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Abstract

The end of Moore’s Law has been predicted for decades. Demand for in-

creased parallel computational performance has been increased by improvements

in machine learning. This past decade has demonstrated the ever-increasing cre-

ativity and effort necessary to extract scaling improvements in CMOS fabrication

processes. However, CMOS scaling is nearing its fundamental physical limits. A

viable path for increasing performance is to break the von Neumann bottleneck.

In-memory computing using emerging memory technologies (e.g. ReRam, STT,

MRAM) offers a potential path beyond the end of Moore’s Law. However, there

is currently very little support from industry tools for designers wishing to incor-

porate these devices and novel architectures. The primary issue for those using

these tools is the lack of support for mixed-signal design, as HDLs such as Verilog

were designed to work only with digital components. This work aims to improve

the ability for designers to rapidly prototype their designs using these emerging

memory devices, specifically memristors, by extending Verilog to support func-

tional simulation of memristors with the Verilog Procedural Interface (VPI). In

this work, demonstrations of the ability for the VPI to simulate memristors with

the nonlinear ion-drift model and the behavior of a memristive crossbar array are

presented.



THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis

when needed for research and/or scholarship.

Agreed

Ivris Raymond

Refused

Ivris Raymond



ACKNOWLEDGEMENTS

I’d like to first thank the University of Arkansas Honors College for sup-

porting this research through the Honors College Research Grant.

I would like to thank my advisors Dr. Alexander Nelson and Dr. David

Andrews for mentoring and guiding me through this work. I would also like to

thank my committee for giving me helpful insight and ideas during this project. I

would like to thank my lab mates, Arafat and Nathan, for their help coming up

with the idea for this project and offering advice along the way. Finally, I’d like

to thank my stepfather, Tim, for first introducing me to the world of electronics.

iv



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Post-CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Memristors . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Alternative non-CMOS Technologies . . . . . . . . . . . . . 6

2.2 Simulation of Memristive Technologies . . . . . . . . . . . . . . . . 8
2.3 Processing in Memory . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Mixed Signal VLSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Reconfigurable Computing . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 FABulous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Implementation and Architecture . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Memristors in VPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Larger Memristive Circuits in VPI . . . . . . . . . . . . . . . . . . . 12

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Applying this work to Alternative non-CMOS Technologies . . . . . 21

5.1.1 Potential Applications . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1.1 VPI Implementation of nonlinear ion-drift memristor . . . . 34
7.1.2 Standard Matrix Multiply Function used in this work . . . . 34

7.2 Appendix B: Outputs from Simulations . . . . . . . . . . . . . . . . 35
7.2.1 4x4 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . . 35
7.2.2 8x8 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . . 35
7.2.3 16x16 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . 36

vi



LIST OF FIGURES

Figure 1.1: Outline of the process through which this work is able to support
Verilog simulation of memristors. The designer makes calls to
the Verilog Procedural Interface, which then refers to C code
injected at runtime to simulate the behavior of memristors. . . 2

Figure 2.1: (a) 1m1t Cell. A memristor (top) in series with a transistor.
(b) Domino logic unit . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2: Memristor Crossbar Array for Multiply-Accumulate Operations.
The input matrix (A) is transposed, then the matrix’s column
vectors are written to the horizontal lines. The vertical lines
can then be read for the accumulated result, with each input
vector resulting in a vector of the output matrix (Y). . . . . . 7

Figure 3.1: Code illustrating part of the implementation for the nonlinear
ion-drift model of memristor behavior in C. Many of the physical
constants are not shown here, but this information can be found
in Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4.1: The graph of memristors transitioning from high resistance state
to low resistance state as modeled in C for this work. The non-
linear ion-drift model that omits the window function is the
dashed line, while the nonlinear ion-drift model with the window
function is the solid line. The time steps are an arbitrary unit
for each iteration a current was applied for a fixed interval. . . 16

Figure 4.2: This plot illustrates the conversion of the state of the memristor
vs the binary state it is considered to be in. The dotted-dashed
line indicates the halfway point in the data collection time. Be-
cause of the non-linearity of this model, the halfway point does
not line up with the transition from 0 to 1. . . . . . . . . . . . 17

Figure 5.1: Typical CAD flow for designing devices. . . . . . . . . . . . . . 19

vii



LIST OF TABLES

Table 4.1: Matrix Multiply Successes in Various Simulators . . . . . . . . . 15

viii



1 Introduction

The von Neumann architecture, for all its successes, introduced a perfor-

mance barrier related to memory. Each instruction and its data must first be

loaded from memory into registers before it may be computed. This is defined as

the von Neumann bottleneck and has long plagued computer architects in their

ceaseless pursuit of high-performant computing machines. The architecture com-

munity has utilized a number of workarounds to enable ever increasing performance

despite this bottleneck, but the rapidly approaching end to Moore’s Law has all

but eliminated future prospects for these workarounds [1]. Out-of-order execution,

branch prediction, and multi-tier memory caching were all improvements that were

greatly aided by the exponentially increasing transistor density of the past.

However, even as Moore’s Law is ending, the demands for increasing com-

putational performance continue to grow. Currently, AI and machine learning

algorithms dominate the use-case for highly parallel systems. Many of these al-

gorithms are limited by memory read and write operations [2]. Solutions to this

problem have been explored in recent years with processing-in-memory designs

in both reconfigurable and Application Specific Integrated Circuit (ASIC) imple-

mentations [3], [4]. These designs seek to circumvent the limitations of the von

Neumann architecture by processing data directly in the memory rather than per-

forming the usual load, process, store flow.

Many of these solutions also make use of novel components, some of which

are analog in nature. For those that are still digital in nature, current tools for

simulation, emulation, and layout of these devices are adequate. However, for

those designs that utilize analog components for essential functionality, many tools

provide very little support throughout the early stages of the design flow.

This thesis presents a method for functional simulation of these non-CMOS

devices. This enables the designer to rapidly prototype according to simulation
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Figure 1.1: Outline of the process through which this work is able to support
Verilog simulation of memristors. The designer makes calls to the Verilog Proce-
dural Interface, which then refers to C code injected at runtime to simulate the
behavior of memristors.

results while still supporting industry-standard and academic tools. This work

will also discuss the ability for this flow to provide functional simulation in the

FABulous tools, a recently developed suite of tools for developing embedded FP-

GAs with custom fabrics of both traditional CMOS and Post-Moore non-CMOS

components [5].
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2 Related Works

This work builds on prior art in several fields. This section categorizes and

summarizes related work necessary to properly place the work performed in this

thesis.

2.1 Post-CMOS

The architecture community has seen transistor scaling slow in the face of

the end of Dennard Scaling, a statement that originally postulated transistor power

density remains constant as device area is reduced [6], [7]. Post-Dennard Scaling,

the architecture and fabrication communities continued to offer significant perfor-

mance improvements through multicore architectures. The continued reduction of

transistor size allowed for packing more and more cores onto a die without needing

to develop more sophisticated interconnects or latency tolerant architectures.

However, the failure of Moore’s Law to produce sufficiently smaller devices

has already begun to change the way hardware designers develop multicore archi-

tectures. Recent industry developments in chiplet architectures and interconnects

for these devices, such as AMD’s Infinity Fabric, demonstrate the need to reevalu-

ate potential improvements in interconnections between memories and CPUs. [8]

While the end of Moore’s Law has long been touted as a disaster for the

architecture community, it also presents an excellent opportunity for revisiting

architectures and devices that fell to the wayside in the past due to their lack of

necessity compared to the scaling enabled by Moore’s Law.

2.1.1 Memristors

In 1971, Chua published work presenting a fourth passive circuit element

yet undiscovered by the scientific community [9]. The memristor, as he described
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it, related charge and flux-linkage. This device completed the set of 4 devices

expected to exist based on how electrical properties passive circuit elements were

expected to relate. The memristor is a two-terminal device that behaves similarly

to a resistor, but has a variable resistance related to the amount of charge that

passes through it. Furthermore, this memristance ”memory resistance” does not

require constant power due to the passive nature of the device, meaning that the

memristor is non-volatile, unlike traditional computational memories like DRAM

and SRAM.

While Chua published work presenting what should be the final passive

circuit element, it wouldn’t be until nearly 40 years later that a device that behaved

in a manner similar to the theoretical memristor would exist. In 2008, HP created

what would arguably be the first memristor utilizing a two-terminal titanium-oxide

design [10]. However, HP’s implementation of the memristor being the first also

suffered from issues with reprogramming and limited reads [11].

Since HP’s first successes at fabricating a memristive circuit element, many

alternative designs and processes have been developed that improve upon many

aspects of the device. Alternative circuit layouts for memristive systems have also

been demonstrated to improve the resilience of memristive systems. One such

example is [12], which utilizes a series resistor to improve the resistance to drift

in the memristor upon reading. Furthermore, problems with resistance drift have

been exacerbated by poor heat dissipation in memristive systems. However, work

has already been done to demonstrate techniques for improving heat dissipation

to attain a substantial reduction in resistance drift as values are read from and

written to memristors [13]. Process yield has also greatly improved for nanoscale

memristors recently, as in 2021 the work done in [14] presented a 90% yield rate

for a 100nm process.

However, practical issues with adopting memristors for use in computational

devices is not just limited to manufacturing. One of the biggest challenges a

designer faces when making a memristive circuit is sneak paths, as they can greatly

reduce the accuracy of a network whether it be used for memory, neuromorphic
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computing, etc. There has already been a lot of work discussing how this issue

arises, and examples of how it can be solved in [15], [16]. This particular issue

also affects logical conventions in memristors like imply logic [17]. While a wider

adoption in the industry would likely result in more issues being found, the current

success researchers have had in mitigating these issues sets a promising trend for

the practicality of memristors.

Currently, there are several offerings of process nodes that include CMOS

and non-volatile RAMs on the same substrate. One such example is the SkyWater

90nm and 130nm nodes which offer memristors for fabrication of chips that imple-

ment heterogeneous architectures [18]. The manufacturing of these devices is not

limited to the SkyWater ChipIgnite programs either though, as other fabs such as

TSMC have also manufactured devices used in published work [19]. Furthermore,

TSMC specifically is one fab that has manufactured many chips utilizing the alter-

native devices discussed later in this work in published works [20], [21]. Companies

are already manufacturing these devices, and while the scales may not be as high

as CMOS processing nodes, there is a good reason to rapidly develop tools that

support designers utilizing these technologies.

One method for overcoming some of the challenges of supporting memristive

circuits for data processing and storage has been to add a series transistor on the

bit-line. This 1 memristor 1 transistor (1M1T) layout can be seen in Figure 2.1

(a). This prevents issues such as sneak paths when several memristors are in

parallel in a large array. The disadvantage of this is similar to those of CMOS

Domino Logic (Fig. 2.1 (b)), as the benefits of using a non-CMOS technology are

reduced with the introduction of additional correcting logic [22]. While a single

transistor or pass-gate may not be CMOS, any transistor must be fabricated in

silicon. Memristors are fabricated in the metal layers. This reduces the potential

for area reduction, one of the primary advantages of memristors in heterogeneous

systems.

One of the most promising use-cases for memristors is neuromorphic com-

puting due to their analog nature providing outstanding support for multiply-
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(a) (b)

Figure 2.1: (a) 1m1t Cell. A memristor (top) in series with a transistor. (b)
Domino logic unit

accumulate operations. The most common way to implement this behavior on

a memristive crossbar array is by flashing the weights matrix to the memristors,

then putting each vector on the rows of the array. It is necessary to transpose the

input matrix using this method. This setup is shown in figure 2.2. This allows

us to calculate an entire row of the output at once by measuring the value on the

lines making up the columns of the array. This particular setup is very vulnerable

to the sneak-paths issue discussed earlier in this section.

There are other logic families designed for memristors that can provide

support for conventional Boolean logic traditionally done on CMOS components.

Good examples of these are MAGIC and IMPLY, which vary highly in their tech-

niques for implementing logical operations [23], [17].

2.1.2 Alternative non-CMOS Technologies

Other nonvolatile memory technologies are also being explored for their po-

tential to accelerate neuromorphic computation. One of these options is Magnetic

RAM, specifically Spin Torque Transfer (STT) RAM [24]. STT-RAM does offer

some advantages compared to Resistive RAM (ReRAM). One of the most impor-
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Figure 2.2: Memristor Crossbar Array for Multiply-Accumulate Operations. The
input matrix (A) is transposed, then the matrix’s column vectors are written to
the horizontal lines. The vertical lines can then be read for the accumulated result,
with each input vector resulting in a vector of the output matrix (Y).

tant differences is in the read and write speeds of STT-RAM, which tends to be

much closer to SRAM than most of the other post-CMOS alternative technologies.

With the development of STT-RAM, the scalability of STT-RAM was also greatly

improved over the first variations of MRAM, which were largely Magnetic Tunnel

Junction RAM due to the reduction in area [25].

Another alternative to ReRAM is Phase Change RAM (PC-RAM). PC-

RAM does also benefit from non-volatility, so it does not require a refresh cycle.

It also has a symmetric write and read cycle, both of which are non-destructive.

This makes it a compelling option for replacing something like HDDs, as it doesn’t

suffer from the reliability issues of NAND flash. However, it does have a higher

latency than DRAM. In many ways, PC-RAM is more likely to replace the role of

NAND in a system rather than that of SRAM or a BRAM in an FPGA.
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2.2 Simulation of Memristive Technologies

Researchers have already created many suites for simulating memristors at

higher levels using a variety of models. Many of these are implemented in lan-

guages such as Python and C++, making them accessible to the general program-

mer. These simulation libraries are also often focused specifically on neuromorphic

computing with memristors, making them ideal for testing the potential for mem-

ristors to implement a particular model [26], [27]. Furthermore, there has been

extensive work in simulating memristors in very low-level scenarios, such as in

SPICE simulators [28], [29]. In this way, there has been substantial exploration of

simulating memristors at the circuit level, and application level. However, there

has been little exploration of simulating memristors at the behavioral level.

2.3 Processing in Memory

Processing in memory is not a new idea. The general concept is to subvert

the limitations of the von Neumann architecture by processing data directly in

the memory instead of first having to move it out of memory, then back in after

the computation [30]. However, CMOS has always been inherently limited for

this architecture. In CMOS, designers don’t usually have elements they can use

as both memory and compute elements. This has resulted in a lot of the work

on processing in memory done in CMOS being closer to processing near memory

rather than in memory. Typically, you’ll see this as something like processing

elements, complicated or simple, added to bit lines at the output of the sense

amps in something like a Block RAM unit in an FPGA [3], [31].

2.4 Mixed Signal VLSI

Many tools often used by hardware designers throughout the industry pro-

vide little to no support for mixed-signal circuit VLSI designs. This is because

there was little need to use analog components for digital simulation early on in
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the process, as they often didn’t provide additional functionality so much as do-

ing things such as power filtering. Therefore, the addition of analog components

was assumed to only take place at the layout stage of the design process. These

tools could then export your design to a SPICE netlist for simulation, but it ob-

viously isn’t possible to go back up the chain from a netlist in a layout tool to

an RTL Verilog description. Even with recently developed open-source tooling

such as OpenRoad, there is no simulation flow for mixed-signal designs aside from

compiling your gate-level netlist to a SPICE compatible netlist then running simu-

lations in SPICE [32]. This problem is further compounded by the fact that many

tools like FABulous are being developed to make development of heterogeneous

architectures easier as long as your expected flow is verification in SPICE then

tapeout.

For the first time, though, there is need for the ability to do functional

simulation of mixed signal designs earlier in the process. This is because many

emerging technologies, such as memristors, are analog in nature and require differ-

ent simulation support than that which traditional Verilog event-driven simulators

are able to provide. This has left many designers with very limited simulation

options, often requiring them to go to layout then export that design to a SPICE

netlist for simulation. This does work, but SPICE provides a lot more informa-

tion than is required for functional verification, and at a hefty price in terms of

simulation time even for simple designs [33].

2.5 Reconfigurable Computing

FPGAs are reprogrammable hardware useful for prototyping designs and

implementing logic that may change often. There are two popular FPGA architec-

tures in the industry currently: Island Style and Hierarchical [34]. More recently,

the industry has grown interested in embedded-FPGAs (eFPGAs), which embed

a chip (often an SoC) within FPGA fabric that extends its functionality in some

helpful way for the designer’s use-case. For instance, if a designer wanted to add
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vector instructions to an ARM SoC that didn’t natively support them, they could

do so with an eFPGA that extended the ISA of the chip such as in [35]. While the

role FPGAs have played in computing outside of very specific use-cases has been

relatively limited, the rapid increase in demand for machine learning acceleration

has sparked new interest in their abilities. Recently, researchers have started ex-

ploring the best ways to utilize memristors and other emerging memory devices in

FPGA fabric for improving performance, power, and area [36].

2.5.1 FABulous

FABulous is a recently developed suite of tools for customizing the fabric of

eFPGA devices to better suit a user’s application [5]. Most of the work FABulous

does is at the RTL level and above, as it allows a user to define their fabric using

CSV files to instantiate primitives. These primitives can be provided by the fab,

or they can be custom primitives designed by the user.

FABulous provides most of its utility through abstraction. Primitives exist

in tiles along with configuration blocks and switch matrices. Those tiles may then

be arranged into supertiles, which can also separately contain more switch matrices

and configuration blocks. This degree of abstraction makes fabric description for

something like an Island Style architecture FPGA much faster. The user is able

to write individual elements of the fabric, BRAMs, DSPs, etc... Those elements

can then be instantiated in whatever pattern the designer wants to support using

the CSV fabric descriptions rather than a Verilog Top Module. The output of

FABulous is then an RTL description of your entire fabric, which can then be used

to do functional simulation, place and route emulation, or coverted to a gate-level

netlist and used for layout.
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3 Implementation and Architecture

For this work, most of the implementation was done in C. The code used

for the single memristor implementation and the crossbar array can be found in

Appendix A. This work was written on a system running a version of Ubuntu with

the packages required for GCC and IVerilog.

3.1 Memristors in VPI

My original intention for this project was to demonstrate how FABulous

can be used to customize specific primitives in an FPGA fabric without needing

to redesign the entire fabric. FABulous does indeed support this use-case as long

as you intend to work in CMOS. However, the goal was to do so using memristive

elements for a BRAM rather than standard SRAM. If this work were scoped to

take the project to tapeout, that CAD flow would have been well supported. As

previously mentioned, it would have been as simple as using FABulous to generate

the RTL description of the fabric, then compiling to a gate-level netlist and doing

layout with tools like OpenRoad [32], [5]. The issue was that this project would

not be going to tapeout, and instead the intention was to do functional simulation

to demonstrate the potential for the project as a proof of concept.

As previously mentioned, research in next-generation architectures utilizing

novel non-CMOS components has been largely restricted by the tools available to

researchers and designers. Currently, most of the industry uses tools meant for

creating digital circuits, without much need for complicated mixed-signal designs or

any analog components until the layout stage. When designing a chip utilizing an

architecture that seeks to do computation with these novel components, though, it

is often helpful to do functional simulation of the circuit without the computational

overhead of a full SPICE simulation. Historically, this has been done with simple

event-driven RTL-HDL simulators (eg. IVerilog).
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ReRAM elements are analog in nature and cannot be simulated in HDL

under the current IEEE standards of Verilog, SystemVerilog, or VHDL without

an extension of the language. However, the Verilog standard (IEEE 1364) does

include a method for interfacing with procedural languages such as C. Namely, the

Verilog Procedural Interface [37]. Utilizing the VPI it is possible to write a task in

Verilog that runs some C code during simulation of the Verilog netlist. Since we

have a memristor model in C, the implementation utilized that along with the VPI

to call the memristor code at runtime and provide arguments for the digital logic

values going into the memristor. The C code makes use of the nonlinear ion-drift

model presented in [38], [39], and was based heavily on work presented using C++

in [40]. Note that unlike the model presented in [40], this model only calculates

the state variable for a single given time step in the below C code. The variables

defined in this model also are not accurate to any particular process and would

change to reflect those of the memristors produced by the process the user will be

fabricating on. Below shows the model used in this work, as well as a selection of

the code found in Appendix A.

dM

dt
= ki(t)W (x)

Where k is a constant determined by the device properties, M is mem-

ristance, and W(x) is an implementation of the window function based on that

presented in [39]. This was implemented as follows:

Two memristor models were implemented for this work, both of which were

nonlinear. One included a window function for correcting sudden swings in mem-

ristance, while the other did not. The effects of this are discussed later in this

thesis.

3.2 Larger Memristive Circuits in VPI

As previously mentioned, the original need for this work was in support of

simulating memristive circuits in primitives included within FPGA fabric gener-

12



double window = (1 - pow((2*(prev_state+0.00001) - 1), (2*P)));
double change = K*(i*dt)*window;
if (fabs(i) < THRESHOLD) {

printf("NOT CHANGED\n");
return new_state;

}
else if (i < 0) {

M = M - change;
if (M < R_ON) {

M = R_ON;
}
else if (M > R_OFF) {

M = R_OFF;
}
new_state = (M - R_ON) / (R_OFF - R_ON);
return new_state;

}
else {

M = M + change;
if (M < R_ON) {

M = R_ON;
}
else if (M > R_OFF) {

M = R_OFF;
}
new_state = (M - R_ON) / (R_OFF - R_ON);
return new_state;

}

Figure 3.1: Code illustrating part of the implementation for the nonlinear ion-
drift model of memristor behavior in C. Many of the physical constants are not
shown here, but this information can be found in Appendix A.
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ated by the FABulous tools. Since designers can provide a custom description of a

primitive in FABulous, the user is able to replace something like a generic FPGA

BRAM with one that implements processing in-memory with memristors. Previ-

ously, though, the designer was unable to simulate this until they put the fabric

description into a layout tool and generated a SPICE netlist. The work presented

in this thesis provides a CAD flow for simulation before layout, preventing the

need to go up and down the stack just to verify functionality. Since the FABulous

tools output a Verilog netlist description of the eFPGA fabric the user designed,

the user could then compile that with the VPI in IVerilog before using something

like next-pnr for simulated place and route.

A behavioral implementation of a memristive crossbar array in C for multiply-

accumulate options was done in support of modifying an FPGA BRAM. In this

case, the C function that is called is just a standard matrix multiplication function.

The outer Verilog wrapper that calls the function performs mutations on the data

based on the instruction it is given. In this case, it is possible to do matrix-matrix

multiplication, matrix-vector multiplication, and vector-vector multiplication. In

order to accomplish this, the outer Verilog wrapper aligns the data in different

ways, prioritizing the left-most column for data that does not fill the array. Fig-

ure 2.2 also demonstrates how matrix multiplication is performed using a memristor

crossbar array. The difference is that we multiply column-wise on both matrices,

meaning that the transpose of the input matrix must first be taken. The weights

matrix is already represented in the memristors by flashing the memristors with

appropriate resistances ahead of time. For this work 4x4, 8x8, and 16x16 matrices

were tested for matrix multiply validity. This work was chosen to match up with

that discussed in [41], where the solution did not converge for 8x8 and 16x16 cases.
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4 Results

Table 4.1: Matrix Multiply Successes in Various Simulators

Implementation 4x4 8x8 16x16 Digital vs Analog
VPI Crossbar Digital
SPICE Crossbar [41] Analog
PWL SPICE Crossbar [42] Analog†
Mem-torch Simulator [27] Digital*
IBM Analog Accel Kit [26] Digital*

The table above (Table 4.1) compares this work with alternatives for simu-

lating memristive crossbars. Data from the papers cited was used for the informa-

tion in this table. and indicate whether or not the simulation model can finish

simulating a memristive crossbar array of the corresponding size. The high-level

and low-level notes indicate whether the model is meant to prove the functionality

of the design or to verify more detailed information (eg. power usage). * These

simulations are run at a higher level than the traditional hardware stack (C++

and above). † These simulations sacrifice some accuracy compared to traditional

SPICE simulations.
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Figure 4.1: The graph of memristors transitioning from high resistance state to
low resistance state as modeled in C for this work. The non-linear ion-drift model
that omits the window function is the dashed line, while the nonlinear ion-drift
model with the window function is the solid line. The time steps are an arbitrary
unit for each iteration a current was applied for a fixed interval.
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Figure 4.2: This plot illustrates the conversion of the state of the memristor vs
the binary state it is considered to be in. The dotted-dashed line indicates the
halfway point in the data collection time. Because of the non-linearity of this
model, the halfway point does not line up with the transition from 0 to 1.
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5 Discussion

The biggest issue with memristors from a designer’s perspective is the lack

of a streamlined workflow. Currently, hardware designers are cobbling together

many tools with various contributions to get us through place and route. Once

the architecture community gets there, it will still need to put together several

pieces to accomplish mixed signal simulation in most cases. This work seeks to

help streamline that process by making it unnecessary to move down the stack

rapidly to layout in order to do functional verification. Currently all a designer

needs to do is provide a C implementation of the component they want to simulate

the functionality of, then inject that at runtime using VPI. This means a lot less

code modification is necessary compared to writing several Verilog modules to

simulate the behavior of an analog component in pure Verilog, but without the

disadvantage of no longer being able to use the much faster Verilog simulators.

Figure 5.1 depicts a typical CAD flow when designing devices. Highlighted in red

is the point at which functional simulation takes place, notably earlier than the

point at which other options such as SPICE simulation can take place.

Currently the process outlined in this paper does require some work on

the part of the hardware designer in the event that a C implementation of the

behavior they want hasn’t already been made. Furthermore, there are some timing

limitations when it comes to using the VPI. With the examples given, this work

passes data back and forth from a task using the provided arguments to the task call

in Verilog. The VPI offers less intuitive support for passing vectors as arguments,

so in this work vectors were broken up into the number of components and passed as

one argument per component. Consuming simulation time within a VPI task is also

difficult, as by default no matter how long it takes your task to run, for simulation

purposes it is finished in 0ns. This behavior is desirable for simulation, but the

method for telling the simulator how much simulation time a task should consume
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Figure 5.1: Typical CAD flow for designing devices.
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is non-trivial. In general, the VPI can be difficult to work with for anyone not

especially experienced with the more obtuse behaviors of the C language. There is

potential for automating a lot of these processes though, and integrating the work

presented here with other tools such as OpenRoad. There is further discussion of

this in future works. Figure 4.1 makes a good case for differences in modeling being

a worthwhile time investment for a designer, though, as the difference even for a

small change in a function can have a pretty substantial effect for these devices.

A good demonstration of the ability for this work to help designers make

decisions about their implementations can be seen in Figure 4.2. In the figure,

it is obvious that the binary threshold between 0 and 1 does not occur midway

through the simulation. Instead, it occurs a little sooner than would be expected

due to the nonlinear nature of the memristive devices. This behavior may be

desirable for some scenarios, such as those in which a CMOS skewed gate would

have been appropriate, but in most cases a symmetrical gate is desired. The

designer could make adjustments to their analog-to-digital conversion hardware in

order to account for this, so instead of shifting the binary state when the state

variable is halfway between the minimum and maximum value, it could be done

earlier or later depending on the device behavior.

A valid concern about doing functional simulation in this manner is whether

or not it will accurately reflect the behavior of the hardware. With the work pre-

sented, the simulation is only as good as the model the user is willing to write in

C. However, whenever it comes to something like the crossbar example, it allows

the user to validate the other portions of the circuit assuming they have a working

crossbar. This also enables a divide-and-conquer approach to hardware develop-

ment where one engineer may develop the analog accelerator portion separately

from the team developing the digital logic. Whether or not it is necessary to write

in such a manner to directly simulate the behavior of the hardware mathemati-

cally largely depends on the desired results from the simulation. In order to do

something like test for sneak-paths, it may be necessary to do so, but if someone

just needs the behavior to interface with there is no need to write the nonlinear
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ion-drift model in C.

It is also important to note that this work does not replace something like

a SPICE simulator or doing emulation on an FPGA before pushing a design to

tapeout. The role of this work is in the early phases of design, when an engineer

wants to get a working version in the simulator and isn’t yet concerned with power

characteristics, etc. As mentioned previously, this enables rapid prototyping early

on in the development process. The purpose of doing SPICE simulations during

the hardware design process is often to prove the design will work on real hardware

that tends to behave non-linearly rather than in a Verilog simulator at gate level.

This is an important step in verification of a design, and the work presented in

this paper should not be used to replace any portion of this step. The contribution

of this work when compared to other works contributing higher level simulations

of emerging memory devices is in the integration with the early stages of the

design process. Where those other implementations would require a behavioral

description of your digital architecture in higher level languages to communicate

with the simulation, the method presented in this work interfaces directly with the

RTL description of the digital logic.

5.1 Applying this work to Alternative non-CMOS Technologies

As discussed previously in this work, there are other emerging technologies

that may provide similar benefits to specific application to memristors. These

technologies such as MRAM and PCM also benefit from non-volatility, and some

are also capable of representing more than one bit of information per cell. These

technologies could also benefit from work similar to that discussed in this paper,

as being able to represent that much information per cell also makes them unable

to be represented in digital logic without a lot of overhead in both performance

and in writing the behavioral HDL.

Historically, the software development community has benefited from the

relatively homogeneous hardware stack that Moore’s Law and CMOS scaling en-
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abled. However, as this work has discussed, the goal of memristors and other

emerging technologies like them is to aid CMOS with certain common operations

rather than entirely replace it. This means a user won’t have just one type of

hardware in their system, but instead will have a variety of accelerators at their

disposal. Current compilers are unable to map algorithms implemented by any

given programmer to these accelerators. The general trend in research so far has

been that most of the people interested in working with memristors also happen

to be capable of mapping the algorithm they want to use to the appropriate ac-

celerator in an appropriate manner. The architecture community obviously can’t

expect this of programmers that work largely in higher level languages such as

C++ and Python, and certainly can’t expect this from users. Thus far, efforts

have been relatively limited on this problem due to the lack of need, but some

work has been done that attempts to address these issues ahead of time. One ex-

ample of using machine learning to map algorithms to the appropriate accelerator

in an accelerator-rich system is [43].

5.1.1 Potential Applications

The most obvious application of this work is the goal that originally moti-

vated this work: to design an eFPGA fabric that utilizes memristors in the BRAM

to improve the performance of array processor implementations mapped to the

fabric. However, works such as [36] also demonstrate the ability for memristors to

substantially improve the communication circuitry in FPGAs. Emerging academic

tools such as FABulous offer a promising method for future researchers to continue

exploring this research. As mentioned previously, the improvement in support for

the research use-case was the primary motivation for this work, as tool suite origi-

nally intended to use for this work. FABulous, didn’t offer the simulation support

for memristors that was needed for this timeline. This work was then pivoted to

researching a way to provide that support. This work should provide an avenue for

simulation that didn’t exist previously with tools like FABulous for the designer
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that wants to make use of non-CMOS components.

Memristors are already being explored for their potential applications in

IoT security for reducing power consumption and increasing performance com-

pared to traditional AES Encryption cores [44]. Currently, some of the most well-

researched alternatives for replacing traditional key establishment mechanisms in a

post-quantum world involve solving complicated problems on lattice matrices with

error components. Traditionally, this error is generated using dedicated hardware,

such as random number generators. However, with the current state of memristor

manufacturing, it may be possible to use resistance drift to our advantage for com-

putational efficiency. Work has already been done demonstrating the ability for

memristors to be used for securing communications with chaotic systems [45]. The

advantage of using memristors demonstrated in [45] is that we can manufacture

secure, trusted systems with untrusted foundries.

This work was also in support of exploring the potential memristors have

for accelerating IoT applications to speeds and efficiency that nears ASIC. The

primary advantage of memristors is in area and reconfigurability. Unlike ASIC, it

is possible for the device to be reconfigured to some degree. Memristive processing

in-memory elements offer many of the advantages of FPGA’s reconfigurable fabric

while substantially reducing the performance and power overhead of a traditional

CMOS FPGA. Furthermore, IoT devices will also need new Key Establishment

Mechanisms (KEM) as we approach a post-quantum computing world. Due to the

computational demands of many of the algorithms presented in the NIST PQC

competition, IoT devices often require substantial amounts of time and memory

(relative to their comparatively limited DRAM pool) to perform the computation

[46]. Efforts have already begun on exploring the potential for memristors to

accelerate other security algorithms on IoT devices [47]. There is an immediate

need for the acceleration of the PQC KEM algorithms though, and this use-case

has yet to be addressed. This work would be beneficial in the process of designing

an IoT KEM accelerator.

A final security implication of including memristors on IoT devices is an
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improvement in data privacy in devices using machine learning. Currently, many

systems that perform inference on some user input must first transfer that data

to a cloud server with more substantial processing capabilities. While this data

is often encrypted to protect from man-in-the-middle attacks, it is not safe from

bad actors at the destination engaging in maleficence with personally identifiable

information (PII). Memristors could provide smaller IoT devices with the ability

to perform inference on-device, thus eliminating the risks involved with sending

potentially sensitive data to an off-site server for processing. Work has already

been done demonstrating the efficacy of several emerging memory devices for this

purpose, including ReRAM [48].
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6 Conclusion and Future Work

This work demonstrated the potential for non-CMOS compontents to be

simulated in the early phases of hardware design by expanding the Verilog standard

(IEEE 1364) using the Verilog Procedural Interface. This work demonstrates the

ability to do so in a manner that very closely simulates the actual functionality of a

memristor using the nonlinear ion-drift model [38]. This thesis also demonstrated

the ability for a designer to instead opt for a more behavioral-focused simulation

that operates at a higher level to simulate a complete memristive system, such as

a crossbar array used for multiply-accumulate operations [4], [49].

This work enables the designer to rapidly prototype and test their design

using Verilog simulations rather than lower-level simulations such as SPICE or

emulation methods. A designer with less intricate knowledge of SPICE simulations

or less time to move through the stack before tapeout could utilize this technique

to expedite their functional testing. Furthermore, this allows a designer to more

easily integrate their design with tools such as FABulous [5], that can allow for

abstraction that further expedites hardware design and modification.

This work is timely, because while memristors may currently struggle with

reliability and resilience when it comes to reading and rewriting their current val-

ues, the materials community is rapidly improving processing techniques to solve

these problems. As yield and resiliency of these devices improves, designers will

be interested in the potential for these devices to accelerate their target use-cases.

This work enables designers to more easily ensure functionality of their designs at

a high level.

6.1 Future Work

There is still a lot that can be done using the techniques outlined in this

thesis. This work primarily focuses on proving the efficacy of this CAD flow and

25



discussing the use-cases in which this work is most valuable. Very few designs are

given in this work which designers may want to actually use, due to the limited

timeframe in which this research was conducted. A great place to start for the

short term is to develop more designs utilizing the VPI for a variety of memristor

use-cases.

In the short to mid-term, another great expansion of this work would be

to provide designers with the ability to convert a SPICE netlist directly into VPI

compatible C. Another worthwhile idea to explore would be providing the designer

with semantics they can use in Verilog for tagging a particular module as being

simulated with the VPI. Then, when compiling to RTL and gate-level netlists, it

is then automatically swapped out with the appropriate blackbox module instan-

tiation. This would further improve the ability of the user to rapidly prototype

their mixed-signal design, which was the primary objective of this work. Providing

an automated method for re-implementing certain portions of the designer’s HDL

would further reduce the amount of extra work that needs to be done on the part

of the designer between functional simulation and emulation/RTL compilation.

Another long-term goal for this work could be to support existing higher

level simulation libraries for memristors, such as those mentioned earlier in this

work [27], [26]. For instance, this work could be extended to provide a Python

library capable of wrapping these libraries for C function calls. The library would

then implement the VPI code automatically around the simulation functions, sub-

stantially lowering the required expertise on part of the designer. Rather than

needing to provide an implementation of their desired behavior in C themselves,

the designer would be able to reuse work already done that behaves in the man-

ner they desire without needing to write any C code themselves. The difficulty of

creating the wrappers around these libraries would vary, but many of them pro-

vide implementations in C++ already. It may be relatively trivial to write C that

wraps around the C++. For those that do not implement their behavior in C++,

the work may be less trivial, but still a worthwhile effort. This would allow for

compartmentalization of development, as a programmer not familiar with HDLs
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or even C could provide a simulation framework to hardware designers to suit their

desired use-case.
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[30] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern
primer on processing in memory,” 2022.

[31] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi, C. Au-
gustine, R. Iyer, and R. Das, “Compute-capable block rams for efficient deep
learning acceleration on fpgas,” in 2021 IEEE 29th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), 2021,
pp. 88–96.

[32] D. B. T. Ajayi, “Openroad: Toward a self-driving, open-source digital
layout implementation tool chain,” Proceedings of Government Microcircuit
Applications and Critical Technology Conference, 2019. [Online]. Available:
https://par.nsf.gov/biblio/10171024

[33] N. Kapre and A. DeHon, “Performance comparison of single-precision spice
model-evaluation on fpga, gpu, cell, and multi-core processors,” in 2009 In-
ternational Conference on Field Programmable Logic and Applications, 2009,
pp. 65–72.

[34] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture: Survey and Challenges.
Now Foundations and Trends, 2008.

[35] N. Dao, A. Attwood, B. Healy, and D. Koch, “Flexbex: A risc-v with a
reconfigurable instruction extension,” in 2020 International Conference on
Field-Programmable Technology (ICFPT), 2020, pp. 190–195.

31



[36] J. Cong and B. Xiao, “mrfpga: A novel fpga architecture with memristor-
based reconfiguration,” in 2011 IEEE/ACM International Symposium on
Nanoscale Architectures, 2011, pp. 1–8.

[37] C. Dawson, S. Pattanam, and D. Roberts, “The verilog procedural interface
for the verilog hardware description language,” in Proceedings. IEEE Inter-
national Verilog HDL Conference, 1996, pp. 17–23.

[38] V. Mladenov and S. Kirilov, “A nonlinear drift memristor model with a
modified biolek window function and activation threshold,” Electronics, vol. 6,
no. 4, 2017. [Online]. Available: https://www.mdpi.com/2079-9292/6/4/77

[39] S. Thomas, S. Prakash, and K. Priya, “Characterization of memristor based
on non-linear ion drift model,” in 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp.
2189–2192.

[40] A. Bala, A. Adeyemo, X. Yang, and A. Jabir, “High level abstraction of
memristor model for neural network simulation,” in 2016 Sixth International
Symposium on Embedded Computing and System Design (ISED), 2016, pp.
318–322.

[41] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
spice model and crossbar simulation based on devices with nanosecond switch-
ing time,” in The 2013 International Joint Conference on Neural Networks
(IJCNN), 2013, pp. 1–7.

[42] Y. Zhang, H. Xu, Z. Li, Y. Sun, H. Yu, and C. Chen, “An efficient pwl mem-
ristor model with mmse parameter fitting,” IEEE Transactions on Electron
Devices, vol. 69, no. 3, pp. 1545–1552, 2022.

[43] H. T. Kassa, T. Verma, T. Austin, and V. Bertacco, “Chipadvisor: A machine
learning approach for mapping applications to heterogeneous systems,” in
2021 22nd International Symposium on Quality Electronic Design (ISQED),
April 2021, pp. 292–299.

[44] H. Rady, H. Hossam, M. Saied, and H. Mostafa, “Memristor-based aes key
generation for low power iot hardware security modules,” in 2019 IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS), Aug
2019, pp. 231–234.

[45] R. Vishwakarma, R. Monani, A. Hedayatipour, and A. Rezaei,
“Reliable and secure memristor-based chaotic communication against

32



eavesdroppers and untrusted foundries,” 2022. [Online]. Available:
https://doi.org/10.21203/rs.3.rs-2331476/v1

[46] D. Atkins, “Requirements for post-quantum cryptography on embedded
devices in the iot,” in Third PQC Standardization Conference, 2021.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Events/third-
pqc-standardization-conference/documents/accepted-papers/atkins-
requirements-pqc-iot-pqc2021.pdf

[47] M. Uddin, A. S. Shanta, M. Badruddoja Majumder, M. S. Hasan, and G. S.
Rose, “Memristor crossbar puf based lightweight hardware security for iot,” in
2019 IEEE International Conference on Consumer Electronics (ICCE), Jan
2019, pp. 1–4.

[48] A. Singh, S. Diware, A. Gebregiorgis, R. Bishnoi, F. Catthoor, R. V. Joshi,
and S. Hamdioui, “Low-power memristor-based computing for edge-ai appli-
cations,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1–5.

[49] J. Chen, J. Li, Y. Li, X. Miao, J. Chen, J. Li, Y. Li, and X. S. Miao, “Multiply
accumulate operations in memristor crossbar arrays for analog computing,”
Journal of Semiconductors, vol. 42, 09 2020.

33



7 Appendix

7.1 Appendix A

All of the code and data for this project can be found at the following

GitHub Repo: https://github.com/Arenile/memristor-vpi

7.1.1 VPI Implementation of nonlinear ion-drift memristor

double vIn = vInc - vDec;
double M = ((R_OFF * prev_state) + (R_ON * (1 - prev_state)));
double i = vIn / M;
double new_state = prev_state;
// Need window functin for nonlinear behavior
double window = (1 - pow((2*(prev_state+0.0001) - 1), (2*P)));
double change = K*(i*dt)*window;
if (fabs(i) < THRESHOLD) {

printf("NO CHANGE\n");
}
else if (i < 0) {

M = M - change;
if (M < R_ON) {

M = R_ON;
}
else if (M > R_OFF) {

M = R_OFF;
}
printf("IN i < 0\n");
new_state = (M - R_ON) / (R_OFF - R_ON);

}
else {

M = M + change;
if (M < R_ON) {

M = R_ON;
}
else if (M > R_OFF) {

M = R_OFF;
}
new_state = (double)(M - R_ON) / (double)(R_OFF - R_ON);

}
return new_state;

}

7.1.2 Standard Matrix Multiply Function used in this work

// Matrix Multiply
void reconfig_crossbar(size_t n, char* input, char* weights,
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char* output) {
// Note that this assumes an nxn matrix
char sum;
for (int row = 0; row < n; row++) {

for (int col = 0; col < n; col++) {
sum = 0;
for (int i = 0; i < n; i++) {

sum += input[row*n+i] * weights[i*n+col];
}
output[row*n+col] = sum;

}
}

}

7.2 Appendix B: Outputs from Simulations

7.2.1 4x4 Matrix Multiply

INPUT
---------------------------
9 2 2 5
3 6 6 8
2 1 9 2
8 5 6 5

---------------------------
WEIGHTS
---------------------------
5 8 2 1
3 6 1 1
7 6 1 5
4 4 3 2

---------------------------
OUTPUT
---------------------------
85 116 37 31
107 128 42 55
84 84 20 52
117 150 42 53

---------------------------

7.2.2 8x8 Matrix Multiply

INPUT
---------------------------
9 2 2 5 3 6 6 8
2 1 9 2 8 5 6 5
9 2 2 5 3 6 6 8
2 1 9 2 8 5 6 5
9 2 2 5 3 6 6 8
2 1 9 2 8 5 6 5
9 2 2 5 3 6 6 8
2 1 9 2 8 5 6 5

---------------------------
WEIGHTS
---------------------------
6 3 2 3 8 3 5 1
2 1 5 2 8 5 6 5
5 3 2 5 3 6 4 8
7 2 8 7 8 5 6 2
8 4 2 1 3 3 3 5
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1 1 9 6 8 5 4 4
1 2 3 3 3 5 8 8
2 1 3 4 8 5 9 5

---------------------------
OUTPUT
---------------------------
155 83 174 165 273 183 248 172
158 92 137 143 189 179 201 216
155 83 174 165 273 183 248 172
158 92 137 143 189 179 201 216
155 83 174 165 273 183 248 172
158 92 137 143 189 179 201 216
155 83 174 165 273 183 248 172
158 92 137 143 189 179 201 216

---------------------------

7.2.3 16x16 Matrix Multiply

INPUT
---------------------------
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

---------------------------
WEIGHTS
---------------------------
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

---------------------------
OUTPUT
---------------------------
250 310 230 290 270 330 220 280 230 290 250 310 230 290 270 330
330 406 262 338 254 330 356 432 318 394 330 406 262 338 254 330
250 322 294 366 298 370 312 384 286 358 250 322 294 366 298 370
250 318 306 374 222 290 248 316 334 402 250 318 306 374 222 290
290 374 298 382 366 450 344 428 382 466 290 374 298 382 366 450
250 310 230 290 270 330 220 280 230 290 250 310 230 290 270 330
330 406 262 338 254 330 356 432 318 394 330 406 262 338 254 330
250 322 294 366 298 370 312 384 286 358 250 322 294 366 298 370
250 318 306 374 222 290 248 316 334 402 250 318 306 374 222 290
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290 374 298 382 366 450 344 428 382 466 290 374 298 382 366 450
250 310 230 290 270 330 220 280 230 290 250 310 230 290 270 330
330 406 262 338 254 330 356 432 318 394 330 406 262 338 254 330
250 322 294 366 298 370 312 384 286 358 250 322 294 366 298 370
250 318 306 374 222 290 248 316 334 402 250 318 306 374 222 290
290 374 298 382 366 450 344 428 382 466 290 374 298 382 366 450
250 310 230 290 270 330 220 280 230 290 250 310 230 290 270 330

---------------------------
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