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Abstract

The SPAR-2 array processor was designed as an overlay architecture for im-

plementation on Xilinx Field Programmable Gate Arrays (FPGAs). As an overlay,

the SPAR-2 array processor can be configured to take advantage of the specific

resources available on different FPGAs. However once configured, the SPAR-2

requires programmer’s to have knowledge of the low level architecture, and write

platform-specific code. In this thesis SVAR, a hardware/software co-designed vir-

tual machine, is proposed that runs on the SPAR-2. SVAR allows programmers

to write portable, platform-independent code once and have it interpreted for any

specific configuration. Results are presented that verify the virtual machine en-

ables the same code to run without modification on different configurations of the

SPAR-2 array running on different FPGA platforms. The results show that the

performance cost of this portability is modest, incurring an average 5.6% decrease

in performance in partial MLP simulations compared to hand-tuned custom code.
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1 Introduction

The emergence of deep learning has propelled a new rise in Artificial In-

telligence (AI) [1]. Deep learning is used in areas such speech recognition and

computer vision. New advancements in art, speech synthesis, and natural lan-

guage processing are being pushed by Craiyon, Eleven Labs, and ChatGPT. AI

also shows potential in the medical field for uses such as diagnosis [2]. Needless to

say, AI is not going away anytime soon.

Traditional compute components, such as CPUs, have proven to be too slow

and power inefficient to be suitable for deep learning [3]. According to the Stanford

2019 AI Index Report, the computation growth rate for AI outpaces Moore’s Law

[4]. CPUs will only continue to fall shorter. In the wake of this, reconfigurable

computing has become an appealing option for accelerating deep learning. In the

applications of training, FPGAs have been found to offer lower power consumption

and lower latency than GPUs while also offering greater flexibility than ASICs [3].

For machine learning inference, research has already been underway with work by

those such as Sitao Huang et al [5] and Dong Wang et al [6]. Another area of

interest for AI acceleration has been Processing-In-Memory (PIM). Overlaps in

PIM and FPGAs have resulted in research such as Compute-in-Memory Blocks

for FPGA (CoMeFa) [7]. One particular AI accelerator within this overlap is the

second generation SIMD Processing Array, or SPAR-2 [8]. As an FPGA overlay,

SPAR-2 was designed so that programmers without hardware design expertise

could compile, link, and run software applications on an FPGA.

In terms of resources, not all FPGAs are created equally. Even among

Xilinx’s Ultrascale+ FPGA offerings, there are huge differences in the number of

system logic cells, DSP slices, LUTs, flip-flops, etc. between boards. A hardware

design that might fit on one FPGA may not fit on another FPGA with different

resources. As an overlay, the SPAR-2 took a step towards enabling portability
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across different FPGA architectures; the SPAR-2 design can be easily scaled and

reconfigured to fit onto a multitude of FPGAs with different available resources.

Although the SPAR-2 hardware design is very portable, code for it is not.

The current SPAR-2 libraries are relatively low-level and, as a result, do not lend

well to portability or scaling. Even when working on the same instruction set, the

way the programmer writes their application is heavily tied to the specific SPAR-2

configuration. The same operation, such as matrix multiplication, may have to be

executed differently across configurations. For example, a program might be able

to store a certain matrix in one register on a large configuration of the SPAR-2,

but on a smaller configuration that same matrix might have to be split up into

multiple registers.

In addition to portability issues, FPGAs have always suffered the problem

of accessibility for programmers. Ignoring the problems with running synthesis,

coding for designs on FPGAs is not always at an abstraction level high enough

for programmers. According to Stack Overflow’s 2022 Developer Survey, high-

level languages such as Python, JavaScript, and Java were used by many more

professional developers than lower-level languages such as C++, C, and Assembly

[9]. Although current functions for working with SPAR-2 abstract away some of

the intricacies of the hardware, most functions are still closely mapped to SPAR-

2’s Instruction Set Architecture (ISA). This shares the same problem found with

SIMD intrinsics programming: including code so closely tied to hardware with

more hardware-independent/abstracted code is, to the programmer, a mismatch

similar to embedding assembly code into a high-level language [10]. Many who

want to just code at a high level will find programming with the SPAR-2 to be too

low-level and tedious.

This thesis presents a solution to the programmers problems: the SIMD

Virtual processing Array (SVAR). SVAR is a virtual representation of the SPAR-2

that acts as both a virtual machine and a runtime interpreter. Throughout the

remainder of this thesis SVAR will be referred to as a virtual machine. SVAR

presents programmers with a new higher-level instruction set architecture (ISA)
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Figure 1.1: Programmers use to have to rewrite code for each configuration of
SPAR-2 they wanted to use. SVAR is a virtual machine and run time interpreter
that allows programmers to now write and run portable code across multiple SPAR-
2 configurations.

based on virtual registers. SVAR code written by the programmer is translated

at run time into low-level instructions tuned to a specific SPAR-2 configuration.

Thus SVAR 1) provides a virtual platform for code portability across SPAR-2

configurations, 2) abstracts tedious, low-level aspects of SPAR-2 programming

away from programmers. Nothing is free. SVAR delivers these benefits at the cost

of a modest increase in run time latency.
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2 Background

2.1 Related Work

2.1.1 Virtual Machine Technology

Virtual machines are representations of a machine that provide a ”virtual

environment” that is perceived the same as a ”real environment” by application

programs [11]. This virtual environment is not required to give an accurate rep-

resentation of underlying hardware. In fact, the virtual machine can appear to

behave differently from the physical machine. One of the most famous examples

is the Java Virtual Machine (JVM). The JVM operates on its own instruction set.

All Java programs are converted to Java byte code during compilation. This byte

code is eventually translated into the host machine’s native machine code during

run time. This decoupling of compiled byte code from machine code is how Java

achieves platform-independence and code portability.

2.1.2 SIMD Portability

There have already been efforts to enable code portability for Single-Instruction-

Multiple-Data (SIMD) hardware. Liquid SIMD addressed the problem of hard

coded SIMD assembly by compiling to virtual SIMD code and translating that

into processor-specific SIMD instructions at run time [12]. The decoupling of writ-

ten code from hardware instructions allowed portability of code across devices with

different SIMD ISAs. Similarly to this, the Generic SIMD Library provided a layer

of abstraction from the ISA of its underlying hardware [10]. Both of these offer

portability across different ISAs. However, these cases of SIMD instructions do

not address portability across reconfigurable or scaling designs such as SPAR-2.
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2.1.3 Virtual Registers

As an alternative to stack-based designs for virtual machines, virtual reg-

ister approaches have been implemented in the past for a variety of reasons such

as reducing the number of executed instructions [13]. The use of virtual registers

also allowed for the use of register-based code that resembles the machine code of

physical hardware. Virtual registers also have their uses outside of the world of

virtual machines. In register allocation there is a concept called register pressure:

the number of hard registers needed to store values of the pseudo-registers at a

given point [14]. Virtual registers are able to aid with dynamic scheduling by re-

ducing register pressure [15]. Reduction in register pressure could allow hardware

designs to get away with a smaller register file or increase performance by enabling

larger instruction windows on the same-sized register file. Both implementations

of virtual registers work by creating virtual representations that behaved similarly

to actual physical registers. However, virtual registers may not have to be repre-

sentative of their physical counterparts. Virtual registers with differing behavior

from physical registers could grant additional opportunities for abstraction and

allow for easier programming.

2.2 SPAR-2 Architecture Overview

As an array processor, the SPAR-2 performs Single-Instruction-Multiple-

Data (SIMD) operations on a square array of processing elements (PEs). SPAR-2

scales by altering the number of PEs in a configuration. Each PE consists of

a fixed-point, bit-serial Arithmetic Logic Unit (ALU) attached to local storage

modeled as a register file. Instructions are register-based operations that each PE

simultaneously executes on the same registers. Since there is an individual instance

of each register number on every PE, a physical register could be thought of as a

square array rather than just a singular element or word. The size of each register

is equal to the number of PEs and thus also tied to scaling of the SPAR-2.

While the general architecture of the SPAR-2 is understandable, there are
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still a host of aspects with SPAR-2 programming that are tedious or hinder porta-

bility. These will be targets for SVAR to abstract away from the programmer.

2.3 Targets for Virtualization and Abstraction on SPAR-2

2.3.1 Register Sizes and Segmentation

The first opportunity for abstraction is the size of the array processor (num-

ber of PEs), which is subject to change with scaling. If a data structure such as

a matrix cannot fit within one register, it could be possible to store segments of

it across multiple registers. From there the segmented data could be operated on

one register at a time. Segmentation across registers may not be a problem with

simpler operations such as matrix addition. However, operations that involve data

movement such as accumulation are more complicated. Additional data structures

would be necessary to track the segments and describe how those segments re-

late to each other. Custom virtual registers could lend themselves well to these

situations by providing a layer of abstraction between the programmer and these

aspects of working with the physical registers.

2.3.2 Properties of Data

A vector refers to an ordered list of values and matrices refer to a rectangular

layout of values. SPAR-2 operates on a 2D array, which naturally lends itself to

matrix operations such as matrix addition and matrix subtraction. SPAR-2 can

also be used to perform operations with vectors. As long as the vectors are stored

along the same PEs, all the same SIMD operations can be performed on them. The

SPAR-2 and its current library have no concept of the data’s type, size, or location,

so it is usually up to the programmer to adjust the code accordingly. This can

become more complicated and tedious if the user wants to perform type-mixing

operations such as matrix-vector multiplication. There is potential and incentive

to make these adjustments automated.
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For many different operations, data has to be oriented in a specific way.

For example, matrix-vector multiplication requires that the vector be oriented as a

row. The result is a vector oriented as a column. The programmer would usually

have to account for this by either reorienting the data or altering the direction of

the next set operations. Data orientation should be a target to abstract since it

only adds to the complexity while providing no extra functionality.

2.3.3 Multiplication Register Overflow

When multiplying two X-bit numbers, the resulting product is 2X-bit wide.

On the SPAR-2, a 32-bit fixed point result is cut from a larger 64-bit product.

However, that additional 32-bits is still required for the multiplication operation.

These additional bits come from the register immediately above the destination

register and will overwrite any existing data. This force programmers to keep

track of another register in addition to their sources and destination. Means such

as spilling can help address multiplication overflow, but dealing with it is just

another inconvenience to the programmer.

2.3.4 Spilling and Register Assignment

Optimally, data should be segmented to fill as few physical registers as

possible. As the physical registers get smaller between configurations, the number

of segments and thus the number of required registers also increases. However,

the number of physical registers does not change between configurations to meet

any increases in demand. When the number of registers is insufficient, code can

be used to ”spill” the contents of the registers to memory in order to reload them

to the registers later [16]. The assignment of registers and spilling are subject to

change between configurations. Allowing for portability will require automating

both of these.
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3 Implementation

3.1 Instruction Set

The instruction set was designed as a collection of high level, register based

operations. Like with Liquid SIMD, the high level instructions would be translated

at run time to the SPAR-2’s machine code. The registers in the instruction set no

longer refer to physical registers, but rather to virtual registers. Virtual registers

are automatically sized and typed to whatever data the programmer stores on

them. With virtual register instructions, the programmer will only need to specify

the registers and the operation they want (matrix addition, multiply-accumulate,

etc.). All details of the operation such as segmentation, orientation, and data

movement will be handled in the background. However, the programmer will have

a new responsibility of tracking types. SVAR instructions are type specific – matrix

addition will require virtual registers with matrices, vector subtraction will require

virtual registers with vectors, etc. However, this does not have to be entirely within

the programmer’s head as the register assignment allows for checking the data

type of any virtual register at any time. The necessary instructions for storing and

loading data is also included. Store refers to storing data from memory to physical

SPAR-2 registers. Load refers to loading data from the registers to memory. While

it cannot be directly tested, this instruction set is at a higher level than the existing

SPAR-2 libraries and requires much less knowledge of the SPAR-2 hardware to use.

3.2 Register Assignment Table

The register assignment table is responsible for storing all relevant informa-

tion for the virtual registers. The register assignment table holds the orientation,

status, and size of virtual register data. For instruction execution, the register

assignment table also tracks what physical registers the virtual register is in. The
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necessity of this is the result of having the physical registers dynamically assigned

at run time. Dynamic run time assignment was chosen as the use of registers will

change from configuration to configuration. The table also contains an additional

array to track the status of physical registers and the virtual register to which they

are assigned. While it is possible to figure out the status of physical registers by

going through the information of every virtual register, it is faster to have a sin-

gular, separate reference just for the physical registers. This array is used during

register assignment to identify which physical registers are available.

3.3 Virtual Registers

Unlike previous implementations of virtual registers, the SVAR virtual reg-

isters are not 1-to-1 representations of physical registers. The virtual registers

instead act as more convenient registers that abstract away the size, segmentation,

and orientation of data. The size of data is stored for each virtual register. When

the data for a virtual register is about to be loaded into the physical registers, the

sizes are used to determine the number of segments needed.

Segmenting is also abstracted with the virtual registers. Since the segment-

ing will change from configuration to configuration, the segments are calculated at

run time. To track the segments, every virtual register has an array for storing the

placement. Segments are entered into the placement array starting with the top

left corner and then moving along the columns and down the rows. An example of

this can be seen in Figure 3.1. Because there will be situations where not all virtual

register data can fit on the physical SPAR-2 design at once, each virtual register

will also have dedicated space in memory to spill into. Each virtual register is also

given a status variable to help track whether it is currently in memory or in the

SPAR-2 registers.

Orientation is considered in every operation, so each virtual register has a

variable to track its current orientation. At run time, SVAR will use the orien-

tation to automatically alter the different operations such as data movement and

9



Figure 3.1: To the programmer, a virtual register is the exact dimensions of
the data they put in it. However, the data is actually segmented across multiple
physical registers at run time. Physical register locations are stored within the
placement array for instructions to reference. Unused placements are populated
with -1.

loading/storing. All aspects of orientation will be completely abstracted from the

programmer.

3.4 Moving Data Between Memory and SPAR

SVAR makes use of a form of lazy loading for virtual register data. Data

is only moved into the physical registers immediately before they are needed for

an instruction. When the programmer ”stores” it into a virtual register, the data

is actually copied to a part of the memory dedicated to the virtual register. From

here, the data will be moved to the physical registers and back. Saving a reference

to the original data would be more efficient than copying it to another part of

memory. However, this would be error-prone, as the original data might be altered

from when the programmer calls ”store” to when the data is actually written into

the physical SPAR-2 registers.
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Figure 3.2: Example of matrix addition using virtual registers and data segmen-
tation. The programmer provides the high level instruction. SVAR then executes
the given instruction by making multiple lower-level calls to the SPAR-2 for each
physical register.

3.5 Operations on Virtual Registers

The SPAR-2 design uses register-based SIMD instructions such as matrix

addition, matrix subtraction, and element-wise multiplication. Execution of these

element-wise instructions do not require data movement, making them easy to

execute with segmented data. Before executing one of these instructions on the

SVAR, all virtual register source data is automatically loaded into the assigned

SPAR-2 registers. After that, the chosen SPAR-2 instruction is executed on all

corresponding segments. An example of matrix addition with virtual registers is

shown in Figure 3.2.
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3.6 Data Shifting with Virtual Registers

Shifting data between PEs is a necessary component for operations such as

accumulation. However, it can be very tedious for the programmer and, as will

be explained later, needs to be corrected in cases of segmentation. SPAR-2 has

instructions for moving data from a physical register to another in four different

directions referred to as north, south, east, and west. Only 1 register can be shifted

in a cardinal direction at any given time.

When shifting in any cardinal direction, the opposite edge is populated

with 0. If the data is shifted east, for example, then the west-most column will

be filled with 0. Data on the edge of the physical register will not shift over to

the destination. This is because SPAR-2 does not automatically retain and move

data that goes out-of-bounds. To prevent data from being lost, vulnerable edge

data between segments must be moved separately. This correction can be seen

in Figure 3.3. Combining the SPAR-2’s original shifting instruction with edge

movement corrections, data will be shifted across the entire segmented virtual

register. While it might be possible to use the parallel-serial converters to move

data more efficiently, attempts to do so with the current hardware did not work.

For now, the edge data is moved by reading and writing data along the edges.

3.7 Handling Multiplication Overflow

Multiplication overflow is also handled by SVAR. There are three register

overflow situations that have to be accounted for: overflowing into source registers,

overflowing into other destination registers, overflowing into any other registers.

If miscellaneous virtual register data (data that is neither part of the source nor

destination virtual registers) is at risk of being overwritten by the multiplication

overflow, then that data can simply be spilled into memory where it will no longer

be at risk. Data for source virtual registers have to be treated differently since

the sources have to be in the physical registers for the operations. When a source

12



Figure 3.3: The figure above shows an example of shifting data east on virtual
registers consisting of 4 physical registers. Calling SPAR-2’s shift east instruction
can only move data within each physical register. The result is losing the east-most
columns of data in each physical register (seen in orange) while generating new
columns of 0 (seen in white). This can be corrected by moving select edge columns
over to the next corresponding physical register.

register is about to be overwritten by multiplication, SVAR will identify a new safe

physical register to place the source data. The source data will then be copied over

into that newly assigned register. After that, multiplication can occur as normal

without corrupting the source data.

Overflow to other destination registers does not require reassigning any

registers. Instead, reordering the multiplication of segments can ensure that no

multiplication results will be lost. By executing SPAR-2 multiplication operations

in ascending order of the destination segment registers, any overflow data will just

be overwritten by the next results. This can be seen in Figure 3.4. Like previous

aspects, all multiplication overflow scenarios are automatically handled by SVAR

and abstracted from the programmer.
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Figure 3.4: When the destination physical registers are close together during
multiplication operations, order is very important. If care is not taken, overflow
might overwrite some of the previous results as seen on the left side of the figure.
By executing multiplication in ascending order of the destination physical registers,
results will overwrite the overflow instead.

3.8 ReLU

While the SPAR-2 includes hardware for activation functions such as rec-

tified linear unit (ReLU) and sigmoid, the current SPAR-2 design has errors when

executing the activation functions. The activation functions would fail generate

the correct outputs for all or even most inputs. This problem probably requires a

hardware-level solution, which is beyond the scope of this thesis. For now, ReLU

functionality was implemented in C rather than SPAR-2 instructions. For native

code, the ReLU instructions would go down either the first row or first column in

a register and rewrite all negative values to 0. For SVAR code, the ReLU instruc-

tion would move all data out of the SPAR-2 and into the virtual register’s assigned

memory. From there, any negative values would be replaced with 0.
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3.9 Methodology for Testing

3.9.1 Instruction Overhead

To properly test the overhead of SVAR, 1-to-1 comparisons were made

with ”native” implementations of the same instructions. Native implementations

would also make use of data segmentation and generate the same results from the

same inputs, the only difference being that they were coded using the pre-existing

SPAR-2 library. Multiple variations of data sizes were tested for each instruction.

The virtual machine instructions that were tested were matrix addition, matrix

subtraction, element-wise multiplication, and matrix-vector multiplication (which

includes accumulation). ReLU was not included in this set of tests, as it was unable

to be implemented properly with the hardware. Every test would record execution

time for the instruction(s) being tested and count of each SPAR-2 instruction call.

Call counts help distinguish the overhead due to additional SPAR-2 operations

from the overhead due to additional CPU operations.

For element-wise instructions (matrix addition, matrix subtraction, element-

wise matrix multiplication), data would first be loaded onto the SPAR-2 registers.

Storing the data first would help isolate the execution time of instructions from

the data loading time. From there, the operation would be run once to count

the number of SPAR-2 instruction calls. Subsequently, the instructions would be

timed to run 100 times. The element-wise instructions were too fast to compare

accurately in a single iteration, so repetition was added to increase the times to a

more comparable scale.

Test for storing and loading were done similarly. When timing, the store/load

instructions were not looped. Storing had to be done on the SVAR differently.

SVAR usually only writes data to the registers when another instruction is called.

To account for this, the function that is automatically called by SVAR was man-

ually called by the tests to move data from the virtual register’s memory to the

physical registers. To account for variations in time, the tests were run manually 5

times and the averages of the times were recorded. The variances in time between
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runs were in the tens of microseconds, so additional runs were not necessary. The

call counts did not change between runs.

The matrix-vector multiplication test was performed similarly. It was im-

possible to isolate the execution time from the storage time when using loops.

Matrix-vector multiplication was also much longer than element-wise operations

and did not require scaling up the time with multiple iterations. Although there

was an implementation of matrix-vector multiplication in the preexisting SPAR-2

library; it was not able to be used for testing. It did not use the corrected data

movement across segmented registers; the results for it would be incorrect for all

of the tests with more than one segment. As with the store and load instruction

tests, the time was averaged across 5 runs of the matrix-vector multiplication tests.

Again, the execution time between runs only varied by tens of microseconds, so

additional runs were not necessary.

For data segmentation, there are multiple permutations of data dimensions

that will result in the same number of data segments. For example, data with 2

segments cannot have the same width and height. The specifics of data segmen-

tation did not affect the performance of the element-wise instructions since those

instructions did not involve data shifting on the SPAR-2. However, the specific

permutations of data did affect the performance matrix-vector multiplication as

the number of shifts necessary for accumulation are directly proportional to the

number of columns. To account for this, alternative permutations for 2-segment

and 4-segment tests were included for matrix-vector multiplication.

3.9.2 Comparing Portability

Portability was tested by implementing the same set of operations in dif-

ferent SPAR-2 configurations using native code and SVAR code. The different

SPAR-2 configurations varied in size, but were all run on a ZCU-104 board. Di-

mensions for each SPAR-2 configuration were measured in the total number of

PEs in a row/column. The chosen set of operations were two sets of matrix-vector
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multiplication, vector-vector addition, and ReLU in order to simulate 2 MLP lay-

ers. In addition to the SPAR-2 call count and execution time, the number of lines

of code was also recorded. The code line count would count all operations would

include all lines of code except for comments and white space. The purpose of line

count was not to compare the counts of native code to SVAR code, but to help

describe the way the code implementations change between configurations. The

size of the input vector was set to be 50. The first hidden layer had 75 nodes.

The second layer had 50 nodes. Weights and biases were sized accordingly. All

inputs, weights, and biases were populated the same between tests and configura-

tions. The resulting vector was used to check that the implementations performed

correctly, but that vector was not recorded in the results.
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4 Results

1 2 3 4

Table 4.1: Matrix Addition Call Count and Execution Time
Matrix size: 64x64 (1 Segment) 64x128 (2 Segments) 128x128 (4 Segments) 128x256 (8 Segments)

Native SVAR Native SVAR Native SVAR Native SVAR
Add 1 1 2 2 4 4 8 8
100x Time (s) 0.00637 0.00641 0.01275 0.0128 0.02549 0.02556 0.05098 0.051072

Table 4.2: Matrix Subtraction Call Count and Execution Time
Matrix Size: 64x64 (1 Segment) 64x128 (2 Segments) 128x128 (4 Segments) 128x256 (8 Segments)

Native SVAR Native SVAR Native SVAR Native SVAR
Sub 1 1 2 2 4 4 8 8
100x Time (s) 0.00637 0.00641 0.01274 0.01279 0.02549 0.02555 0.05097 0.051064

Table 4.3: Element-wise Multiplication Call Count and Execution Time
Matrix Size: 64x64 (1 Segment) 64x128 (2 Segments) 128x128 (4 Segments) 128x256 (8 Segments)

Native SVAR Native SVAR Native SVAR Native SVAR
Mul 1 1 2 2 4 4 8 8
100x Time (s) 0.00637 0.00658 0.01274 0.01295 0.02549 0.02571 0.05097 0.051239

Table 4.4: Storing Matrix on SPAR-2 from Memory
Matrix Size: 64x64 (1 Segment) 64x128 (2 Segments) 128x128 (4 Segments) 128x256 (8 Segments)

Native SVAR Native SVAR Native SVAR Native SVAR
Write 4096 4096 8192 8192 16384 16384 32768 32768
1x Time (s) 0.145513 0.29103 0.29105 0.58207 0.58210 1.16416 1.16424 2.32834

Table 4.5: Loading Matrix to Memory from SPAR-2
Matrix Size: 64x64 (1 Segment) 64x128 (2 Segments) 128x128 (4 Segments) 128x256 (8 Segments)

Native SVAR Native SVAR Native SVAR Native SVAR
Read 4096 4096 8192 8192 16384 16384 32768 32768
1x Time (s) 0.098962 0.09906 0.19782 0.19812 0.39584 0.39625 0.78787 0.789065

1All recorded SPAR-2 call counts are for one run/iteration only.
2Times (unless specified as 100x) are the average execution times for a single

iteration run.
3All calls not shown in a table have counts of 0.
4Size for matrices are number of columns by number of rows
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Table 4.6: Matrix-Vector Multiplication
Matrix: 64x64 (1 Segment) 64x128 (2) 128x64 (2) 128x128 (4) 128x256 (8) 256x128 (8)
Vector: 64 (1 Segment) 64 (1) 128 (2) 128 (2) 128 (2) 256 (4)

Native SVAR Native SVAR Native SVAR Native SVAR Native SVAR Native SVAR
Add 126 126 189 189 380 380 634 634 1142 1142 2292 2292
Sub 1 4 1 7 2 8 2 14 2 26 4 28
Mul 1 1 2 2 2 2 4 4 8 8 8 8
Shift N 0 1 0 2 0 2 0 4 0 8 0 8
Shift S 64 65 64 66 128 130 128 132 128 136 256 264
Shift E 0 0 0 0 0 0 0 0 0 0 0 0
Shift W 63 63 126 126 254 254 508 508 1016 1016 2040 2040
Write 0 0 0 0 8128 8128 16256 16256 32512 32512 97920 97920
Read 0 64 0 64 8128 8256 16256 16384 32512 61312 97920 126848
Time (s) 0.0163 0.0182 0.02434 0.02663 0.5327 0.5366 1.0414 1.4280 2.0817 2.8621 6.1223 6.9032

Table 4.7: 2 MLP Layers
SPAR-2 Size (PEs): 32x32 64x64 96x96

Native SVAR Native SVAR Native SVAR
Add 898 898 438 438 249 315
Sub 8 39 5 15 3 19
Mul 12 12 4 4 2 2
Shift N 444 8 148 3 74 2
Shift S 64 168 64 195 76 194
Shift E 99 0 130 0 51 0
Shift W 297 738 100 246 50 123
Write 21865 21926 12411 12486 7675 7750
Read 14336 17152 4928 4986 192 250
Time (s) 1.240655 1.383494 0.618993 0.624799 0.310299 0.323866
Code Line Count 153 11 69 11 42 11
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5 Evaluation and Discussion

5.1 Analyzing Overhead of Individual Instructions

For matrix addition, matrix subtraction, and element-wise multiplication,

SVAR made the exact same SPAR-2 call counts as the native implementations.

Matrix addition and subtraction tests averaged a 0.37% increase in execution time

from native code to SVAR code. Element-wise multiplication had a higher time

overhead averaging a 1.5% time increase with SVAR. The identical call counts

suggest that the time overhead is caused by additional work on the CPU’s side

such as instruction translation, finding placements, etc.

Loading matrix data from the SPAR-2 to memory showed similarly little

overhead. SVAR code made the same number of calls to SPAR-2 as the native code.

The time only increased by less than 0.15% in all cases. Much greater overhead

was seen with storing matrix data from memory to the SPAR-2. Even with the

same number of SPAR-2 instruction calls, SVAR always took about twice as long

as native code. The most likely cause is how data moves. The native code copied

data from memory directly to the SPAR-2 registers. However, SVAR first moved

the data to the virtual registers’ assigned memory space before it was finally stored

on SPAR-2 registers for the operation. This essentially doubled the amount of data

movement, resulting in the time doubling. The storing performance is less than

ideal and may need to be addressed in the future. Matrix-vector multiplication

had overhead from as low as a 0.73% time increase to a 37.49% time increase with

the average for all cases falling at 18.25%. In general, the call counts for both

the native implementation and the SVAR implementation scaled similarly to the

dimensions of the matrix and vector. Generally, SVAR used additional subtraction,

shift south, and read calls; some of the overhead was due to the less efficient use of

the SPAR-2 instructions. Even with the variations in time increases, the overhead
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for matrix-vector multiplication generally remained within an acceptable range.

5.2 Analyzing Cross-Configuration MLP Code

For this set of data, the total number of shift calls should be analyzed since

the distribution of shifting differs a lot between the native code and SVAR code.

This is caused by the SVAR ReLU function having to remove data from the physical

registers. When SVAR stores it back, it is stored in a different orientation. This

difference in orientation is subject to change if the ReLU instruction is changed in

the future. Accounting for this, the additional calls SVAR makes varies. SVAR

can call as many as 68 additional shifts on the 96x96 PE configuration or as few

as 2 on the 64x64 PE configuration. Other call counts, such as addition, reading,

and subtraction, also varied. The distribution of these additional calls did not

necessarily correlate with each other. SVAR overhead was still able to remain

modest, only incurring a 5.6% penalty in performance on average.

These losses in performance were made as a trade off for portability of code.

Portability can be seen by analyzing how each implementation’s code changes

across configurations. The number of lines of code were included in the table to

help demonstrate these changes. The native code length is inversely related with

the configuration size; the smaller the configuration, the larger the code. This

is likely caused by increased segmentation; as the configuration size decreases,

the same data will have to be split up more and more. As mentioned earlier,

SVAR abstracts aspects like segmentation that would require altering code for

each configuration, so the resulting SVAR code lengths showed no change at all.

In fact, the exact same SVAR code ran on all three configurations and generated

the same results with no modifications. SVAR successfully showed its ability to

run portable code with different underlying configurations.
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5.3 Discussing Code

Qualitative aspects such as ease of programming are difficult to show using

quantitative tests. Instead, looking at shorter segments of native code with SVAR

equivalents is a good way to illustrate some of these properties. The code examples

given in Figure 5.1 will be evaluated.

While the difference in the amount of text on each side is very obvious, it is

not necessarily relevant as any programmer can make code briefer with means such

as creating additional functions. Instead, what should be analyzed are the more

subtle aspects related to how the programmer codes. Starting with element-wise

multiplication, there are two aspects that make native code harder to understand:

segments and order of multiplication. In native code, the programmer has to keep

track of what registers the data segments are, how each of the segments relate to

each other, and know that multiplication has to occur in a certain order due to

overflow. As explained earlier, these aspects are abstracted by SVAR to relieve

the programmer. A programmer using SVAR only needs to know what virtual

registers they want to multiply.

Similar aspects are seen with having to manually correct data shifting with

column movement. This correction depends entirely on how individual segments

relate to each other. In this case, the segment in register 25 is to the ”west” of seg-

ment 26, and the programmer has to know this in order to make the correction. On

the other hand, SVAR’s data shift function only requires the programmer to know

their source and destination virtual registers. More importantly, the programmer

actually does not actually need to use any data shift functions with the current

SVAR library; instructions such as accumulate and matrix-vector multiplication

already implicitly call these required shift functions. Programmers do have access

to data shifting if they want to build more complex instructions in the future.

The last example of code is the accumulation of a matrix. Again, native

code requires additional knowledge that the SVAR equivalent does not require:

orientation and size of data. The shifting of data westwards is done for the current
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Figure 5.1: Examples of Native Code and SVAR Code Equivalents

orientation of the matrix that it is accumulating. The size of data also determines

how many times the loop occurs. Even if accumulation was turned into a function

with orientation and data size as parameters, it would not change the fact that the

programmer would still have to keep track of those properties. This example of

native code also does not show the effects of segmented data, which would further

compound the complexity of accumulation in native code. One aspect of SVAR

that might be inconvenient is having to pass a reference to the current register

assignment table into every function, but this can be altered in the future by using

a global instance of the table.

Overall, SVAR is able to provide an instruction set that successfully ab-

stracts away aspects such as data size, segmentation, orientation, multiplication

overflow, etc. Programmers are able to add the same SPAR-2 functionality to their

programs at an easier, higher level with SVAR.
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6 Conclusion and Future Work

SVAR provides a common platform for code portability across SPAR-2

configurations. SVAR’s new instruction set allows programmers to utilize SPAR-2

with less knowledge of its design. Finally, SVAR does all of this while providing a

level of performance similar to existing low-level libraries. With AI continuing to

grow and FPGA accelerators growing to meet its needs, the demand for portable,

high-level code to leverage these technologies will also increase. While there is still

much more work to be done with SPAR-2 and other reconfigurable designs, SVAR

acts as a good stepping stone for code portability and ease of programming on

FPGAs.

For future work, there is the possibility of looking into compiler solutions

to help solve some of SVAR’s run time overhead. More efficient data movement for

storing should also be looked into as the current store instruction has the highest

overhead according to the results. Lastly, there is work to be done with making

SVAR compatible with more accelerator designs.
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