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Examination of the kernel code for the two functions shows no evidence from the 

functions‘ codes to support this performance behavior [94]. On the other hand, the shape of 

the performance curve suggests that this performance behavior may be caused by 

constraints in system resources. To investigate system resource utilization, low-level 

profiling of the test system was performed using oProfile [95] while running the I/O 

experiments.   

 

Figure 13: Average response time of data 

transferring between kernel and user space 

The results of L2 cache behavior of the copy_to_user and copy_from_user functions 

obtained during I/O benchmark testing are shown in Figure 14. Those measurements show 

that the L2 cache misses increase after the block size reaches 64Kbytes and become very 

noticeable after the block size of 128Kbytes. The L2 cache misses continue to increase 

even after the block size goes beyond 1024Kbytes. 
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Figure 18: PVFS sequential I/O write 

performance 

According to the read and write measurement results, after file sizes become large 

enough, PVFS I/O performance does not change when the file size changes to a greater 

amount. Reaching this stable level, I/O performance is now affected by the block size of 

the I/O operations instead. Of course, similar to local file system behavior, the I/O 

performance drops sharply when the file size reaches the physical memory capacity of the 

machine. This behavior is caused by memory reclaiming and swapping, which in turn 

causes disk thrashing, leading to a very large I/O performance degradation. 

3.4 Summary 

This chapter presents background performance studies of a local file system – the Linux 

ext3 file system. Performance characteristics of the ext3 file system are presented. The 
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relations between file sizes, I/O block sizes, and file system performance are investigated. 

The performance behaviors of the ext3 file system are also carefully examined. The 

relation between CPU L2 cache and the I/O read and write behavior is also pointed out. 

The real-world I/O access pattern and production workload on PVFS file systems are also 

studied in this part. The performance measurements of the PVFS file system are also 

presented. 
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C h a p t e r  4  

DESIGN OF A SIMULATION MODEL FOR LOCAL FILE SYSTEM 

4.1 Introduction 

The simulation model for the local file system is the most basic foundation for file 

system modeling. It mimics the behavior of a local file system over a block device. It 

interfaces with higher-level software, such as applications or parallel file system servers, 

and provides the response time associated with each I/O request. This chapter discusses the 

design of a simulation model for a local file system. The file system model is expected to 

be able to provide end-to-end file system performance against a pre-defined workload. 

System designers could use the model to evaluate file system performance in different 

scenarios and to perform bottle-neck analysis. It could also be used for ‗what-if‘ type of 

provisioning analysis. The implementation of the simulation model is presented in a top 

down fashion, from application level down to the hard disk level, and each level is 

described using Colored Petri Nets. 

4.2 Assumptions and model limitations 

A complex scientific or business application may have both I/O reads and I/O writes at 

the same time. However, a typical I/O pattern often seen is a large read operation followed 

by computing which is then followed by a large I/O write. Many times, the phase of 

execution where the application is reading is separated from the phase where the 

application is writing. With that in mind, the simulation model is divided into an I/O read 
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Figure 30 shows a comparison of this model for the L2 cache effect as compared to the 

measured data from Figure 13. Figure 30 shows that the response time for the copy_to_user 

function is very close to the model calculation in most cases, and that the trend of the effect 

of L2 cache on copy_to_user performance is captured well by the model. 

 

Figure 30: L2 cache model validation 

4.6 Summary 

This chapter presents a set of detailed and hierarchical performance models of the Linux 

ext3 file system, using Colored Petri Nets. Studies of the file system read and write 

operations, including buffering and caching effect, are performed. A model for the L2 

cache behavior captures the behavior of the L2 cache and is used directly in the full model. 

Both file read and file write, including buffering effect and caching effect, are modeled. In 

future work, this performance model will be extended to model the successor of the ext3 
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file system, ext4. A new detailed I/O scheduler model will be implemented. The ext3 

model will be utilized as a basic foundation to model distributed file systems and parallel 

file systems.  
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C h a p t e r  5  

LOCAL FILE SYSTEM SIMULATION MODEL PERFORMANCE VALIDATION 

5.1 Introduction 

This chapter discusses the performance validation of the simulation model for a local 

file system. Several performance experiments are performed, using different types of 

workload. The simulation performance results are compared to the real-world performance 

measurements to study the accuracy of the simulation model.  

5.2 Validation setup 

In order to validate the entire Petri Net file system model against real-world data, the 

model hardware parameters, such as memory delay, execution speed, function overhead, 

and disk speed, are measured directly from the machines where the real experiments take 

place, using kernel traces. This machine is configured with a single SCSI drive Seagate 

ST3146707LC. The tracing mechanism used is Ftrace. Ftrace is a powerful kernel-tracing 

method and has been a part of the mainline kernel since version 2.6.27. Ftrace supports the 

ability to perform function-graph tracing, which tracks both function entry and function 

exit as well as providing function duration. 

To reduce the simulation time for the L2 cache effect model, the values of the response 

function are calculated, using the developed model for a very wide range of block sizes, 

and recorded into a table. The values of the function‘s constants (Sthreshold, Spage, TL2, 

Tmemory) are measured from the test system. The Petri Net model (Figure 21, top right 
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corner, and Figure 26, center) uses this table in the transition called Buffer Copy to produce 

the response time for the data copy from kernel space to user space. 

5.3 Synthetic sequential workload 

Simulations of sequential workload are run several times, and the average results are 

used to compare with iozone benchmark results running on the test system. The simulation 

experiments are run, using a set of synthetic I/O requests and simulating sequential I/O. 

The I/O requests are grouped into similar block size configurations of the izone benchmark. 

Data- write operations in this section are asynchronous. The file system journal mode used 

in this section is ordered mode. The result of the I/O read performance model is presented 

in Figure 31. The errors bars are set at 10%. 

 

Figure 31: Sequential I/O read performance 
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Figure 34: I/O read pattern of the first trace 

The I/O pattern shows less randomness in I/O read activities. The large block size of the 

I/O reads gives the workload a mixed characteristic of both sequential I/O and random I/O. 

Figure 35 shows the I/O write request pattern of the first captured trace. 
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Figure 37: I/O write pattern of the second trace 

The two captured I/O read traces from Figure 34 and Figure 36 are fed into the model 

and the iozone benchmark to produce the I/O read performance comparison. Data-write 

operations in this section are asynchronous. The file system journal mode used in this 

section is ordered mode. Similar to the previous performance studies, simulations are run 

several times and produce the average result. The I/O performances are higher than 

previous experiments due to caching effect. Table 7 presents the I/O read performance 

results. 
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Table 7: Captured traces I/O read validation 

I/O Read performance result Trace 1 Trace 2 

Simulation Throughput (KB/s) 873,238.11 876,237.20 

Measure throughput (KB/s) 991,969.14 1,008,167.15 

Error 12% 13% 

 

The two I/O write traces from Figure 35 and Figure 37 are also fed into the model and 

the iozone benchmark to produce the I/O write performance. Table 8 shows the I/O write 

performance result. 

Table 8: Captured traces I/O write validation 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 146,644.10 146,813.74 

Measure throughput (KB/s) 207,203 180,783.2 

Errors percent 29% 19% 

 

5.6 The impact of the dirty-ratio kernel parameter 

The kernel parameter—dirty ratio—which is discussed in Chapter 3 influences the I/O 

write performance behavior that the model should exhibit correctly. In order to validate this 

behavior, an experiment is performed, using a test file with a larger size than the default 

value of the dirty-ratio threshold setting on the system (~512MB).  Figure 38 shows the 

comparison between the measure from the actual system and the simulation result of the 

model. The error bars are set to 10%, similar to previous experiments. 
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Figure 38: The impact of dirty ratio parameter 

The simulation results are close to the measurements from the actual system. The errors 

fall between 10% and 20% for all data points. Similar to the sequential write experiment, 

the model consistently underestimates the performance of the actual system for both file 

sizes. 

5.7 Full data journal mode write performance 

In previous validation experiments, from section 5.3 to section 5.6, the file system is 

operating under ordered journaling mode. As stated in Chapter 3, the performance 

differences of write-back journaling mode and ordered journaling mode are small. Full data 

journal mode, however, is a completely different case. Unlike ordered journal mode or 
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write-back journal mode, full-data journal mode writes data as well as metadata to the 

journal, which is located on the disk. As a result of this, the same data are actually written 

to the disk twice. As data and metadata are being written into the journal, the amount of 

free space allocated for the journal become smaller. When the journal free space reaches a 

threshold, a journal checkpoint happens. The exact amount of journal free space that 

triggers a checkpoint is not derived in a straightforward manner, as Prabhakaran notes [50]. 

Journal checkpointing occurs when the amount of journal free space is between ½ and ¼ of 

the journal size. For the validation experiments in this section, we use a threshold equals to 

approximately ½ of the journal size as it seems to produce best results. 

Using the same process described in section 5.3, the first validation experiment uses a 

synthetic sequential workload. Simulations are run several times, and the average results 

are used to compare with iozone benchmark results, running on the test system. The I/O 

requests are grouped into similar block size configurations of the izone benchmark. The 

result of the I/O read performance model is presented in Figure 39. The errors bars are set 

at 10%. 
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Figure 39: Sequential I/O write validation – full 

data journal mode 

The errors between simulation data and real-world measurement data are close to 10%. 

The performance impact of the full-data journal mode is quite clear. The shapes of the 

performance curves are different from the shapes of performance curves in section 5.3. The 

effect of L2 cache still exists. However, because the response time of the file system is 

slow, the effect is not noticeable any longer. 

Following the same order previously presented, an experiment similar to the experiment 

in section 5.4 is performed. The simulation experiments are run, using synthetic I/O 

requests and simulating random I/O with very small block size to minimize the sequential 

characteristic of the workload. The result of the experiment is presented in Table 9. 
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Table 9: Random I/O write validation - full data 

journal mode 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 30016.45127 

Measure throughput (KB/s) 26470.4 

Error 13% 

 

The last experiment is similar to the experiment in section 5.5. The two I/O traces are 

fed into the model and the iozone benchmark to produce the I/O performance comparison. 

Like previous performance studies, simulations are run several times and produce the 

average result. The result of the experiment is presented in Table 10. 

 

Table 10: Captured traces I/O write validation - 

full data journal mode 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 51417.04 63660.53 

Measure throughput (KB/s) 46470.4 56593 

Errors percent 11% 12% 

 

5.8 Synchronous write performance 

In previous validation experiments, up to this section, I/O write operations all use 

asynchronous write mode. It provides the best performance for the system, and under 

normal circumstances, is the default operating mode for Linux I/O write operations. 

However, synchronous write mode is still being used occasionally in situations where data 
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needs to be written to disk after each write request. In this operating mode, the real system, 

as well as the model, issues a data synchronization at the end of the write request. Because 

data synchronization is done at the end of every write request, the file system journal mode 

does not have any effect.  

The same process described in section 5.3 is used. Simulations are run, using a synthetic 

sequential workload several times, and the average results are used to compare with iozone 

benchmark results, running on the test system. The I/O requests are grouped into similar 

block-size configurations of the izone benchmark. The file system journal mode is ordered 

mode. The result of the I/O write performance model is presented in Figure 40. The errors 

bars are set at 10%. 
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Figure 40: Sequential I/O write validation - 

synchronous write 

The simulation results are very good, even though the errors are bigger than 10% at 

multiple data points. The performance impact of the synchronous write mode is also very 

clear. The shapes of the performance curves are different from the shapes of performance 

curves in section 5.3. Because of the slow response time of the file system, the L2 cache 

effect is also insignificant in this experiment. 

The next experiment is similar to the experiment in section 5.4. The simulation 

experiments are run, using synthetic I/O requests and simulating random I/O with very 

small block size to minimize the sequential characteristic of the workload. The result of the 

experiment is presented in Table 11. 
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Table 11: Random I/O write validation - 

synchronous write 

Random I/O Write performance result 

Block size (Kbytes) 8 

Simulation throughput (KB/s) 6689.75 

Measure throughput (KB/s) 5388.8 

Error 24% 

 

The last experiment is similar to the experiment in section 5.5. The two I/O traces are 

fed into the model and iozone benchmark to produce the I/O performance comparison. Like 

previous performance studies, simulations are run several times and produce the average 

result. The result of the experiment is presented in Table 12. 

 

Table 12: Captured traces I/O write validation - 

synchronous write 

I/O Write performance result Trace 1 Trace 2 

Simulation throughput (KB/s) 18,196.46 25,633.22 

Measure throughput (KB/s) 14,856.8 20,628.2 

Errors percent 22% 24% 

 

5.9 Summary 

This chapter presents a set of detailed performance validation experiments of the Linux 

ext3 file system model. To validate the performance behavior of the file system model, 

several types of workload are utilized. A synthetic sequential workload is generated to 

study the simulation model behavior and to compare the model with real file system 
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performance. A random synthetic workload is also generated to study the behavior of the 

simulation model when random accessing is involved. In addition to synthetic workload, 

I/O traces captured from production systems are also utilized to study the performance 

behavior of the simulation model in a real-world environment. 

The validation experiments are run under both ordered journal mode and full data 

journal mode. The results for ordered journal mode are very good. For sequential file read 

and file write, the simulation performances are within 10% of the real file system in most 

cases. For random file read, the simulation performances are within 20% of the real file 

system. For random file write, the simulation performances differ less than 35% of the real 

file system. For I/O traces captured from live systems, the simulation performances differ 

less than 20% in most cases. An additional performance factor— dirty ratio threshold—is 

also modeled and validated. The results for full-data journal mode are very good. In all 

experiments for this mode, the errors are less than 15%. In good cases, the errors are 

between 10% and 12%.  

Synchronous I/O write operation is also validated. The results are very good, as the 

errors are less than 10% in many cases. However, for random synthetic workload and 

captured I/O traces workload, the errors are approximately 24%. 
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C h a p t e r  6  

DESIGN OF A SIMULATION MODEL FOR PARALLEL FILE SYSTEM 

6.1 Introduction 

The first and foremost goal for a parallel file system is to achieve massive I/O 

throughput. This is done by providing access to multiple I/O resources in parallel. PVFS as 

well as many other parallel file systems implements this by utilizing multiple connected 

local file systems as foundation. The simulation model for the parallel file system is 

developed using similar concept. It utilizes multiple connected local file system simulation 

models as its foundation. It interfaces with higher level applications and provides them the 

response time associated with each I/O request. This chapter discusses the design of a 

simulation model for PVFS – a parallel file system. The implementation of the simulation 

model is presented in a top down fashion, from application level down to the local file 

system level, and each level is described using Colored Petri Nets. 

6.2 Assumptions and model limitations 

Similar to the local file system simulation model, the parallel simulation is also divided 

into an I/O read model and an I/O write model. Read operations and write operations are 

simulated separately to simplify the multiple conditions when simulating the file system. 

A key difference between a parallel file system and a local file system is the network 

component. Parallel file systems use network to simultaneously access multiple local file 

system at the same time. A parallel file system simulation model must contain a network 

model. Although the network simulation model is an important component in the parallel 
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file system simulation model, it only serves as a transport from the client model to the 

server model. The network model does not need to model every network operations in 

detail. Instead, a resource model is used to simulate network end-to-end performance. 

A PVFS cluster has a certain number of I/O servers. This number is determined at the 

time the cluster is built. After the cluster goes into production, the number of I/O servers is 

relatively fixed. Although, under a certain circumstance, I/O servers can be added or 

removed from the cluster, but this procedure usually cause the original data on the cluster 

to be destroyed. For the simulation model, the PVFS cluster has 4 I/O servers. In real-world 

situation, A 4 I/O servers cluster could house approximately 4 Tbytes of data.  

6.3 File read model implementation 

From the application standpoint, reading a file from a parallel file system is no different 

than reading a file from a local file system. The way an application reads a file is similar to 

the following illustration.  

 

From this level, the operation is divided into three main components: the client 

component, the network component and the server component.  

6.3.1 File read model client component 

At the top level, the model is simple. A loop breaks the needed file into multiple blocks 

of read requests and passes the list to the client simulation component. The client 

component processes the data then passes them on to the network component. The result of 

while (!feof(file_handle)) { 
    bytes_read = fread(buffer, block_size, number_of_block, file_handle); 

} 
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the read operation is an array of data passed back from the network model. The Petri net for 

this operation is presented in Figure 41. 

The implementation of the client component could be described as dividing the block of 

read requests into a list of payloads and passing this list to the network component to send 

over the network to the server component. The number of payloads depends on the number 

of I/O servers in the file system. The Petri net implementation of the client component is 

presented in Figure 42. 

Payloads are created by striping request data into multiple chunks according to the file 

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The 

distribution of data chunks in a payload is done using round-robin mechanism. The Petri 

Net implementation of the payload creation process is presented in Figure 43. 
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Figure 41: High level PVFS application read model 
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Figure 43: Payload creation component model for 
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component. Taking the payloads and building network packet around this data, the client 

component adds the network identifications of the I/O servers to the data. The network 

component will later use this information to deliver the packet to the correct I/O server. For 

an I/O read operation, the client component only sends read requests to the servers. Read 

requests are very small and will not need to be broken down into smaller fragments. After 

the network packets are created, they are sent to the network device buffer.  

In addition to sending read requests to the I/O servers, the client component also 

receives data being sent back from the I/O servers. From the network device receiving 

buffer, the client component gathers the network packets. It assembles the data from these 

network packets received from different I/O servers into the needed result and sends it back 

to the application. 

6.3.2 File read model network component 

The network component provides the transportation for the data packets from the client 

to the I/O servers. Since only end-to-end performance characteristics of the network 

component are needed, the network component will not model switches and routers in 

detail. Instead, the network component is designed using multiplexer model. The client 

packets are examined and routed to the correct I/O servers. 

When the result data are sending back to the clients, a similar mechanism is used. The 

server component, depends on the result data, will send data packets back to the original 

requested client. The network component examines the packet and route them to the correct 

clients. The Petri Net models of the sending and the receiving network components for 

PVFS file read operation are presented in Figure 44 and Figure 45. 
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6.3.3 File read model server component 

I/O servers are where the actual I/O operations are performed. Each PVFS file system 

has multiple I/O servers that work independently in parallel to provide large I/O bandwidth 

that local file system could never achieve.  

Each I/O server, similarly to the client side, has a network layer to process network 

packets from the network component. A network packet, after arriving at the I/O server, is 

examined and categorized into different receive buffers, using a first-come-first-served 

(FCFS) mechanism. This process is designed following the same implementation in the 

real system. Each client has its own receive buffer. 

The server component, following a FCFS order, takes read requests from the receive 

buffers and sends them to the local file system. The requests are sending in chunk of 64 

Kbytes, which is the PVFS default stripe depth. If the PVFS file system is built with a 

different stripe depth, this chunk size is changed. The local file system on the I/O server 

performs a sequential read operation. Since the I/O server component takes read request 

from the receive buffers using FCFS order, the read request chunks are mixed together. The 

next chunk of read requests may not be from the same client as the chunk before it. Two 

different clients rarely try to read the same file at the same location. This causes the read 

requests stream sending to the local file system to have a very special pattern. This pattern 

is multiple session of sequential read requests. Each session may start at a random location. 

The Petri Net model for the server component for PVFS file read operation is presented in 

Figure 46. 
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After read requests passing through the local file system component, it returns the result 

data read from disk. At this step, the I/O server component sends these data through a 

network packet creation process similar to the client component. However, when the client 

component send the read requests over the network, the size of these read requests are 

relatively small and can fit within a standard frame. The result data, however, do not. They 

need to be divided into multiple segments before they are attached the headers and network 

addresses. The Petri Net model for dividing data into segments is presented in Figure 47. 

 

Figure 47: Data segmentation component for 

PVFS file read 

The segment size of a packet is limited by the MTU of the network. Usually, in a 

Gigabit Ethernet network, the MTU is set to 1500. This means that a network packet 

maximum size is 1500 bytes. 

6.4 File write model implementation 

From the application standpoint, writing a file to a parallel file system is no different 

than writing a file to a local file system. The way an application writes a file is similar to 

the following illustration. 
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The top level model is very similar to the I/O read model. The operation is divided into 

three main components: the client component, the network component and the server 

component. The Petri Net implementation of the top level model is presented in Figure 48. 

6.4.1 File write model client component 

The top level of the file write model client component is simple. The file data needed to 

be written to disk are broken into multiple blocks of write requests. These write requests 

are passed to the client simulation component. The client component will process the data 

then send the packaged data to the network component. The result of the write operation is 

a series of return codes received from the network model.  

The implementation of the client component for file write operation is quite similar to 

the client component of the file read operation. However, write requests not only contain 

requests to write data to disk but also contain the actual data needed to be written. The 

client component needs to divide these blocks of data into multiple payloads. The number 

of actual payloads is determined by the number of I/O servers in the system. The Petri Net 

model for the PVFS client component is presented in Figure 49. 

Payloads are created by striping request data into multiple chunks according to the file 

system‘s stripe depth parameter. Stripe depth in PVFS usually is 64 Kbytes. The 

distribution of data chunks in a payload is done using round-robin mechanism. The Petri 

Net implementation of the payload creation process is presented in Figure 50. 

bytes_write = fwrite(buffer, block_size, number_of_block, file_handle); 
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Figure 50: Payload creation component for PVFS 
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multiple segments. The Petri Net model for dividing data into segments is presented in 

Figure 51.  

 

 

Figure 51: Data segmentation component for 

PVFS file write 

 Typically, the MTU is set to 1500 in a Gigabit Ethernet network, so the packet size for 
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6.4.3 File write model server component 

The file write server component is built upon the local write model. The local write 

model is the foundation of the file write server model. A network packet, after arriving at 

the I/O server, is processed and sent to the local file write model. The server creates a 

receive buffer for each client sending in requests. The server model examines the network 

packets and moves the request data into the correct buffers using FCFS mechanism. This 

process is designed to follow the same implementation in the real system.  

Since each packet is limited by the maximum segmentation size of the network, the 

server component combines multiple packet data into the original request sent by the client. 

Unlike the file read server model, the file write server model does not attempt to combine 

the original request into 64Kbytes chunk. Instead the server model combines the 

fragmented data into the original request and sends it to the local file write model. Because 

of this, the block sizes of the write requests sent to the local file write model are not fixed. 

PVFS is relied on the delay write mechanism of the local file system to combine multiple 

different small write requests into big and sequential write requests. The local file system 

on the I/O server performs the write operation. Since the server model sends the write 

requests to the local file system model as it receives in a FCFS order, the block size of the 

write requests are quite random. Even though, the write requests could be in sequential 

order, the block sizes of the requests are not. This creates a special I/O access pattern. The 

Petri Net model for PVFS file write server model is presented in Figure 54. 
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After read requests pass through the local file system component, it returns the result 

data read from disk. 

6.5 Summary 

This chapter presents a set of detailed and hierarchical performance models of the PVFS 

file system using Colored Petri Nets. PVFS read operation and PVFS write operation are 

studied and their models are built. Each operation is divided into sub-components: client, 

network and server. The models of these components are presented. The client components 

are where the read requests and write requests from applications are received. The client 

components take these read requests and write requests and create several network packets. 

The network packets are sent to the servers using the network component. The server 

component built upon the local file system model processes the request data and performs 

actual I/O operations. The results of the I/O operations are sent to the clients using the 

network component. 

The current PVFS model is setup to have eight clients and four servers. This is equal to 

a small size production file system. The model can be extended to have more clients and 

servers. The model currently uses TCP/IP protocol over a Gigabit Ethernet network. It can 

also be modified to simulate a different network protocol and different network hardware. 
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C h a p t e r  7  

PARALLEL FILE SYSTEM SIMULATION MODEL PERFORMANCE 

VALIDATION 

7.1 Introduction 

This chapter presents the performance validation of the simulation model for a PVFS 

file system. Because PVFS is a parallel file system, the number of clients accessing the file 

system at the same time is important. The file system is designed to provide a massive I/O 

bandwidth and throughput by allowing multiple I/O servers to work with multiple clients at 

the same time. The performance measurements are performed similarly to the way the local 

file system performance experiments are done.  

7.2 Validation setup 

In order to validate the entire Petri Net file system model against real-world data, the 

model hardware parameters, such as memory delay, execution speed, function overhead, 

and disk speed, are measured directly from the machines where the real experiments take 

place, using kernel traces. The same Ftrace mechanism as described in Chapter 5 is 

utilized. Since PVFS is a parallel file system, a network is involved. The performance 

parameters of the network stack on the client and server machines are also measured, using 

the Ftrace facility. Network performance parameters on the wire are recorded, using 

network monitoring tools, including ping, traceroute and packet sniffer. The performance 

validations are executed, starting with one client accessing the file system. The number of 

clients is increased until the number of clients equals eight. The PVFS file system model is 
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implemented with four I/O servers. With eight clients (double the amount of servers) 

accessing the file system simultaneously, the file system level of stress is high enough to 

produce good performance results.  

7.3 Performance validation experiments 

Simulations are run several times, and the average results are used to compare with 

iozone benchmark results running on the test system. The simulation experiments are run 

using a set of synthetic I/O requests and simulating sequential I/O. The I/O requests are 

grouped into similar block-size configurations of the iozone benchmark. 

7.3.1 Single client performance experiment 

In this performance measurement, one client reads and writes to the PVFS file system. 

The result of the I/O read performance in the experiment is presented in Figure 55. The 

error bars are set at 20%. 

 

Figure 55: Single client I/O read validation 
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All points, except the last one, are within or very close to 20% of the real-world 

measurement. Even though the last data point is farther away than other data points, it is 

still a very good result, and the error is likely to come from measurement inaccuracy. The 

simulation data points are consistently lower than real-world data. 

The result of the I/O write performance in the experiment is presented in Figure 56. The 

error bars are set at 20%. 

 

Figure 56: Single client I/O write validation 
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At small block size, the simulation results are higher than real-world data, but at bigger 

block size, the simulation results become lower.  

The reason for this performance behavior comes from the buffer design of the I/O server 

model. The I/O server has a receive buffer for every client sending requests to the server. 

Data are taken out of the buffers, using a first-come-first-served (FCFS) order. The receive 

buffers in the real server are implemented, using a linked-list data structure. The larger the 

buffer, the slower an item in the buffer can be accessed. Currently, the buffers of the 

simulation model are implemented to have a fixed operating cost. This means that the time 

it takes to access an item in the buffer stays the same, regardless of the size of the buffer.  

The number of write requests needed to write a file when using a small block size is 

much larger than the number of write requests when using a large block size. In the 

simulation model, this does not change the time it takes to de-queue requests. This causes 

the simulation model to run faster than the real system at the small block sizes and slower 

than the real system at the large block sizes. 

7.3.2 Two clients performance experiment 

In this experiment, two clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 57. The error bars are set at 20%. 
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Figure 57: Two clients I/O read validation 
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Figure 58: Two clients I/O write validation 
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simulation are lower than the real-world data. 

7.3.3 Three clients performance experiment 

In this experiment, three clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 59. The error bars are set at 20%. 
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Figure 59: Three clients I/O read validation 

In general, the performance behavior is similar to what we have observed so far. The 

simulation data points are also consistently lower than the real-world data points. The 

performance curves are also very close together. This shows the file system is responding 

well, and the stress level is not high enough to make a difference. 

The result of the I/O write performance in the experiment is presented in Figure 60. The 

error bars are set at 20%. 
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Figure 60: Three clients I/O write validation 

The I/O write performance in the experiment confirms what was observed in the I/O 

read portion of the experiment. The file system stress level with three clients is still not 

high enough to make a difference in performance behavior. However, there are some slight 

differences from the previous I/O write performance chart at the bigger block sizes. These 

differences become more visible when the stress level becomes high enough. For the most 

part, data points are within 20% of the real-world data or very close. 

7.3.4 Four clients performance experiment 

In this experiment, four clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 61. The error bars are set at 20%. 

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t 
(K

B
/s

)

Block size (KB)

Simulator1

Experiment1

Simulator2

Experiment2

Simulator3

Experiment3



 

123 

 

 

 

Figure 61: Four clients I/O read validation 

With four clients accessing the PVFS file system at the same time, we start to notice 

variations within the data points, especially in the real-world data. The simulation data, 

however, are still very consistent. This is due to the simulation model having fewer factors 

affecting the result. The more clients accessing the PVFS file system, the more outside 

factors are introduced to the real-world data. 

Even with the increasing variation of the data points, the experiment result is still very 

good. The performance behavior is still similar to what we have observed in previous 
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experiments. The last two data points are not within 20% of the real-world data, but are still 

very close to them. 

The result of the I/O write performance in the experiment is presented in Figure 62. The 

error bars are set at 20%. 

 

Figure 62: Four clients I/O write validation 

The I/O write experiment result also has variations. The amount of variations is slightly 

more than in the I/O read experiment. In general, the performance behavior is slightly 

different to what we have previously observed. The simulation data points are higher than 

the real-world data points at small block sizes. The simulation data points are lower than 

the real-world data points at larger block sizes. The cross-over point is slightly shifted 

toward the larger block sizes. 
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The simulation data points are still within 20% of the real-world data points or close to 

them. The two data points at smallest block sizes are somewhat farther away from the real-

world data points.  

7.3.5 Five clients performance experiment 

In this experiment, five clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 63. The error bars are set at 20%. 

 

Figure 63: Five clients I/O read validation 

The experiment result is still very consistent, even when five clients are reading the 

PVFS file system at the same time. The variations are there, but they do not badly affect the 

overall performance. Most data points, except the last two points at large block sizes, are 

within 20% of the real-world data. 
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The result of the I/O write performance in the experiment is presented in Figure 64. The 

error bars are set at 20%.  

 

Figure 64: Five clients I/O write validation 

Compared to the I/O read experiment, the I/O write experiment has more variations, and 

the effect of them on the overall performance is more visible. This is due to I/O write 

operations generating more stress on the file system than I/O read operations. In general, 

I/O write operations are slower and more resource intensive than I/O read operations. 

The performance curves are still following the same trend. Simulation data points are 

higher than real-world data points at small block sizes and lower than real-world data at big 

block sizes. However, the stress on the file system has caused the error to become bigger, 
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especially the data points at small block sizes. The gap between the simulation data points 

and the real-world data points has become significant. There are also more variations at the 

large block sizes than previously observed. 

7.3.6 Six clients performance experiment 

In this experiment, six clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 65. The error bars are set at 20%. 

 

Figure 65: Six clients I/O read validation 

Compared to the previous experiment, it is clear that the amount of variations increases 

consistently every time the number of clients increases. This supports the assumption, 

which seems to be obvious, that the level of stress on the file system increases when the 

number of clients, accessing the file system at the same time, increases.  
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However, the performance curves are still grouped together quite nicely. All data points, 

except the last two points, are still within 20% of the real-world data. In the next few 

experiments, we start to see significant changes in the performance behavior. 

The result of the I/O write performance in the experiment is presented in Figure 66. The 

error bars are set at 20%. 

 

Figure 66: Six clients I/O write validation 

The variations and the effects of the file-system stress level are very visible in this 

experiment. This shows that the file system stress level has become significant. At large 

block sizes, simulation data points are still within 20% of real-world data points. However, 

at small block sizes, the errors have become quite large. The performance curves are also 

not as smooth as before, even though they are still staying very close to each other. 
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7.3.7 Seven clients performance experiment 

In this experiment, seven clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 67. The error bars are set at 20%. 

 

 

Figure 67: Seven clients I/O read validation 

When seven clients are reading the PVFS file system at the same time, the workload has 

become high enough to visibly affect the file system performance behavior. Comparing to 

the previous experiment with six clients, this experiment shows much more variations and 

distortions. Simulation data points started to show outside of the 20% range, not only at the 

big block sizes, but also at the small block sizes. 
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The result of the I/O write performance in the experiment is presented in Figure 68. The 

error bars are set at 20%. 

 

Figure 68: Seven clients I/O write validation 

The variations and distortions are becoming even more visible in this experiment. 

However, similarly to previous experiments, the block sizes in the middle are the most 

stable. Data points of the middle block sizes are all stay within 20% of the real-world data 

points. Errors and distortions are happening at the small block sizes and large block sizes. 

At small block sizes, data points stay very close to each other. This allows the errors to be 

observed easily. At large block sizes, data points are more dispersed with large variations. 

It is harder to observe the error at the large block sizes. 

0

10000

20000

30000

40000

50000

60000

70000

80000

8 16 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t 
(K

B
/s

)

Block size (KB)

Simulation1

Simulation2

Simulation3

Simulation4

Simulation5

Simulation6

Simulation7

Experiment1

Experiment2

Experiment3

Experiment4

Experiment5

Experiment6

Experiment7



 

131 

 

7.3.8 Eight clients performance experiment 

In this experiment, eight clients read and write to the PVFS model. The result of the I/O 

read performance in the experiment is presented in Figure 69. The error bars are set at 20%. 

 

Figure 69: Eight clients I/O read validation 

When the number of clients simultaneously reading the PVFS file system reaches 8 

clients, we expect the stress level of the file system to be very high, and the experiment 

supports that expectation. At this level of stress, even the middle block sizes data points, 

which have stayed very stable until now, start to show variations and distortions. Many 

data points have now fallen well outside of the 20% error range. The biggest changes are at 
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the big block sizes. As the number of client increases, the errors at the big block sizes also 

increase, especially at the largest block size. 

As stated in the previous experiment, simulation data points are showing much less 

variations and distortions. This makes perfect sense, as the simulation model has much 

fewer outside factors. Simulation experiments are also performed under well-controlled and 

precise conditions. The result of the I/O write performance in the experiment is presented 

in Figure 70. The error bars are set at 20%. 

 

Figure 70: Eight clients I/O write validation 

Even at eight clients writing to the PVFS file system at the same time, with the only 

exception at the 64Kbytes block size, the simulation performance behavior is still quite 
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consistent with what was observed previously. In this experiment, many data points fall 

outside of the 20% error range; however, simulation data points still group together very 

well, especially at the small block sizes. Even though there are variations among simulation 

data points, the magnitude of errors at the small block size have stayed relatively the same 

since the beginning. The magnitude of errors at the large block sizes, however, increases 

when the number of clients simultaneously writing to the PVFS file system increases. 

7.4 Summary 

This chapter presents a set of detailed performance validation experiments of the 

simulation model of the PVFS file system. The workload for the parallel file system, as 

observed in Chapter 3, primarily consists of very-large-block-size sequential I/O. 

Therefore, the performance validation utilizes synthetic sequential I/O workload to study 

the simulation model and to compare with real-world data. Performance validations are set 

up with eight separate experiments. Each experiment uses a different number of clients 

accessing the PVFS file system. The number of clients is increased from one to eight. The 

last experiment uses eight clients, which is double the number of I/O servers, 

simultaneously accessing the PVFS file system. By increasing the number of clients from 

small to large, we observe the behavior of the simulation model when the stress level of the 

file system increases.  

For the single client experiment, the simulation performances are within 20% of the real 

file system in most cases. When the number of clients increases, we observe the 

performance curves start to change, as the stress level of the file system increases. Up to 

three clients accessing the PVFS file system at the same time, the performance curves stay 
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very close together. When the numbers of clients become equal to or larger than four 

clients, the variations and distortions become visible. The simulation data points group 

together much better than the real-world data points because the affecting factors are much 

less in the simulation environment. The magnitude of errors stays relatively the same at 

small block sizes. The errors become larger at the large block sizes when the number of 

client increases. 

In general, the performance behavior is consistent throughout the performance 

validation process. The performance validation results are also very good, considering that 

this is a very complex environment, involving a parallel file system and multiple clients 

accessing simultaneously. 
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C h a p t e r  8  

CONCLUSION 

We conclude this dissertation by summarizing the importance of file system simulation 

models, presenting some of the implications of this research, discussing what will be 

required for file system simulation models to achieve user acceptance in computer systems 

analysis, and identifying several promising avenues for continuing work. 

8.1 The importance of the file system simulation models 

Existing file system evaluation techniques have limitations and disadvantages in 

evaluating the role and performance of hypothetical file systems within complex computer 

environments. This dissertation describes the simulation models of the local and parallel 

file system and its role in providing alternative evaluation techniques in addition to existing 

ones. The file system simulation model enables end-to-end performance experiments of 

complex file systems, using different workloads which include real-system production 

workloads. This technique will provide an opportunity to analyze the interaction of 

different system components as well as different performance behavior introduced by the 

operating system. 

8.2 Implications of this research 

The file system simulation models offer the opportunity to investigate the performance 

behavior of different file systems in different type of storages in computer systems. It 

permits forays into the space of hypothetical file system functionalities without the 

difficulties of developing and supporting a prototype system or a proof of concept study. It 
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also helps in eliminating the cost of purchasing and deploying actual hardware to build the 

actual system. This is especially relevant when considering the number of technologies 

available today and the recent trend toward the development of application-specific storage 

systems. Examples of these systems include, but are not limited to, audio and video 

recording and playback systems, scientific data processing, business data factory 

processing, and database housing, where support for application-specific features in 

individual system often play a key role in the success of the products in the market. 

8.3 Keys to the acceptance of the file system simulation models 

The benefits of the file system simulation models as an evaluation technique will not 

come without investments toward the development and maintenance of the simulation 

components. These investments include those of developing accurate and computationally 

inexpensive simulation models for storage devices and other components of the file 

systems. It also includes extending and creating a broader set of evaluation workloads that 

are more representative of the systems to be deployed or the existing systems which need to 

be analyzed. 

For the file system simulation models to remain effective, new storage device models, 

new network models, and new operating system models need to continue to be created. 

Simulation experiments require validated or high-confidence component models in order to 

provide useful experimental results. This is not likely to be a problem, since the current 

simulation models are built with expansion and improvement in mind. Simulation 

components are designed to be as modular as possible, providing the flexibility and 

freedom to improve or replace. Depending on the type of component, in addition to the 
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component architecture, the operating characteristics and performance parameters of the 

component also need to be captured. They include, but are not limited to, memory access 

time, instructions execution time, device seek time, and device access time. A physical 

device‘s attributes and characteristics can be obtained from the technical data of the device 

released by the manufacturer. Operating system component parameters can be gathered by 

profiling and monitoring tools as well as kernel traces. Looking to the future, Section 8.4 

discusses possible advancements in the file system simulation models through 

improvements in existing components and explores new component implementation 

options. 

Additionally, application-level workloads will need to be carefully developed in order to 

gain the full usefulness of the file system simulation models. Availability of such 

workloads could potentially lead to better characterization of real-system workloads and 

better benchmarks for storage systems. Even though well-accepted workloads exist, they 

are proprietary and belong to a few organizations. The lack of diverse and representative 

workloads for storage evaluation has been and continues to be a problem in the storage 

systems community [97, 98].  

8.4 Opportunities for future work 

In this section we discuss groups of improvements and developments for the simulation 

models centered on the themes of existing component improvement and new component 

implementation. 



 

138 

 

8.4.1 Improving existing simulation components 

As demonstrated by the evaluations in this dissertation, the simulation models could 

produce very similar performance results to the real-world measurements. However, many 

components within the simulation models could still be improved to create even better 

result. An important component whose improvement benefits the simulation models greatly 

is the read-ahead mechanism. Usually, regular files are stored on disk in large groups of 

adjacent sectors, so that they can be retrieved quickly with few moves of the disk heads. 

Therefore, many disk accesses are sequential. Accordingly, read-ahead consists of reading 

several adjacent pages of data of a regular file or block device file before they are actually 

requested. In most cases, read-ahead significantly improves I/O read operation 

performance. Consequently, it improves system performance. An application, when 

sequentially reading a file, does not have to wait for the requested data because they are 

already available in memory. However, when the application accesses files randomly, read-

ahead does not help improving performance. In the case of random I/O, it is actually 

detrimental because it not only wastes space in the page cache with useless information, but 

also spends more time to read them into memory. Therefore, the read-ahead component 

needs to reduce or stop read-ahead when it detects that the most recently I/O access is not 

sequential to the previous one. The current model component could be switched from 

sequential I/O access to random I/O access. However, it does not have all needed features 

currently implemented. The improved read-ahead component needs to implement the 

following features:  
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- Read-ahead may be gradually increased as long as the process keeps accessing the 

file sequentially. 

- Read-ahead must be scaled down or even disabled when the current access is not 

sequential with respect to the previous one (random access). 

- Read-ahead should be stopped when a process keeps accessing the same pages over 

and over again (only a small portion of the file is being used), or when almost all 

pages of the file are already in the page cache. 

Another important simulation component to improve is the memory reclaiming 

mechanism. This mechanism is currently implemented partially in the page cache 

component. A more complete implementation of the memory reclaiming mechanism could 

help the model more accurately present the state of the I/O memory buffer.  

Unfortunately, due to the empirical nature of the memory reclaiming design in Linux, its 

code changes very quickly. However, the general ideas and most major heuristic rules 

should continue to be valid. The design ideals of the memory reclaiming mechanism are: 

- Pages in disk and memory caches not referenced by any process have priority. 

These pages are considered ―harmless.‖ They should be reclaimed before pages 

belonging to processes in the user spaces. Also, non-dirty pages have higher 

priority than dirty pages because they do not have to be written to disk. 

- Except locked pages, all pages of user space processes are reclaimable. The 

memory reclaiming process must be able to steal any page of a user space process, 

including anonymous pages. If a process has been sleeping for a long period of 

time, it will progressively lose all its page frames. 
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- If a page is shared by several processes, the memory reclaiming process clears all 

page table entries that refer to the page frame before reclaiming the page. 

- The memory reclaiming process uses a Least Recently Used (LRU) replacement 

algorithm and two lists (active and inactive) to identify which pages to reclaim. If a 

page has not been accessed for a long time, the probability that it will be accessed 

in the near future is low, and it can be considered inactive page.  On the other hand, 

if a page has been accessed recently, the probability that it will continue to be 

accessed is high, and it must be considered as active page. The reclaiming process 

will only reclaim inactive pages. 

On the server component of the simulation models, the receiving buffer component also 

needs some improvements. Currently, the receiving buffer component is implemented, 

using a cost model with computational complexity of O(1) for inserting and searching 

incoming packets. In Linux, the implementations of the network receiving buffer models 

are usually a linked list with the computational complexity of O(n) for inserting and 

searching packets. This is the reason why the simulation models have slower performance 

than the real-world measurement when using small block size and faster performance than 

the real-world measurement when using big block size. Due to the flow nature of Petri Net, 

there are some difficulties in modifying the model from a constant cost model to a linear 

cost model. However, the change can reduce the errors of the simulation models when 

comparing to the real-world measurement.  
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8.4.2 Implementing new components 

In addition to improving existing model components, implementing new model 

components is another direction to extend the capability of the simulation models. One 

interesting component that has not been implemented is the Linux I/O scheduler. The I/O 

scheduler controls the way I/O reads and writes are committed to disk. The goal of the I/O 

scheduler is to provide better optimization for different classes of workload by allowing the 

operating system to utilize many different scheduling mechanisms.  

Each scheduling mechanism is designed to improve a certain aspect of the I/O 

operations. The techniques used by the scheduler to improve performance include, but are 

not limited to, merging request, elevator, and prioritization. Merging request is a technique 

where adjacent requests are merged together to reduce disk seeking. Elevator is a technique 

where requests are ordered, based on their physical location, and the requests are usually 

traversed in one direction from the closest location to the farthest or vice versa. 

Prioritization is a technique where the priorities of requests are manipulated to improve 

performance. There are currently four I/O schedulers available. They are the no-op 

scheduler, the anticipatory I/O scheduler (AS), the deadline scheduler and the complete fair 

queuing scheduler (CFQ).  

The no-op scheduler is the simplest scheduling scheme. It only has the merging request 

technique implemented. All I/O requests are put into a simple first-in-first-out (FIFO) 

queue. Perhaps, the no-op scheduler works best with solid state devices that do not depend 

on mechanical movement to access data.  
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The anticipatory I/O scheduler is the former default scheduling scheme in the Linux 

kernel. It implements the merging request technique, the elevator technique and an 

anticipating read operation technique. Basically, it pauses for a short time (usually a few 

milliseconds) after a read operation in anticipation of another read request.  

The deadline scheduler implements request merging and elevator queues. More 

importantly, it imposes a deadline on all operations to prevent resource starvation by 

maintaining two deadline queues, in addition to the elevator queues (both read and write). 

Deadline queues are basically sorted by their deadline, while the elevator queues are sorted 

by the sector number. The deadline scheduler decides which queue to use before processing 

any request. Read queues are given a higher priority, because processes usually block on 

read operations. After that, the deadline scheduler checks if the first request in the deadline 

queue has expired. If none of the requests in the deadline queue is close to expiration, the 

scheduler will process requests from the elevator queue.  

The complete fair queuing (CFQ) scheduler also implements request merging and 

elevator queues. It additionally attempts to give all users of a particular device the same 

number of I/O requests over a particular time interval. CFQ categorizes incoming requests 

into synchronous type and asynchronous type. According to I/O priority of the requesting 

process, asynchronous requests are distributed into multiple priority queues, one queue per 

I/O priority. Each queue is assigned a time slice which depends on the I/O priority of the 

submitting process. The scheduler accesses these queues in a round-robin order. 

Synchronous requests are distributed into a number of per-process queues. The number of 

requests in a queue is also restricted, based on the I/O priority.  
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Obviously, depending on which scheduling scheme is in use, the I/O performance 

behavior of the system can have different characteristics. By implementing the I/O 

scheduler, the file system simulation models can accurately mimic the performance 

behavior of the actual file system and storage subsystems. The I/O scheduler is complex, 

but the current file system simulation models have many existing components that could be 

reused to make the implementation easier. 

Another interesting component to implement is a simulation model for different network 

hardware. InfiniBand is a very good one with which to start, since there are PVFS 

modifications to operate successfully, using InfiniBand as the network hardware [99-101]. 

InfiniBand is a powerful network architecture, designed to support I/O connectivity for the 

Internet infrastructure. Uniquely providing both backplane solutions and also traditional 

networking interconnects, InfiniBand offers communication and management infrastructure 

for inter-processor communication and I/O. By unifying the network‘s interconnect with a 

feature-rich managed architecture, it manages to provide native cluster connectivity, thus 

simplifying application cluster connections, supporting scalability, and sustaining 

reliability. With QoS mechanisms built in, InfiniBand can provide virtual lanes on each 

link and define service levels for individual packets.  

The current network hardware implemented in the simulation models is Ethernet, which 

uses a hierarchical switched topology. Unlike Ethernet, InfiniBand uses a switched fabric 

topology. Other commonly-used network topologies are Fat-Tree (Clos), mesh, and 3D-

Torus. Any of the previously mentioned topologies, after implementation, would create a 

very different interconnection simulation component, in comparison to the current 
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component. InfiniBand also transmits data in large packets (maximum size of 4 Kbytes). 

Packets are used to form messages, which could be as large as 2 Gbytes. There are multiple 

types of messages, such as direct memory access (RDMA), channel send or receive, 

transaction-based operation, multicast transmission, and atomic operation. Due to 

implementation complexity reasons, PVFS over InfiniBand implementations are using 

Internet Protocol (IP) over InfiniBand technology [102]. This is also a very good basis for 

the PVFS simulation model. Many network components and client components as well as 

server components can be reused.  

Based on the same principle as PVFS, a much improved PVFS2 is also a very nice 

addition to the file system simulation models. A PVFS2 improvement that has a significant 

impact on the simulation models is how the file system interacts with networks and 

storages. PVFS1 relies on the socket networking interface and local file systems for data 

and metadata storage. PVFS2 uses the Buffered Messaging Interface (BMI) and the Trove 

storage interface to provide Application Programming Interfaces (APIs) to network and 

storage technologies respectively. PVFS2 can support several different network types, such 

as TCP/IP, Myricom's GM message passing system, and InfiniBand (both Mellanox VAPI 

and OpenIB APIs) via BMI. Supporting multiple networking technologies efficiently is a 

very important feature of PVFS2. As a result, implementing the BMI model is a key to 

successful implementation of the PVFS2 simulation model.  

Similar to network technologies, many different storage technologies are also available. 

PVFS2 uses the Trove storage interface to efficiently support multiple storage back-end 

technologies. In addition to storing file data, metadata has also received much attention in 
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PVFS2. Instead of using a flat file on the local file system to store metadata as PVFS does, 

PVFS2 is using Berkeley DB database technologies for the metadata storage. In PVFS, 

there is only one metadata server. This creates a single point of failure, as well as a 

performance bottleneck.  PVFS2 can distribute metadata to multiple I/O servers (which 

might or might not also serve data). This allows metadata for different files to be placed on 

different servers and reduces the congestion to the metadata servers.  
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