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Abstract

The massive amount of data available in our modern world and the increase of

computational efficiency and power have allowed for great advancements in several fields such

as computer vision, image processing, and natural languages. At the center of these

advancements lies a data-centric learning approach termed deep learning. However, in the

medical field, the application of deep learning comes with many challenges. Some of the

fundamental challenges are the lack of massive training datasets, unbalanced and heterogenous

data between health applications and health centers, security and privacy concerns, and the high

cost of wrong inference and prediction. One of the interesting questions of data-centric learning

in the medical field is whether we can leverage the heterogenous data available in several

medical facilities in a combined way without actually sharing the data between the institutes and

preserving the security and privacy of patients. One way to address this question is through the

use of the federated deep learning technique. In federated deep learning, the “learning” from

each local deep learning model trained on a small, distinct dataset is shared with a global model

instead of sharing the actual data and hence does not violate any security and privacy concerns.

In this study, we aim to evaluate the efficiency of the federated learning approach on

classification tasks in the medical image domain. Learning in the medical image domain is often

more challenging and distinct than that of natural images because of heterogeneity in the data

and the unavailability of clear, discernable discriminant features between images of different

classes. To this end, we investigate federated learning in medical images in terms of model

architecture and data complexity. Through our experiments, we will also investigate the effect

that federated learning will have on each local model’s performance, and how it affects model

generality to external datasets.
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I. Introduction
As computer computational speed, memory capacity, and sophistication have

exponentially increased in the past decades, we have seen great strides in the field of deep

learning [4]. The modern neural network approach, modeled on human brain processing patterns,

has become a staple in the field of artificial intelligence and garnered much attention over recent

years [21]. The widespread success and implementation of deep learning applications can be

attributed in part to the availability of large datasets. A massive amount of data is generated daily

by commercial and private activities [6], and when organized and analyzed properly, fuels deep

learning progress. Huge advancements have been made in the realm of computer vision [17]. In

recent years, deep learning methods utilizing computer vision have been seen to outperform even

state-of-the-art machine learning techniques [23]. Computer vision has been adapted to be

integrated into a wide variety of industry sectors and has been implemented in many practical

fields, including agriculture, transportation, and retail [1, 18]. Notably, computer vision has also

been increasingly utilized in healthcare. Image segmentation, activity recognition, predictive

analysis, and classification systems have been applied in many areas, including diagnostic

settings, surgery preparation, and therapy development [7]. Advancements have already been

made to drastically improve the quality of healthcare provided, lift some of the burdens from

overworked medical professionals, and assist in the advancement of important medical research

[22]. As this technology grows more specialized and continues to improve, it stands to

completely revolutionize the healthcare field.

Producing grand results using deep learning models comes at a cost, however. The

explosive success of deep learning is directly tied to the availability of large and high-quality

training datasets. Unlike many traditional machine learning or shallow networks that have been

found to reach a maximum threshold of accuracy, even when trained on larger datasets [16], deep
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learning systems have been shown to have the capacity to continue learning up to a higher

accuracy threshold. Without access to this type of data, many systems, including computer vision

systems, cannot reach the high levels of accuracy expected from deep learning architectures.

Because these architectures are so reliant on large datasets, developing and training a specialized

deep-learning algorithm requires a lot of computational power, even when such a dataset is

accessible. Deep learning architectures must also have some degree of interpretability in order to

be reliably implemented in real-world applications, especially in the medical field [20]. As deep

learning typically relies on a black-box approach, it is not always obvious how or why models

reach certain conclusions. With low interpretability, it is hard to trust that these models are

attending to the features of a dataset that are intuitively important to a human classifier. Even for

consistently high-performing models, it is unsure how they would perform if given more diverse

datasets or entrusted with real-time tasks.

The large datasets that deep learning models are reliant on are hard to come by for

medical-related tasks due to the difficulty in manufacturing large amounts of relevant medical

data. Even when data is available, it is a time-consuming and tedious process for medical

professionals to provide labels for this data [2]. Also, because medical data labeling is a

subjective process, it is a concern that the label that one professional may assign to a data object

would not be corroborated by another individual professional. This potential for variability in

data labeling contributes even more to the problem of model interpretability. Another roadblock

in the development of medical datasets is patient privacy concerns. Medical data is sensitive, and

many patients are not comfortable with their data being shared with the large corporations or tech

companies responsible for much of the research on artificial intelligence in the medical field

[12]. Without the strict rules governing the management of patient data in hospitals in place at
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private corporations, the medical data given to these corporations have the potential of being

misused or transferred without the patients' knowledge. Even the transfer of medical data itself

poses a privacy risk. If a breach were to occur, with current advances in reconstructive

technology, even anonymized data could be used to identify specific individuals using advanced

reidentification methods [12].

All of these factors lead to a shortage of quality medical image datasets, which poses a

problem for healthcare-oriented deep learning research. In order to address these challenges,

many researchers have begun to lean towards a more data-centric approach to developing deep

learning architectures, as opposed to the traditional model-centric approach. In a data-centric

architecture, the dataset is the key component, and a model is developed around the specific

needs and features of the data [14]. This approach has become necessary when wanting to

develop models to be trained on medical data, as the scarcity of medical datasets forces

researchers to prioritize finding a way to utilize the data they do have access to effectively.

Another direction that researchers have taken in order to address the challenge of

collecting quality medical data is to utilize a federated learning approach. Federated learning is a

practice initially proposed by Google and was specifically designed to address privacy concerns

and reduce the risk of data leakage, specifically for the data gathered from mobile devices. In

their initial proposal, federated learning is described as a way for isolated models to send updates

to a shared global model as they train on their unique local dataset [11]. Data is never shared

with the global model, and as it receives updates from all the participating local models, it

averages and applies them to its own network. The updated global model is then shared with all

local models, and they continue the training and updating cycle as needed. In theory, even though

the global model does not have access to any data for training purposes, the updates from the
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local models should transfer the knowledge that they have learned from their own datasets,

resulting in a more generalizable and sophisticated network. This eliminates the need for

transferring and storing data centrally. In a medical setting, this approach would drastically

reduce privacy concerns, as patient information is never transferred or shared in any capacity,

except with its corresponding local model. Since the introduction of federated learning, many

current studies have investigated ways to optimize the practice. Notably, because the datasets of

the local models only ever contain local information, there is a tendency for this training data to

be unbalanced and non-independent or identically distributed (non-IID) [3]. Traditionally, this

type of data would pose an issue in training, as unbalanced and non-IID data often result in

biased models. However, with optimization, the implementation of federated learning could

update these local networks with generalizable parameters, allowing them to be applicable to

more diverse datasets.

In this study, we aim to:

1) Evaluate the efficiency of federated learning on medical imaging datasets for

different model complexity and data complexity.

2) Compare the efficiency of the global federated learning-generated model to each of

the local models’ performance, and

3) Evaluate the generality of the local models' performance to the other local datasets,

after being trained with and without the implementation of federated averaging.

To accomplish these goals, we will use two simple but different deep learning models with

different complexity, two Magnetic Resonance Imaging (MRI) datasets with different

complexity i) 3-dimensional Structural MRI volume images [19] obtained from patients with

several mental disorders and ii) 2-dimensional MR head images with different degrees of motion
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artifacts, ranging from containing slight motion artifacts but still of diagnosable quality to

images with excessive motion artifacts and no diagnosable quality [13]. We use different deep

learning models for classification tasks on the different datasets under the federated learning

settings. In sections II, III, and IV, we will provide a brief introduction to the federated learning

approach, datasets, and deep learning models, respectively used in this study. In section V, we

present details of our experiment settings and the results in section VI. Section VII provides the

discussions and observations from our experiments and results and finally section VII provides

conclusions from this study.

II. Federated Learning Algorithm

There are many ways to implement federated learning on a system of models and data. A

popular and successful approach is the implementation of federated stochastic gradient descent

(FedSGD). In this approach, a C-fraction of local models referred to as “clients” in the original

study, is selected to perform computations, with C = 1 corresponding to a full global batch (all

local models are being used). For each client in C, the mini-batch size of local data used for𝑘

computations is represented by B. In this case, when B = , it indicates that the entire local∞

dataset is being used for training. The number of training rounds each client performs on its𝑘

local dataset before an update is sent to the global model, referred to as the “server” in the

original study, is represented by E. In a traditional FedSGD implementation, C = 1, B = , and E∞

= 1. With these parameters set, the average gradient for the server, , is calculated for each𝑤
𝑡

client using the following algorithm, , where represents the averaged𝑘 𝑔
𝑘

= ∇𝐹
𝑘 

(𝑤
𝑡 
) 𝐹

𝑘 
(𝑤

𝑡 
)

loss of the clients on their local parameters , calculated using algorithm𝑘 𝑤
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[3]. In this algorithm client loss, , is found using , the number𝐹
𝑘 

(𝑤) =  1
𝑛

𝑘 𝑖ϵ𝑃
𝑘

∑ 𝑓
𝑖
(𝑤) 𝑓(𝑤) 𝑛

𝑘

of data items in each client’s local dataset, and , is the set of local data. Once is calculated,𝑃
𝑘

𝑔
𝑘

the server aggregates the gradients and applies an update using the algorithm

for a set learning rate [3]. The federated averaging approach is a𝑤
𝑡+1

← 𝑤
𝑡
 ← η

𝑘=1

𝐾

∑
𝑛

𝑘

𝑛 𝑔
𝑘

η

variation of FedSGD. In federated averaging, each local client can be trained for multiple rounds

( ) before passing an update to the server (E = 2 or more) [3]. For this𝑤
𝑡+1

← 𝑤
𝑡
 ←η∇𝐹

𝑘 
(𝑤𝑘)

study, we will be using a federated averaging algorithm in order to increase local client

computation and evaluate its effect on the global outcome.

III. Data

Our first round of experiments utilized the SRPBS Multi-disorder MRI Dataset [19]. This

dataset comprises 3D resting-state functional MRI images, 3D T-1-weighted structural MRI

images, and fieldmaps for a set of 1627 patients. The data was gathered from 12 different

hospitals, referred to as “sites”, and is classified by patient diagnosis, with nine diagnoses

represented in the dataset. Each MRI image was face-masked (or “defaced”) in order to preserve

patient privacy and reduce the risk of facial reconstruction in the case of a data breach. We

focused on working with the set of T-1 weighted structural MRI images. In our experiments, we

created “local” datasets for six sites. For each chosen site, we classified data by patient diagnosis,

with healthy controls, major depressive disorder, and schizophrenia being the chosen diagnoses

represented in the datasets.
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We also utilized data gathered from the Movement-Related ARTefacts (MR-ART) dataset

[13]. This dataset contains 3D T1-weighted structural MRI images of 148 healthy patients. The

facial features in the MRI images of this dataset were also removed. Three MRI images were

collected for each patient. One while they remained still, one with slight motion, and one with

more excessive motion. The data is classified by the three different levels of motion. From this

3D MR-ART dataset, we also created a new 2D T1-weighted structural MRI dataset by slicing

the 3D MRI volumes into 2D images (referred to as the 2D MR-ART dataset). To create this

dataset, we selected 5 individual patients from each class, resulting in 3,843 total images (1282

per class).

We used the popular Modified National Institute of Standards and Technology (MNIST)

database to validate the performance of our constructed models and the federated averaging

algorithm [5]. The MNIST training dataset consists of 60,000 images of handwritten numbers

between 0-9. This data is classified by the number represented.

IV. Model Architecture

The models used in our experiments were chosen in order to best reflect the benefits of

federated averaging in wide general use cases. Because we are studying the use of a data-centric

approach, we did not design and implement any novel architectures or make drastic changes to

any models chosen.

We made use of a ResNet3D-18 in order to perform classifications on our 3D datasets [8,

10]. This 3D neural network is adapted from the popular ResNet (used for 2D images) and has

shown considerable success in 3D medical image classification tasks [25]. The ResNet3D-18
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model was also adapted for use in classifying our 2D image datasets, resulting in a standard

ResNet-18 model [9].

For specific use with our 2D image datasets and to test the adaptability of the federated

averaging algorithm to different model types, we implemented two basic classification networks.

The first model, called “Net2nn”, consisted of three linear and fully connected layers. This

model was integrated from a sample implementation of the federated averaging algorithm and

has been shown to perform well at simple classification tasks [15]. We also made use of an

adapted LeNet with three convolution layers and two fully connected layers. [24]. These models,

while simplistic, are known to achieve acceptable levels of classification accuracy, allowing us to

shift our focus to the performance of the federated averaging algorithm.

V. Experiments

Our first set of experiments were designed to test the performance of the federated

averaging algorithm on more complex medical imaging data. For each local site in the SRPBS

Multi-disorder MRI Dataset, we established a baseline of performance using the ResNet3D-18

by training each site with their local dataset for a total of 100 epochs. The data from these sites

were then compiled into a global dataset. We then randomly assigned each site, represented by

the term “center” in our federated averaging algorithm, a new selection of independent and

identically distributed (IID) data, with each class being represented by the same number of

samples. We performed the federated averaging experiment with the six local centers by training

each center on their local data using ResNet3D-18 for ten epochs before averaging (C = 1, B = ∞

, and E = 10), for a total of ten iterations of averaging.
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We then repeated the same experiment to test the performance of federated averaging on

the 3D MR-ART data. Because this data was not separated by site, we established the baseline

performance on the ResNet3D-18 training the model on the entire global dataset for 100 epochs.

For use in our federated averaging algorithm, we separated this global dataset into six local

datasets for six established centers to train on. As in the previous experiment, the data was

independent and identically distributed (IID) and represented an equal number from each class.

We ran the federated averaging algorithm using the same parameters of the previous experiment

(C = 1, B = , and E = 10, on ResNet3D-18), for a total of ten iterations of averaging.∞

Our next set of experiments involved the use of the 2D MR-ART dataset. A baseline of

performance for the entire global dataset was established through training the ResNet-18 model

for 100 epochs. We then split the data into evenly distributed local datasets, with the data

independently and identically distributed (IID) to six centers. We then proceeded to run the same

federated averaging experiment as described above (using parameters C = 1, B = , and E = 10,∞

for 10 iterations of averaging) with training being performed on the ResNet-18 model.

In our next round of experiments, we utilized the six evenly distributed local datasets

generated from the 2D MR-ART dataset for use by the centers of the federated averaging

algorithm. We repeated the federated averaging experiment with the same center data distribution

and federated averaging process using the Net2nn model and the adapted LeNet model (using

parameters C = 1, B = , and E = 10, for 10 iterations of averaging). We saved the models∞

trained for each center from the federated averaging experiment using the adapted LeNet model

and tested the validation accuracy of each model on the other centers’ data. We then trained the

LeNet model on each center’s local dataset for 100 epochs without implementing federated

averaging. We tested the validation accuracy of each center on the other five center datasets for
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these saved models as well. These experiments were performed to not only test the performance

of the federated averaging-generated server but also to evaluate the effect that the federated

averaging algorithm has on each center’s performance. We aim to establish if the process of

federated averaging makes the center models more generalizable to a more diverse set of data.

We performed the same set of federated averaging experiments as defined above on the

MNIST data. As in all other experiments, the MNIST data was independently and identically

distributed (IID) to each of the six centers, with the same numbers of each class being

represented. The same federated averaging experiment was then performed (C = 1, B = , and E∞

= 10, for 10 iterations of averaging) using the Net2nn and adapted LeNet models.

VI. Results

In our first round of experiments, we found that the ResNet3D-18 was unable to identify

any distinguishable characteristics in the data taken from the SRPBS Multi-disorder MRI

Dataset. With each training run, we determined that the model was guessing the same class each

time, no matter what the input data was. Even when the data was evenly split by class for use in

the federated averaging algorithm, the ResNet3D-18 was not computationally powerful enough

to establish any feature distinction. The resulting trained server model and individual center

models generated from the federated averaging algorithm were shown to also guess the same

class each time. Because the goal of this study is to evaluate the effects of federated averaging,

and not to build a complicated model capable of performing complex classifications, we were

forced to discard this dataset in order to advance with our experiments. To this end, we conclude

that either the features presented in the qualitative T1, and T2 weighted MRI images do not have
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discernable discriminant features that separate one mental disorder image from another, or the

individual local models need to be more complex and equipped with more learnable parameters.

The ResNet3D-18 model was shown to have the capability of establishing distinguishable

features from the 3D MR-ART data. Our baseline experiment with this model yielded a training

accuracy of up to 95% after 100 epochs with the global dataset and showed that the model was

definitively classifying data without resorting to guessing the same class every time. However,

after running the federated averaging algorithm with this dataset, we saw no improvement in

performance for the server. In fact, the server consistently reported a very poor validation

accuracy (guessing the same class almost every time), as shown below in Figure 1. The six local

centers did seem to consistently improve with training during the process as shown in Figure 2

below. This behavior is very unexpected compared to the behavior of federated learning in

several natural image classification tasks, such as the classification of the MNIST dataset.

Typically, in such datasets, not only do local models improve over averaging and iterations, but

the centralized server average model seems to improve as well. Our hypothesis is that the

variability of the dataset among each local center is greater in medical images than that of

MNIST data. This hypothesis is supported by the slow learning rate seen in the 3D MR-ART

image dataset compared to that in the MNIST dataset as shown in Figure 6 and Figure 7.
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Figure 1: Center Training Accuracy of ResNet3D-18 on the 3D MR-ART Data with Federated Averaging

Figure 2: Server Validation Accuracy of ResNet3D-18 on 3D MR-ART Dataset after Federated Averaging
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The 2D MR-ART dataset accomplished up to 95% training accuracy on the ResNet-18

model after 100 epochs. With these results confirming that the model can establish

distinguishable features from the dataset, we proceeded with the federated averaging

experiments. As found with the 3D MR-ART data and the ResNet3D-18 model, the federated

averaging-generated server saw no improvement after 10 iterations of averaging, shown in

Figure 4. Also seen in the previous experiment, the local center models seemed to consistently

improve during the federated averaging process, with some reaching up to 94% in training

accuracy, represented in Figure 3.

Figure 3: Center Training Accuracy of ResNet-18 on the 2D MR-ART Data with Federated Averaging
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Figure 4: Server Validation Accuracy of ResNet-18 on 2D MR-ART Dataset after Federated Averaging

With our previous experiments resulting in poor federated averaging performance, we

elected to shift towards testing less complicated models. We utilized the MNIST dataset and the

basic Net2nn to establish the performance of the federated averaging algorithm. The server

generated by federated averaging was shown to perform well on the MNIST data when trained

using the Net2nn model. The server model reached up to 99% validation accuracy (Figure 7),

and the centers showed an accuracy of up to 100% on their local datasets (Figure 5). When

federated averaging was performed using the center-separated 2D MR-ART data and the Net2nn

model, however, the Net2nn model proved to not be sophisticated enough to produce accurate

classifications for the 2D MR-ART data. Results were poor for both the server and center

models, and both seemed to fail to identify any distinguishing features within the data, as they

each resorted to guessing one class for each input, as shown in Figures 6 and 7.
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Figure 5: Center Training Accuracy of Net2nn on the MNIST Data with Federated Averaging

Figure 6: Center Training Accuracy of Net2nn on the 2D MR-ART Data with Federated Averaging
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Figure 7: Server Validation Accuracy of Net2nn on MNIST and 2D MR-ART Dataset after Federated Averaging

Our success in producing high training and validation accuracy for both the centers and

server using the Net2nn on the MNIST data and the failure of the Net2nn model to make any

progress in classifying the 2D MR-ART images encouraged us to implement a slightly more

complex model. We repeated the previous round of federated averaging experiments utilizing the

same two datasets but using the adapted LeNet model instead of Net2nn. For the MNIST data,

we found that while each of the individual centers produced high training accuracies for their

local datasets (Figure 8), the federated averaging-generated server did not perform as well as it

did when using the Net2nn model (Figure 10). While the server did seem to improve after the

first two averaging iterations, the progress halted at about 23% validation accuracy, even while

the servers continued to improve. The 2D MR-ART data produced variable results for center

performance, as the training accuracy seemed to improve for all centers but one. For a few of the

centers, accuracy reached up to 95%, represented in Figure 9. The server model, on the other

hand, did not ever seem to make any improvements (Figure 10).
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Figure 8: Center Training Accuracy of Adapted LeNet on the MNIST Data with Federated Averaging

Figure 9: Center Training Accuracy of Adapted LeNet on the 2D MR-ART Data with Federated Averaging
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Figure 10: Server Validation Accuracy of Adapted LeNet on MNIST and 2D MR-ART Dataset after Federated
Averaging

We took the saved models for each center from the federated averaging experiment and

gathered the validation accuracy score for each center on each local dataset, shown in Table 1.

We also utilized the same selection of local datasets to train the adapted LeNet model on each

center’s data for 100 epochs without federated averaging applied. These results are shown in

Figure 11. We gathered the validation accuracy score for every center’s saved model generated

by this experiment for each local dataset as well. The scores of each center on all datasets are

represented in Table 2.



19

Validation Accuracy

Centers \ Dataset Center 1
Dataset

Center 2
Dataset

Center 3
Dataset

Center 4
Dataset

Center 5
Dataset

Center 6
Dataset

Center 1 0.95 0.8 0.79 0.78 0.8 0.77

Center 2 0.84 0.88 0.82 0.83 0.85 0.84

Center 3 0.74 0.79 0.94 0.73 0.75 0.75

Center 4 0.81 0.79 0.8 0.95 0.82 0.82

Center 5 0.34 0.34 0.34 0.34 0.34 0.33

Center 6 0.52 0.5 0.55 0.51 0.48 0.53
Table I. Validation Accuracy Scores of Each Center Trained on the Adapted LeNet with Federated Averaging for

Every Local 2D MR-ART Dataset

Figure 11:Center Training Accuracy of Adapted LeNet on the 2D MR-ART Data Without Federated Averaging
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Validation Accuracy

Centers \ Dataset Center 1
Dataset

Center 2
Dataset

Center 3
Dataset

Center 4
Dataset

Center 5
Dataset

Center 6
Dataset

Center 1 0.91 0.87 0.87 0.86 0.87 0.88

Center 2 0.86 0.9 0.83 0.84 0.84 0.85

Center 3 0.8 0.79 0.85 0.78 0.77 0.79

Center 4 0.78 0.78 0.79 0.83 0.78 0.8

Center 5 0.73 0.73 0.78 0.74 0.97 0.74

Center 6 0.77 0.77 0.79 0.75 0.75 0.84
Table II. Validation Accuracy Scores of Each Center Trained on the Adapted LeNet Without Federated Averaging for
Every Local 2D MR-ART Dataset

VII. Discussion

We did not achieve our anticipated outcomes for the federated averaging-generated server

model for any of the medical imaging datasets. In fact, we found only improvements when the

MNIST data was used in training and averaging the parameters of a very simple model (Net2nn).

This lends support to the implication that federated averaging may be a useful tool in

generalizing the performance of models engaged in very simple classification tasks, as well as

providing a layer of privacy protection to the local center’s data. However, the same model that

produced the desired results after federated averaging was applied using MNIST data was

incapable of performing the complex computations necessary to classify our 2D MR-ART. When

we implemented a more complicated model with more parameters (the adapted LeNet model),

we found that while almost every individual center was seen to improve in accuracy across all

training sessions, the federated averaging algorithm failed to produce a working model for both

the MNIST and the 2D MR-ART data. The failure of the algorithm to produce an averaged

server model that performed at any level of accuracy in these experiments implies that when too
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many parameters are present in a model, the process of simple federated averaging is not enough

to create a useful server model. There seems to be a fine line between implementing center

models that are both sophisticated enough to perform the necessary classification tasks on

complicated medical imaging datasets and center models that are simple enough to be useful to

the federated averaging algorithm.

It was also interesting to note that during the process of federated averaging for the 2D

MR-ART dataset using the adapted LeNet model, some of the centers achieved relatively high

training accuracy, while a couple of the centers struggled to improve. One, notably, did not ever

improve beyond the threshold of single-class guessing. The same datasets were used to train the

adapted LeNet model without averaging, and each center reached high training accuracy scores

on both their data and the other centers’ datasets. This implies that in the process of federated

averaging, if the model being trained has too many parameters for the algorithm to reliably use,

the process of updating the center models with the averaged parameters has the potential to

render them unable to ever learn distinguishing characteristics for their local data, or at the very

least hindering their performance.

VIII. Conclusions and Future Work

Our goal of evaluating the performance of federated averaging on medical imaging data

resulted in overall poor performance by the federated averaging-generated server model. The

algorithm seemed to struggle to average the weights and biases of models with many parameters

in a meaningful way, and we saw success for federated averaging only when using a model too

simplistic to perform classification tasks with the medical imaging data in any capacity. The

results of our experiments lead us to conclude that while the concept of federated learning would
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have many benefits for use in the medical field, in theory, the simple federated averaging

approach will need to be improved significantly in order to reliably use medical data, particularly

in classification tasks.



23

References

[1] 27+ Most Popular Computer Vision Applications in 2022. (n.d.). Www.v7labs.com.
https://www.v7labs.com/blog/computer-vision-applications

[2] Bass, E. (2022, January 4). The Unique Problems of Medical Computer Vision. Sirona
Medical. https://sironamedical.com/the-unique-problems-of-medical-computer-vision/

[3] Brendan, M. H., Moore, E., Ramage, D., Hampson, S., & Blaise. (2016).
Communication-Efficient Learning of Deep Networks from Decentralized Data. ArXiv
(Cornell University). https://doi.org/10.48550/arxiv.1602.05629

[4] Chai, J., Zeng, H., Li, A., & Ngai, E. W. T. (2021). Deep learning in computer vision: A
critical review of emerging techniques and application scenarios. Machine Learning with
Applications, 100134. https://doi.org/10.1016/j.mlwa.2021.100134

[5] Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6), 141–142.

[6] Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory
Review of Deep Learning for Prediction Models With Big Data. Frontiers in Artificial
Intelligence, 3. https://doi.org/10.3389/frai.2020.00004

[7] Gao, J., Yang, Y., Lin, P., & Park, D. S. (2018). Computer Vision in Healthcare Applications.
Journal of Healthcare Engineering, 2018, 1–4. https://doi.org/10.1155/2018/5157020

[8] Hara, K., Kataoka, H., & Yutaka Satoh. (2017). Can Spatiotemporal 3D CNNs Retrace the
History of 2D CNNs and ImageNet? ArXiv (Cornell University).
https://doi.org/10.48550/arxiv.1711.09577

[9] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.
ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1512.03385

[10] Kataoka, H., Tenga Wakamiya, Hara, K., & Yutaka Satoh. (2020). Would Mega-scale
Datasets Further Enhance Spatiotemporal 3D CNNs? ArXiv (Cornell University).

[11] McMahan, B., & Ramage, D. (2017, April 6). Federated Learning: Collaborative Machine
Learning without Centralized Training Data. Google AI Blog.
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

[12] Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health
information in a new era. BMC Medical Ethics, 22(1).
https://doi.org/10.1186/s12910-021-00687-3



24

[13] Nárai, Á., Hermann, P., Auer, T. et al. Movement-related artefacts (MR-ART) dataset of
matched motion-corrupted and clean structural MRI brain scans. Sci Data 9, 630 (2022).
https://doi.org/10.1038/s41597-022-01694-8

[14] Patel, H. (2021, December 30). Data-Centric Approach vs Model-Centric Approach in
Machine Learning. Neptune.ai.
https://neptune.ai/blog/data-centric-vs-model-centric-machine-learning

[15] Polat, E. I. (2020, September 28). Federated Learning: A Simple Implementation of FedAvg
(Federated Averaging) with PyTorch. Medium.
https://towardsdatascience.com/federated-learning-a-simple-implementation-of-fedavg-fe
derated-averaging-with-pytorch-90187c9c9577

[16] Shukla, P. (2022, December 11). Machine Learning with Limited Data. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2022/12/machine-learning-with-limited-data/

[17] Singh, R. (2022, October 4). Recent Advances in Modern Computer Vision. Medium.
https://towardsdatascience.com/recent-advances-in-modern-computer-vision-56801edab9
80

[18] Srivastava, A. (n.d.). Council Post: The Evolution Of Computer Vision And Its Impact On
Real-World Applications. Forbes. Retrieved April 24, 2023, from
https://www.forbes.com/sites/forbestechcouncil/2021/10/14/the-evolution-of-computer-vi
sion-and-its-impact-on-real-world-applications/?sh=48564b48c6ab

[19] Tanaka, S.C., Yamashita, A., Yahata, N. et al. A multi-site, multi-disorder resting-state
magnetic resonance image database. Sci Data 8, 227 (2021).
https://doi.org/10.1038/s41597-021-01004-8

[20] Teng, Q., Liu, Z., Song, Y., Han, K., & Lu, Y. (2022). A survey on the interpretability of
deep learning in medical diagnosis. Multimedia Systems, 28(6), 2335–2355.
https://doi.org/10.1007/s00530-022-00960-4

[21] This is what makes deep learning so powerful. (2022, March 27). VentureBeat.
https://venturebeat.com/datadecisionmakers/this-is-what-makes-deep-learning-so-powerf
ul/

[22] Top 7 Computer Vision Use Cases in Healthcare in 2023. (n.d.). Research.aimultiple.com.
Retrieved April 24, 2023, from
https://research.aimultiple.com/computer-vision-healthcare/



25

[23] Voulodimos, A., Doulamis, N., Bebis, G., & Stathaki, T. (2018). Recent Developments in
Deep Learning for Engineering Applications. Computational Intelligence and
Neuroscience, 2018, 1–2. https://doi.org/10.1155/2018/8141259

[24] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to
document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov.
1998, doi: 10.1109/5.726791.

[25] Zhang, S., Li, Z., Zhou, H.-Y., Ma, J., & Yu, Y. (2023). Advancing 3D medical image
analysis with variable dimension transform based supervised 3D pre-training.
Neurocomputing, 529, 11–22. https://doi.org/10.1016/j.neucom.2023.01.012


	Analysis of a Federated Learning Framework for Heterogeneous Medical Image Data: Privacy and Performance Perspective
	Citation

	Julia Brixey Honors Thesis

