computing, vol. 9, pp. 45-56, 2006.

[92] W. D. Norcott and D. Capps. (2011). IOzone Filesystem Benchmark. Available:

www.iozone.org

[93] N. Murray and N. Horman. (2004). Understanding virtual memory. Available:

http://www.redhat.com/magazine/001nov04/features/vm/

[94] J. Pommnitz. (2010). Kernel level exception handing in linux 2.1.8. Available:

http://www.mjmwired.net/kernel/Documentation/exception.txt

[95] J. Levon. (2009). Oprofile - a system profiler for linux. Available:

http://oprofile.sourceforge.net/

[96] B. Lu, et al., "A case study on grid performance modeling," in The 18th IASTED

International Conference on Parallel And Distributed Computing And Systems

(PDCS 2006), Dallas, Texas, USA, 2006.

[97] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, "A nine year study of file

system and storage benchmarking," Trans. Storage, vol. 4, pp. 1-56, 2008.

[98] N. Joukov, T. Wong, and E. Zadok, "Accurate and efficient replaying of file system

traces," in Proceedings of the 4th conference on USENIX Conference on File and

Storage Technologies - Volume 4, San Francisco, CA, 2005, pp. 25-25.

[99] J. Wu, P. Wyckoff, and P. Dhabaleswar, "PVFS over InfiniBand: design and

performance evaluation," in Parallel Processing, 2003. Proceedings. 2003

International Conference on, 2003, pp. 125-132.

[100] W. Jiseheng, P. Wyckoff, and D. Panda, "Supporting efficient noncontiguous

access in PVFS over Infiniband," in Cluster Computing, 2003. Proceedings. 2003

IEEE International Conference on, 2003, pp. 344-351.

[101] W. Jiesheng, P. Wyckoff, D. Panda, and R. Ross, "Unifier: unifying cache

management and communication buffer management for PVFS over InfiniBand,"

155

in Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International

Symposium on, 2004, pp. 523-530.

[102] R. E. Grant, P. Balaji, and A. Afsahi, "A study of hardware assisted IP over

InfiniBand and its impact on enterprise data center performance," in Performance

Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on,

2010, pp. 144-153.

