
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

5-2023

Fuel Prediction: Determining the Desirable Stops for the Cheapest Fuel Prediction: Determining the Desirable Stops for the Cheapest

Road Trips Road Trips

Maxx Smith
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Other Computer Engineering Commons

Citation Citation
Smith, M. (2023). Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trips. Computer
Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/118

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/118?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trip

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering

College of Engineering

University of Arkansas

Fayetteville, AR

April 2023

by

Maxx Smith

Advised by

Dr. Susan Gauch

1

Abstract

Current technology has given rise to many advanced route-planning applications that are

available for use by the general public. Gone are the days of preparing for road trips by looking

at a paper map for hours on end trying to determine the correct exits or calculate the distance to

be traveled. However, with the use of modern technology, there is a certain aspect of forward-

thinking that is now lost with planning a road trip. One of the biggest constraints that often gets

left on the backburner is deciding when and where to stop to refuel the car. This report is the

holistic overview of a web application designed to assist drivers with deciding when and where

to stop for gas in an effort to ultimately reduce unnecessary expenses.

2

1. Introduction

1.1 Objectives

The main goal of this project is to create an application that can be used to plan the gas

station stops during a road trip ahead of time so that the user can stop to refuel at the station with

the cheapest gas listed. Even within a single city, gas prices can vary between stations. While in

some cases it may only be a few cents difference, in others it may climb up to 20 cents. At face

value this may seem like a mostly negligible difference, but this change in price can dramatically

add up over the course of a road trip with two or three stops to fully refuel.

In order to provide ease of access to the user, this project is designed as a web

application. This allows the application to be accessed with multiple devices by being hosted

through a server on a network. The application should be able to take in any two addresses or

locations, as well as any make and model of a car and correctly calculate the trip distance, the

car’s expected miles per gallon, the expected number of stops, and a short list of gas stations at

those expected stops. Once the user's data is collected and the results are calculated, they should

be displayed in an easily readable format for the user on the application web page.

1.2 Background

Before starting work on this project it was essential to first understand a few crucial parts

of the anticipated coding and usable algorithms. Since this project is focused less on comparing

the same route with various algorithms and more on optimizing the stops along the route, this

project will use a third party API, Openrouteservice, to decide the best route between two

locations ahead of any calculations [5]. Dijkstra's algorithm is one of the most commonly used

3

shortest path algorithms that can accommodate for path weight [2]. However, it is not usable for

a case like this because while it works well for shortest path calculations, the context of this

project actually requires a fastest path calculation. To achieve this, the routing API used for this

project uses one of two preprocessing speed-up methods depending on the situation: contraction

hierarchies (CH) or ALT. Both of these are commonly used improvements to shortest-path

algorithms [6, 8]. Openrouteservice creates an optimal route by combining “individual segments

computed separately between consecutive pairs of points,” [1]. This results in a fast and

accurately optimized route to be used for the anticipated road trip.

With the route planning phase completed, the next obstacle to overcome is locating gas

stations along the route. This is achieved by using a separate API, Gas Prices Scraper by Natasha

Lekh, which takes in a specified location and returns a number of gas stations in the given area

based on Google Maps data [7]. This ensures that the data will stay current and also be as

accurate as Google provides.

Lastly the application needs to be able to calculate when the user’s car is expected to run

out of gas. In order to accomplish this, the application scrapes from a website dedicated to

graphing the recorded miles per gallon for various car models, which is data provided by the

website’s dedicated community [4]. Fuelly.com is the website containing the vehicle data, and

the scraping tool used was Beautiful Soup 4. Fueleconomy.gov, while technically reports more

official miles per gallon listings, does not permit scraping robots to obtain data from the website.

4

2. Related Works

The main source of inspiration used for this project came from a combination of Google

Maps and the Waze navigation app. Google Maps allows the user to search ahead along the route

to look for gas stations, but only does so when prompted and also does not sort by price in any

form. Waze, on the other hand, does sort the gas stations by price and even categorizes them into

high, medium, and low prices according to the area, but these prices are not updated as often as

they are through Google. Waze also does not anticipate when the user is going to need to stop for

gas, and therefore uses a shortened list of gas stations along the route. This inherently limits the

user’s options and ability to choose which gas station they may prefer.

3. Approach and Functionality Development

3.1 Overview

As stated before, the goal of this project is to ultimately create an easy-to-use web

application. To produce this, the application runs with a Python backend connected to a server

through implementation of the Flask web framework [3]. The website takes the user’s input and

sends it to the backend for the main calculations to be done and for the main API’s to be called.

The Python script then sends data back to the web front end through use of the

“render_template” function in Flask. This function allows Python variables to be passed in,

which can then be retrieved and manipulated by JavaScript before ultimately being formatted

and displayed to the user in HTML.

5

Figure 1: Project Application Architecture

Throughout the development timeline, the application itself naturally went through

several iterations, with each one building on the previous version. The most effective way to

have a reasonable development timeline was to build each new piece of code to run on its own as

much as possible, and then implement it into the actual project application code. This style of

development helped reduce errors and allowed for much cleaner code. Below is a summarized

list of each of the versions and their respective, significant changes.

3.2 Calculating MPG and Travel Distance

This was the most basic module of the application and was the most straightforward to

accomplish. The first version developed, web.py, would accept the user input for the car make

and model, and then it would navigate to and scrape the corresponding fuelly.com page for the

miles per gallon data of that specific car. It also established the usage of the ‘re’ library, which is

a module that allows the code to feed strings into regular expressions, scanning for any matches

to the written formula.

6

Figure 2: web.py depicting basic scraping functionality using Beautiful Soup 4

Equation 1: m.start() for m in re.finditer(‘count’, str(chart)).

Equation 2: m.start() for m in re.finditer(‘rnd_mpg’, str(chart)), combined with Eq. 1 will

return MPG values and the corresponding counts.

With the fuel data obtained, the next goal was to translate it into a usable average.

Version webv2.py improves on the previous version of the code by interpreting and making

sense of the data. This data is averaged from the obtained Highchart to calculate the car’s miles

per gallon, as well as applied to some placeholder location data to simulate already having a

route gathered. This was also the first instance where the differences in regular expression

modules between languages would start to appear. For example, in Python it is generally good

practice to input a string into a regex formatted as r”...” as it tells the code to interpret each of the

contained characters literally.

7

Figure 3: MPG is calculated and applied to trip distance to determine number of stops.

In order for the car’s averaged MPG to actually be used, the next stage of the project was

to calculate the distance to be traveled during the course of the road trip. Version webv3.py

shows the first implementation of Openrouteservice which is being used to calculate the route

between two locations. The application is also correctly identifying the starting location and

destination inputs.

Figure 4: Openrouteservice returns data in meters, so it must be converted for MPG usage

8

Equation 3: milesDist = float(m.group(1)) + 0.000621371, converts the returned route distance

in meters into miles to be used for MPG calculations.

3.3 Determining Stops and Retrieving Gas Prices

This stage of the project is where the application begins to take form. Version webv5.py

now has a much higher functionality when compared to the previous models as it is now capable

of deciding ahead of time where along the route the user is going to need to stop for gas. It is

important to note that the approximation algorithm for deciding where to stop in this version is

not the same algorithm used in the final version. To elaborate, it is helpful to first understand

how the graphics for a route-planning service are drawn. Because routes almost never consist

solely of straight lines, the routes are drawn using an extensive list of coordinates instead, which

can be found in the geometric polyline generated by the route-planning service. This version of

the script attempts to match the coordinates found in the polyline with the driving instructions

and distances that would be given to the user. Unfortunately, the coordinates often fail to

accurately represent the intended location. Because the driving instructions are based on distance

traveled and the coordinates are simply based on the shape of the route, the two are not

correlated and should not be attributed to one another. Specific test cases showed that the

algorithm used in this version struggles with longer stretches of roads.

9

Figure 5: The left side depicts the distance traveled for each “step” of the route. The right side

depicts the selected corresponding coordinate pair for each step. Closer inspection shows that

because there are many relatively small steps and few large steps, this method of attempting to

relate coordinates to the steps will not produce accurate results.

Equation 4: for i in slicedDistances: if(currFuelMeters - float(i) <= 0): , this equation iterates

through the list of distance-steps to be traveled, reducing the car’s fuel with each step. When the

car’s fuel would drop below the available fuel amount, the previous set of coordinates would be

retrieved and alert the user to stop there.

Webv5.py marks the major development of finishing the module responsible for

retrieving the necessary gas stations and their respective prices. This is the final version of the

back end Python script before fully implementing it to be run through the Flask server instead of

standalone. With the stop locations decided from the previous algorithm, which was inaccurate

but functional enough, the script now extracts the data from the gas station API and formats it

into a JSON to be submitted back through the Flask server through the render_template function.

10

Figure 6: Full implementation of apifygas.py is complete, and the data is prepared to be sent to

the frontend side

3.4 Web Interface Development

This is the stage of the project that would first boot the Flask server and allow the user to

access the web application from their computer. Along with the new run.py script that starts the

server, this stage of development also necessitated the creation of several templates to be used by

the web app. These are base.html, form.html, and data.html. Form.html is effectively the

homepage that greets the user, and the data.html page is rendered with a set of variables to

display once all calculations are complete.

11

Figure 7: Because Flask is a framework new to this point in the app’s development, the project’s

code needed to be slightly restructured through the usage of @app.route()

As the pre-final version of the web app script, run2.py has all of the functionality

necessary for the project to be considered “complete” but it is still missing the last few tweaks

and adjustments to speed up the program where possible and increase data accuracy. This

version still uses the coordinate-distance step system from early development.

12

Figure 8: The form.html (or home) page. The user enters data and submits it. This data is sent to

the Python script backend using a POST/GET request exchange.

13

Figure 9: The data.html page. This is the page returned once all calculations are complete. Note

the discrepancy between the anticipated stops for gas and the actual number of projected stops.

This is a now fixed error in the fuel calculation algorithm.

The final version of the project code, run3.py, has all the same functionality of the

previous version, but it also has an improved gas tracking algorithm. This new algorithm ditches

the coordinate-distance-step matching system from before in favor of an algorithm that instead

divides the entire list of coordinates by the number of calculated stops to get a key number. This

key number indicates what set of coordinates should be returned to provide the stop locations.

The key number is multiplied by whole numbers until it exceeds the length of the full set of

polyline coordinates. It also runs slightly faster, as the new algorithm no longer requires the

distance-step arrays to be made from the directions provided by the Openrouteservice API. It

also fixes a previous bug in which the city to stop in could not properly be found in the reverse

geolocator. This was caused by the Nominatim client actually being too specific and occasionally

referring to cities as a “hamlet” or a “town” instead, which would not be detected by the regex

equation looking for a “city.”

Equation 5: key = int(coordsCount/(tankValueRaw + 1))

Equation 6: for x in range(tankValue): stopCoords = coordsFull[key * (x+1)] , the new

fuel tracking algorithm uses the “key” variable, which indicates how many coordinates you will

visit before needing to stop for gas. “Key” is obtained by dividing the number of coordinates by

the number of predicted stops, plus one.

14

4. Testing and Metrics

For the sake of testing, the application will be run with three different road trips, and each

of these trips will be tested with two different vehicles. The stretches are 1. Little Rock, AR to

Fayetteville, AR, 2. Little Rock, AR to Lexington, VA, and 3. Austin, TX, to Phoenix, AZ.

These trips will be tested using a Cadillac SRX and a Honda Accord. This ensures that the

application is put through tests over various distances and stops, along with demonstrating the

capability of switching vehicles.

Once the calculations are made and the results are displayed, each of the trips will be

manually plugged into Google Maps so that the stop distances can be compared with one another

and ensure that these stops line up with the projected travel distances. It is important to note that

the “fuel range” of any car is not entirely precise. To be more specific, the miles per gallon

displayed to the user and used for calculations is a total average gathered from many users over a

period of time. However, because most of a road trip is driven on an interstate, this miles per

gallon listing is slightly lower than what the user would likely experience. A small set of

calculations found that there would be a 20-30% increase in MPG from average to highway.

Another crucial piece of information to bear in mind before examining the data is that these

MPG ratings are expecting the driver to obey traffic laws and avoid excessive speeding. The gas

tank size is also hard-coded at 19 gallons, and is set to not deplete below the 15% fuel level.

15

Figure 10: From Little Rock to Fayetteville, the program correctly identifies that neither car

would require a refueling to complete the trip.

16

Figure 11: From Little Rock to Lexington, the SRX would need to stop twice and the

Accord would need to stop once, due to having a higher MPG.

17

Figure 12: From Austin to Phoenix, the SRX would need to stop 3 times, and the Accord

would only need to stop twice.

18

5. Evaluation

The goal of this project was to create an application that can take a starting location, a

destination, and the information of a car and determine when the driver is expected to stop and

follow up by recommending a few potential gas stations at that stop location. In order to evaluate

the effectiveness of this program, the same trips will be calculated by hand using Google Maps

and compared against the program. The distances between stops will be compared and examined

to see if they are realistically achievable.

5.1 Final Model

As shown above, the final model is proven to work reliably and effectively for the listed

trips and different cars. Theoretically, this model should work well with any car that has enough

statistical data stored on the Fuelly.com website. It also works with any address or location that

is contained by the OpenStreetMap API, which is utilized by Openrouteservice to determine

routes between locations [5]. The only limitation to this is with extremely long distances, for

example from Los Angeles, CA to New York City, NY. It is at distances such as these that the

route planning service will reach its max nodes available and cannot plot the route.

5.2 Results

To illustrate which stops the application selects, the routes have been plotted using Google Maps,

with each of the vehicle’s respective stops circled, and the distances recorded. The Cadillac SRX

has stops circled in red, and the Honda Accord has stops circled in yellow.

19

Figure 13: Little Rock to Fayetteville is 190 miles (program reports 190.27), therefore no stops

would be necessary.

Figure 14: Little Rock to Lexington is 837 miles (program reports 829.14), which requires stops

in Dickson and Knoxville for the SRX, and requires a single stop in Lebanon for the Accord.

20

Figure 15: Austin to Phoenix is 1015 miles (program reports 1005.91), which requires stops in

Fredericksburg, Fort Stockton, and Las Cruces for the SRX and requires stops in Junction and

Fort Hancock for the Accord.

Figure 16: Excel chart depicting each vehicle’s projected stops and distances between each stop.

As shown in the above chart, the Accord can travel much further between refuelings due

to its better gas mileage, which is reflected in the “From Previous Stop” category. The longest

stretch made without stopping to refuel is from Fort Hancock, TX to Phoenix, AZ at 496 miles.

Noticeably, during the SRX’s trip to Phoenix the application clearly prioritizes having a final

stretch as long as possible. There is a similar trend seen in all of the stops decided by the

refueling algorithm. While the Accord is realistically capable of driving long distances before

needing to stop for gas, these numbers are slightly inflated. This is due to the application’s gas

21

consumption algorithm assuming a gas tank size that is in fact larger than the Accord’s actual

tank size.

6. Discussion

6.1 Conclusions

The purpose of this project was to build a web application that is capable of taking in a

start and a destination as well as the make and model for the car, and plot the route between

those two locations while accommodating for the necessary fuel stops for the given car. This was

done through the use of the Openrouteservice API, the Gas Prices Scraper API, and the reverse

geocoding Nominatim. The web app, hosted on a Flask server, prompts the user for the

previously mentioned inputs, sends the data through a POST/GET method exchange, calls the

necessary API’s, and returns a rendered HTML template with the calculated stops displayed to

the user. The algorithm used by the application is found to work best used with mid-size to SUV-

sized vehicles.

6.2 Future Work

Throughout the process of writing this report and deciding this program there are many

areas in which the application can be taken to further improve on either its functionality or

efficiency and accuracy. The immediately most noticeable of which is that the program simply

uses a catch-all gas tank size when calculating potential fuel range. Part of the reason this was

used was to accommodate individuals wanting to stop more often than completely necessary, but

if someone were to run their tank completely empty, it would likely not line up correctly with the

22

predicted stop locations. A solution to this is to allow the user to input the car's tank size on their

own and also input their starting fuel level. This would allow for a much more realistic scenario

as the cars expected fuel range would be much closer to what the individual would likely

experience, and it prevents them from having to completely fill up their tank before actually

starting the trip for the calculations to be accurate.

The next, much more intensive improvement would be to allow for another gas station

searching algorithm to be used. This algorithm could search along the desired route for major

cities and towns and pick one or two gas stations from each one reporting those back to the user.

The program could then compare these returned gas prices and through a much more in-depth set

of calculations provide the exact cheapest trip possible with a given number of refueling stops.

However, an algorithm like this is not practical with the current parameters and API’s being used

by the program. Currently one of the biggest issues with the Gas Prices Scraper API being used

is that for modern-day technology it is incredibly slow. Retrieving six gas stations from a single

county takes up to an entire minute. If the same API were to be used with every city along the

given route, the program could likely take anywhere from 5 minutes to 30 minutes to run. It is

likely that the source of this slowdown comes from the way the gas station API is written or from

the hosting site, Apify. An alternative would be to use Google's own landmark listing API,

Google Places, which would remove the need for the gas station specific API and would likely

result in a much faster run time. This faster run time would allow for the use of the previously

mentioned algorithm that would search every major location along the given route.

The final two improvements would be much smaller changes, but would result in a much

higher quality of life experience for the user. The reverse geocoder being used for this program

23

often has timeout errors, which is in no part on behalf of this program but instead on the

geolocator being used.

Figure 17: Nominatim timing out during runtime.

A possible improvement on this would be to simply use another geocoder that is more

consistent with its availability. Lastly, it would benefit the user greatly if the program was

adjusted to omit gas stations with “unavailable” prices. As these gas stations with unlisted prices

are likely lower quality than those that do, most users would prefer to ignore these options

regardless.

24

7. References

[1] Adam and Andrzej, “What Is The Algorithm Used by ORS API for QGIS,”

Openrouteservice, Feb-2021. [Online]. Available:

https://ask.openrouteservice.org/t/what-is-the-algorithm-used-by-ors-api-for-qgis/2476/2.

[Accessed: 25-Apr-2023].

[2] D. Rachmawati and L. Gustin, “Analysis of Dijkstra’s Algorithm and A* Algorithm in

Shortest Path Problem,” Journal of Physics: Conference Series, vol. 1566, no. 1, p.

012061, 2020.

[3] “Flask,” Welcome to Flask - Flask Documentation (2.3.x), Apr-2023. [Online]. Available:

https://flask.palletsprojects.com/en/2.3.x/. [Accessed: 25-Apr-2023].

[4] “Fuelly - Track and Compare Your MPG,” Fuelly, 2023. [Online]. Available:

https://www.fuelly.com/car. [Accessed: 25-Apr-2023].

[5] heiGIT gGmbH, Openrouteservice, 2022. [Online]. Available: https://openrouteservice.org/.

[Accessed: 25-Apr-2023].

[6] J. Dibbelt, B. Strasser, and D. Wagner, “Customizable Contraction Hierarchies,” ACM

Journal of Experimental Algorithmics, vol. 21, no. 1.5, pp. 1–49, Apr. 2016.

[7] N. Lekh, “Gas Prices Scraper,” Apify, 01-Jan-2023. [Online]. Available:

https://apify.com/natasha.lekh/gas-prices-scraper. [Accessed: 25-Apr-2023].

[8] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner,

“Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra's

Algorithm,” ACM Journal of Experimental Algorithmics, vol. 15, no. 2.3, pp. 2.1–2.31,

Mar. 2010.

	Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trips
	Citation

	tmp.1683128742.pdf.m34j1

