University of Arkansas, Fayetteville

ScholarWorks@UARK

Computer Science and Computer Engineering

Undergraduate Honors Theses Computer Science and Computer Engineering

5-2023

Fuel Prediction: Determining the Desirable Stops for the Cheapest
Road Trips

Maxx Smith
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

b Part of the Other Computer Engineering Commons

Citation

Smith, M. (2023). Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trips. Computer
Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/118

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/118?utm_source=scholarworks.uark.edu%2Fcsceuht%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trip

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas
Fayetteville, AR

April 2023

by

Maxx Smith

Advised by

Dr. Susan Gauch

Abstract

Current technology has given rise to many advanced route-planning applications that are
available for use by the general public. Gone are the days of preparing for road trips by looking
at a paper map for hours on end trying to determine the correct exits or calculate the distance to
be traveled. However, with the use of modern technology, there is a certain aspect of forward-
thinking that is now lost with planning a road trip. One of the biggest constraints that often gets
left on the backburner is deciding when and where to stop to refuel the car. This report is the
holistic overview of a web application designed to assist drivers with deciding when and where

to stop for gas in an effort to ultimately reduce unnecessary expenses.

1. Introduction

1.1 Objectives

The main goal of this project is to create an application that can be used to plan the gas
station stops during a road trip ahead of time so that the user can stop to refuel at the station with
the cheapest gas listed. Even within a single city, gas prices can vary between stations. While in
some cases it may only be a few cents difference, in others it may climb up to 20 cents. At face
value this may seem like a mostly negligible difference, but this change in price can dramatically
add up over the course of a road trip with two or three stops to fully refuel.

In order to provide ease of access to the user, this project is designed as a web
application. This allows the application to be accessed with multiple devices by being hosted
through a server on a network. The application should be able to take in any two addresses or
locations, as well as any make and model of a car and correctly calculate the trip distance, the
car’s expected miles per gallon, the expected number of stops, and a short list of gas stations at
those expected stops. Once the user's data is collected and the results are calculated, they should

be displayed in an easily readable format for the user on the application web page.

1.2 Background

Before starting work on this project it was essential to first understand a few crucial parts
of the anticipated coding and usable algorithms. Since this project is focused less on comparing
the same route with various algorithms and more on optimizing the stops along the route, this
project will use a third party API, Openrouteservice, to decide the best route between two

locations ahead of any calculations [5]. Dijkstra's algorithm is one of the most commonly used

shortest path algorithms that can accommodate for path weight [2]. However, it is not usable for
a case like this because while it works well for shortest path calculations, the context of this
project actually requires a fastest path calculation. To achieve this, the routing API used for this
project uses one of two preprocessing speed-up methods depending on the situation: contraction
hierarchies (CH) or ALT. Both of these are commonly used improvements to shortest-path
algorithms [6, 8]. Openrouteservice creates an optimal route by combining “individual segments
computed separately between consecutive pairs of points,” [1]. This results in a fast and
accurately optimized route to be used for the anticipated road trip.

With the route planning phase completed, the next obstacle to overcome is locating gas
stations along the route. This is achieved by using a separate API, Gas Prices Scraper by Natasha
Lekh, which takes in a specified location and returns a number of gas stations in the given area
based on Google Maps data [7]. This ensures that the data will stay current and also be as
accurate as Google provides.

Lastly the application needs to be able to calculate when the user’s car is expected to run
out of gas. In order to accomplish this, the application scrapes from a website dedicated to
graphing the recorded miles per gallon for various car models, which is data provided by the
website’s dedicated community [4]. Fuelly.com is the website containing the vehicle data, and
the scraping tool used was Beautiful Soup 4. Fueleconomy.gov, while technically reports more

official miles per gallon listings, does not permit scraping robots to obtain data from the website.

2. Related Works

The main source of inspiration used for this project came from a combination of Google
Maps and the Waze navigation app. Google Maps allows the user to search ahead along the route
to look for gas stations, but only does so when prompted and also does not sort by price in any
form. Waze, on the other hand, does sort the gas stations by price and even categorizes them into
high, medium, and low prices according to the area, but these prices are not updated as often as
they are through Google. Waze also does not anticipate when the user is going to need to stop for
gas, and therefore uses a shortened list of gas stations along the route. This inherently limits the

user’s options and ability to choose which gas station they may prefer.

3. Approach and Functionality Development

3.1 Overview

As stated before, the goal of this project is to ultimately create an easy-to-use web
application. To produce this, the application runs with a Python backend connected to a server
through implementation of the Flask web framework [3]. The website takes the user’s input and
sends it to the backend for the main calculations to be done and for the main API’s to be called.
The Python script then sends data back to the web front end through use of the
“render_template” function in Flask. This function allows Python variables to be passed in,
which can then be retrieved and manipulated by JavaScript before ultimately being formatted

and displayed to the user in HTML.

Web App
(run3.py)

Python Script

form.html POST methad

GET method———

(Seraping,
ealculations, API
calls, data cleaning
and preparation)

Flask Server
Output to data.html e Calls data.html and __| render_template()
localhost . provides calculations

Figure 1: Project Application Architecture

Throughout the development timeline, the application itself naturally went through
several iterations, with each one building on the previous version. The most effective way to
have a reasonable development timeline was to build each new piece of code to run on its own as
much as possible, and then implement it into the actual project application code. This style of
development helped reduce errors and allowed for much cleaner code. Below is a summarized

list of each of the versions and their respective, significant changes.

3.2 Calculating MPG and Travel Distance

This was the most basic module of the application and was the most straightforward to
accomplish. The first version developed, web.py, would accept the user input for the car make
and model, and then it would navigate to and scrape the corresponding fuelly.com page for the
miles per gallon data of that specific car. It also established the usage of the ‘re’ library, which is
a module that allows the code to feed strings into regular expressions, scanning for any matches

to the written formula.

ort BeautifulSoup

model

model

print("so
soup

print("T

print(" t loc 5

print rt m in re.finditer('count’, stri{chart
print(" .

print{[m.st for m in re.finditer('rnd_mpg', str{chart

Figure 2: web.py depicting basic scraping functionality using Beautiful Soup 4
Equation 1: m.start() for m in re.finditer(‘count’, str(chart)).
Equation 2: m.start() for m in re.finditer(‘rnd mpg’, str(chart)), combined with Eqg. 1 will

return MPG values and the corresponding counts.

With the fuel data obtained, the next goal was to translate it into a usable average.
Version webv2.py improves on the previous version of the code by interpreting and making
sense of the data. This data is averaged from the obtained Highchart to calculate the car’s miles
per gallon, as well as applied to some placeholder location data to simulate already having a
route gathered. This was also the first instance where the differences in regular expression
modules between languages would start to appear. For example, in Python it is generally good
practice to input a string into a regex formatted as r”...” as it tells the code to interpret each of the

contained characters literally.

print('\n"

en(datalist

count = int(re.findall{r"(\d+)",datalist[i

print(d
print("\nYour car's G is: * '{:.2F}' .format (avgMPG

print("Yo e " + str(drivingDis

print

Figure 3: MPG is calculated and applied to trip distance to determine number of stops.

In order for the car’s averaged MPG to actually be used, the next stage of the project was
to calculate the distance to be traveled during the course of the road trip. Version webv3.py
shows the first implementation of Openrouteservice which is being used to calculate the route
between two locations. The application is also correctly identifying the starting location and

destination inputs.

m = re.se
print("

milesDi
print("

rting location? Little Rock
tteville

retrieved distance i

distance converted i

Figure 4: Openrouteservice returns data in meters, so it must be converted for MPG usage

Equation 3: milesDist = float(m.group(1)) + 0.000621371, converts the returned route distance

in meters into miles to be used for MPG calculations.

3.3 Determining Stops and Retrieving Gas Prices

This stage of the project is where the application begins to take form. Version webv5.py
now has a much higher functionality when compared to the previous models as it is now capable
of deciding ahead of time where along the route the user is going to need to stop for gas. It is
important to note that the approximation algorithm for deciding where to stop in this version is
not the same algorithm used in the final version. To elaborate, it is helpful to first understand
how the graphics for a route-planning service are drawn. Because routes almost never consist
solely of straight lines, the routes are drawn using an extensive list of coordinates instead, which
can be found in the geometric polyline generated by the route-planning service. This version of
the script attempts to match the coordinates found in the polyline with the driving instructions
and distances that would be given to the user. Unfortunately, the coordinates often fail to
accurately represent the intended location. Because the driving instructions are based on distance
traveled and the coordinates are simply based on the shape of the route, the two are not
correlated and should not be attributed to one another. Specific test cases showed that the

algorithm used in this version struggles with longer stretches of roads.

ced list is now:

o &~ o

[
[-9
[
[
[
[
[
[
[
[
[
[
=:
[-9
[
[
[
[
[-9
[-9
[-9
[-9
[.

co

new list is: 23 of new list

Figure 5: The left side depicts the distance traveled for each “step” of the route. The right side
depicts the selected corresponding coordinate pair for each step. Closer inspection shows that
because there are many relatively small steps and few large steps, this method of attempting to
relate coordinates to the steps will not produce accurate results.
Equation 4: for i in slicedDistances: if(currFuelMeters - float(i) <= 0): , this equation iterates
through the list of distance-steps to be traveled, reducing the car’s fuel with each step. When the
car’s fuel would drop below the available fuel amount, the previous set of coordinates would be

retrieved and alert the user to stop there.

Webv5.py marks the major development of finishing the module responsible for
retrieving the necessary gas stations and their respective prices. This is the final version of the
back end Python script before fully implementing it to be run through the Flask server instead of
standalone. With the stop locations decided from the previous algorithm, which was inaccurate
but functional enough, the script now extracts the data from the gas station API and formats it

into a JSON to be submitted back through the Flask server through the render_template function.

run_input

print("\nRunning
run cl. act atasha.lekh/gas-prices-scraper”).call(run_input=run_input
dummyPrice

1istObj

for item in ataName.iterate_items

priceVar[@

print(1listObj

Figure 6: Full implementation of apifygas.py is complete, and the data is prepared to be sent to

the frontend side

3.4 Web Interface Development

This is the stage of the project that would first boot the Flask server and allow the user to
access the web application from their computer. Along with the new run.py script that starts the
server, this stage of development also necessitated the creation of several templates to be used by
the web app. These are base.html, form.html, and data.html. Form.html is effectively the
homepage that greets the user, and the data.html page is rendered with a set of variables to

display once all calculations are complete.

10

from import Flask
from + import ren

from bs4 import BeautifulSoup
i t requests
ort re
ort math
t openrouteservice z

from geopy.geocoders import Nominatim

app Flask(__name__
route(' /form’
ute(’
orm
return render_template('form.html’

2a, route(' fdata', methods ! T"
def dat

form_datad

Figure 7: Because Flask is a framework new to this point in the app’s development, the project’s

code needed to be slightly restructured through the usage of @app.route()

As the pre-final version of the web app script, run2.py has all of the functionality
necessary for the project to be considered “complete” but it is still missing the last few tweaks
and adjustments to speed up the program where possible and increase data accuracy. This

version still uses the coordinate-distance step system from early development.

11

Fuel Prediction

Fill the following boxes and | will calculate your trip info!

Starting Location:

You can enter any city or address.

Destination:

Car Make:

Make sure your spelling is correct.

Car Model:

Figure 8: The form.html (or home) page. The user enters data and submits it. This data is sent to

the Python script backend using a POST/GET request exchange.

Form submitted. You will be travelling:
from

Little Rock, Pulaski County, Arkansas, United States
.to..

Austin, Travis County, Texas, United States
driving a

cadillac srx

To get from your starting location to your destination with the car provided, you will be travelling 514.35 miles with an expected MPG of 19.75, and will be stopping for gas 1 time(s).

Gas Stations Near to Your Projected Stops:
e Stop #1:
e $3.36, Exxon, 3381 TX-276, Quinlan, TX 75474
e $3.33, Shell, TX-34, TX-276, Quinlan, TX 75474
e Unavailable, Brookshire's Fuel Center, 8934 TX-34, Quinlan, TX 75474
* Unavailable, 76, 900 Wolfe City Dr, Greenville, TX 75401
¢ $3.40, Shell, 1523 E Quinlan Pkwy, Quinlan, TX 75474
* Unavailable, Pritchett Oil LLC, 11400 TX-34, Quinlan, TX 75474
s Stop #2:
* Unavailable, Shop N Go, 110 E Crest Dr, Waco, TX 76705
e $2.95, Flying J Travel Center, 2409 S New Rd, Waco, TX 76711
e $3.10, Shell, 10400 Wortham Bend Rd, Waco, TX 76708
* $2.98, H-E-B Fuel, 1821 S Valley Mills Dr, Waco, TX 76711
® $3.40, Chevron Waco, 6218 Gholson Rd, Waco, TX 76705
* Unavailable, Corner Store, 6312 N Interstate 35 Frontage Rd, Waco, TX 76705

12

Figure 9: The data.html page. This is the page returned once all calculations are complete. Note
the discrepancy between the anticipated stops for gas and the actual number of projected stops.

This is a now fixed error in the fuel calculation algorithm.

The final version of the project code, run3.py, has all the same functionality of the
previous version, but it also has an improved gas tracking algorithm. This new algorithm ditches
the coordinate-distance-step matching system from before in favor of an algorithm that instead
divides the entire list of coordinates by the number of calculated stops to get a key number. This
key number indicates what set of coordinates should be returned to provide the stop locations.
The key number is multiplied by whole numbers until it exceeds the length of the full set of
polyline coordinates. It also runs slightly faster, as the new algorithm no longer requires the
distance-step arrays to be made from the directions provided by the Openrouteservice API. It
also fixes a previous bug in which the city to stop in could not properly be found in the reverse
geolocator. This was caused by the Nominatim client actually being too specific and occasionally
referring to cities as a “hamlet” or a “town” instead, which would not be detected by the regex
equation looking for a “city.”

Equation 5: key = int(coordsCount/(tankValueRaw + 1))
Equation 6: for x in range(tankValue): stopCoords = coordsFull[key * (x+1)] , the new
fuel tracking algorithm uses the “key” variable, which indicates how many coordinates you will
visit before needing to stop for gas. “Key” is obtained by dividing the number of coordinates by

the number of predicted stops, plus one.

13

4. Testing and Metrics

For the sake of testing, the application will be run with three different road trips, and each
of these trips will be tested with two different vehicles. The stretches are 1. Little Rock, AR to
Fayetteville, AR, 2. Little Rock, AR to Lexington, VA, and 3. Austin, TX, to Phoenix, AZ.
These trips will be tested using a Cadillac SRX and a Honda Accord. This ensures that the
application is put through tests over various distances and stops, along with demonstrating the
capability of switching vehicles.

Once the calculations are made and the results are displayed, each of the trips will be
manually plugged into Google Maps so that the stop distances can be compared with one another
and ensure that these stops line up with the projected travel distances. It is important to note that
the “fuel range” of any car is not entirely precise. To be more specific, the miles per gallon
displayed to the user and used for calculations is a total average gathered from many users over a
period of time. However, because most of a road trip is driven on an interstate, this miles per
gallon listing is slightly lower than what the user would likely experience. A small set of
calculations found that there would be a 20-30% increase in MPG from average to highway.
Another crucial piece of information to bear in mind before examining the data is that these
MPG ratings are expecting the driver to obey traffic laws and avoid excessive speeding. The gas

tank size is also hard-coded at 19 gallons, and is set to not deplete below the 15% fuel level.

14

Form submitted. You will be travelling:

from

Little Rock, Pulaski County, Arkansas, United States
...to...

Fayetteville, Washington County, Arkansas, United States
driving a

cadillac srx

To get from your starting location to your destination with the car
provided, you will be travelling 190.27 miles with an expected MPG of
19.75, and will be stopping for gas 0 time(s).

Gas Stations Near to Your Projected Stops:

Form submitted. You will be travelling:

from

Little Rock, Pulaski County, Arkansas, United States
..to...

Fayetteville, Washington County, Arkansas, United States
driving a

honda accord

To get from your starting location to your destination with the car
provided, you will be travelling 190.27 miles with an expected MPG of
28.31, and will be stopping for gas O time(s).

Gas Stations Near to Your Projected Stops:

Figure 10: From Little Rock to Fayetteville, the program correctly identifies that neither car

would require a refueling to complete the trip.

15

Form submitted. You will be travelling:
from

Little Rock, Pulaski County, Arkansas, United States
..fo..

Lexington, Virginia, United States
driving a

cadillac srx

To get from your starting location to your destination with the car
provided, you will be travelling 829.14 miles with an expected MPG of
19.75, and will be stopping for gas 2 time(s).

Gas Stations Near to Your Projected Stops:
e Stop #1:
e $3.10, QuikTrip, 2501 TN-46, Dickson, TN 37055
s $3.20, Marathon Gas, 2415 US-70 East, Dickson, TN 37055
e $3.13, Hucks, 106 TN-46, Dickson, TN 37055
e $3.12, Shell, 2430 TN-46 S, Dickson, TN 37055
e $3.30, Pilot Travel Center, 2320 TN-46, Dickson, TN 37055
o $3.14, Shell, 2331 TN-46, Dickson, TN 37055
e Stop #2:
e $3.18, Weigel's, 1405 Lovell Rd, Knoxville, TN 37932
o $3.34, Shell, 3818 Sutherland Ave, Knoxville, TN 37919
s $3.18, Weigel's, 9729 Middlebrook Pike, Knoxville, TN 37931
e $3.20, Shell, 801 N Campbell Station Rd, Knoxville, TN 37932
¢ $3.13, Speedway, 617 Lovell Rd, Knoxville, TN 37932
s $3.16, RaceWay, 9002 Oak Ridge Hwy, Knoxville, TN 37931

Form submitted. You will be travelling:
from

Little Rock, Pulaski County, Arkansas, United States
...to...

Lexington, Virginia, United States
driving a

honda accord

To get from your starting location to your destination with the car
provided, you will be travelling 829.14 miles with an expected MPG of
28.31, and will be stopping for gas 1 time(s).

Gas Stations Near to Your Projected Stops:
e Stop #1:
e $3.20, Marathon Gas, 1112 N Cumberland St, Lebanon, TN 37087
e $3.12, MAPCO, 803 S Cumberland St, Lebanon, TN 37087
e $3.26, Shell, 1140 Sparta Pike, Lebanon, TN 37087
e $3.20, Shell, 1324 W Main St, Lebanon, TN 37087
* Unavailable, Thorntons, 15025 Central Pike, Lebanon, TN 37090
e $3.33, Thorntons, 243 Hwy 109 N, Lebanon, TN 37090

Figure 11: From Little Rock to Lexington, the SRX would need to stop twice and the

Accord would need to stop once, due to having a higher MPG.

16

Form submitted. You will be travelling:
from

|Austin, Travis County, Texas, United States
..to...

Phoenix, Maricopa County, Arizona, United States
driving a

cadillac srx

To get from your starting location to your destination with the car provided, you will be travelling
1005.91 miles with an expected MPG of 19.75, and will be stopping for gas 3 time(s).

Gas Stations Near to Your Projected Stops:
e Stop #1:
Unavailable, Stage Coach, 5629 US-290, Fredericksburg, TX 78624
Unavailable, Vp Racing Fuels Gas Station, 501 S Washington St, Fredericksburg, TX 78624
$3.11, Sunoco Gas Station, 2204 HWY 16 South, Fredericksburg, TX 78624
Unavailable, Texaco Fredericksburg, 701 E Main St, Fredericksburg, TX 78624
Unavailable, Sinclair, 5244 N State Hwy 16, Fredericksburg, TX 78624
$3.15, D AND DS, 11031 S State Hwy 16, Fredericksburg, TX 78624
Stop #2:
Unavailable, Kent Kwik Convenience Stores, 3301 W Dickinson Blvd, Fort Stockton, TX 79735
$3.30, ALON, 701 E Dickinson Blvd, Fort Stackton, TX 79735
Unavailable, Walmart Fuel Station, 2610 W Dickinson Blvd, Fort Stockton, TX 79735
Unavailable, Uncle's Convenience Store/Gas - Valero, 1507 W Dickinson Blvd, Fort Stockton, TX 79735
$3.30, Flying J Travel Center, 2571 N Front St, Fort Stockton, TX 79735
$3.36, Love's Travel Stop, VAVW+VV, 2723 E US Hwy 290, Fort Stockton, TX 79735
Stop #3:
$3.60, Food Mart, 5701 N Jornada Rd, Las Cruces, NM 88012
$3.50, Pilot Travel Center, 2681 W Amador Ave, Las Cruces, NM 88005
$3.44, Circle K, 801 Thorpe Rd, Las Cruces, NM 88007
$3.80, Circle K, 2601 Dona Ana Rd, Las Cruces, NM 88007
Unavailable, Pic Quik (Drive-thru), 1501 E Amador Ave, Las Cruces, NM 88001
Unavailable, Alon, 2601 Dona Ana Rd, Las Cruces, NM 88007

Form submitted. You will be travelling:
from

Austin, Travis County, Texas, United States
...to...

Phoenix, Maricopa County, Arizona, United States
driving a

honda accord

To get from your starting location to your destination with the car
provided, you will be travelling 1005.91 miles with an expected MPG of
28.31, and will be stopping for gas 2 time(s).

Gas Stations Near to Your Projected Stops:
* Stop #1:
+ $3.28, Phillips 66, 2350 N Main St, Junction, TX 76849
+ $3.28, Chevron Junction, 2415 N Main St, Junction, TX 76849
* $3.28, Pilot, 2342 N Main St, Junction, TX 76849
$3.28, Shell, 2416 N N Main St, Junction, TX 76849
Unavailable, Les Williams Inc, 1928 Main St, Junction, TX 76849
* $3.36, Conoco, 1014 Main St, Junction, TX 76849
* Stop #2:
Unavailable, Chevron Sierra Blanca, 1-10 & FM 1111 SWC, Sierra Blanca, TX 79851
Unavailable, Exxon, 316 E El Paso St, Sierra Blanca, TX 79851
$3.90, Shell, 1422 Knox Ave, Fort Hancock, TX 79839
s $3.60, Valero, 316 US-80 E, Sierra Blanca, TX 79851
Unavailable, Dell Valley Oil - Gas Station, 109 E Broadway St, Dell City, TX 79837
Unavailable, TxDot Maintenance Facility, Ranch Rd 1111, Sierra Blanca, TX 79851

.

.

.

Figure 12: From Austin to Phoenix, the SRX would need to stop 3 times, and the Accord

would only need to stop twice.

17

5. Evaluation

The goal of this project was to create an application that can take a starting location, a
destination, and the information of a car and determine when the driver is expected to stop and
follow up by recommending a few potential gas stations at that stop location. In order to evaluate
the effectiveness of this program, the same trips will be calculated by hand using Google Maps
and compared against the program. The distances between stops will be compared and examined

to see if they are realistically achievable.

5.1 Final Model

As shown above, the final model is proven to work reliably and effectively for the listed
trips and different cars. Theoretically, this model should work well with any car that has enough
statistical data stored on the Fuelly.com website. It also works with any address or location that
is contained by the OpenStreetMap API, which is utilized by Openrouteservice to determine
routes between locations [5]. The only limitation to this is with extremely long distances, for
example from Los Angeles, CA to New York City, NY. It is at distances such as these that the

route planning service will reach its max nodes available and cannot plot the route.

5.2 Results

To illustrate which stops the application selects, the routes have been plotted using Google Maps,
with each of the vehicle’s respective stops circled, and the distances recorded. The Cadillac SRX

has stops circled in red, and the Honda Accord has stops circled in yellow.

18

‘ =) 2 hr 48 min

_| 190 miles

Figure 13: Little Rock to Fayetteville is 190 miles (program reports 190.27), therefore no stops

would be necessary.

Figure 14: Little Rock to Lexington is 837 miles (program reports 829.14), which requires stops

in Dickson and Knoxville for the SRX, and requires a single stop in Lebanon for the Accord.

19

Figure 15: Austin to Phoenix is 1015 miles (program reports 1005.91), which requires stops in

Fredericksburg, Fort Stockton, and Las Cruces for the SRX and requires stops in Junction and

Fort Hancock for the Accord.

lGadilacsix [y

Total Distance From Previous Stop Total Distance From Previous Stop
Dickson 312 312 Lebanon 380 380
Knoxville 531 219 N/A
Lexington 837 306 Lexington 837 457
Fredericksburg 75 75 Junction 136 136
Fort Stockton 331 256 Fort Hancock 519 383
Las Cruces 625 294 N/A
Phoenix 1015 390 Phoenix 1015 196

Figure 16: Excel chart depicting each vehicle’s projected stops and distances between each stop.

As shown in the above chart, the Accord can travel much further between refuelings due
to its better gas mileage, which is reflected in the “From Previous Stop” category. The longest
stretch made without stopping to refuel is from Fort Hancock, TX to Phoenix, AZ at 496 miles.
Noticeably, during the SRX’s trip to Phoenix the application clearly prioritizes having a final
stretch as long as possible. There is a similar trend seen in all of the stops decided by the
refueling algorithm. While the Accord is realistically capable of driving long distances before

needing to stop for gas, these numbers are slightly inflated. This is due to the application’s gas

20

consumption algorithm assuming a gas tank size that is in fact larger than the Accord’s actual

tank size.

6. Discussion

6.1 Conclusions

The purpose of this project was to build a web application that is capable of taking in a
start and a destination as well as the make and model for the car, and plot the route between
those two locations while accommodating for the necessary fuel stops for the given car. This was
done through the use of the Openrouteservice API, the Gas Prices Scraper API, and the reverse
geocoding Nominatim. The web app, hosted on a Flask server, prompts the user for the
previously mentioned inputs, sends the data through a POST/GET method exchange, calls the
necessary API’s, and returns a rendered HTML template with the calculated stops displayed to
the user. The algorithm used by the application is found to work best used with mid-size to SUV-

sized vehicles.

6.2 Future Work

Throughout the process of writing this report and deciding this program there are many
areas in which the application can be taken to further improve on either its functionality or
efficiency and accuracy. The immediately most noticeable of which is that the program simply
uses a catch-all gas tank size when calculating potential fuel range. Part of the reason this was
used was to accommodate individuals wanting to stop more often than completely necessary, but

if someone were to run their tank completely empty, it would likely not line up correctly with the

21

predicted stop locations. A solution to this is to allow the user to input the car's tank size on their
own and also input their starting fuel level. This would allow for a much more realistic scenario
as the cars expected fuel range would be much closer to what the individual would likely
experience, and it prevents them from having to completely fill up their tank before actually
starting the trip for the calculations to be accurate.

The next, much more intensive improvement would be to allow for another gas station
searching algorithm to be used. This algorithm could search along the desired route for major
cities and towns and pick one or two gas stations from each one reporting those back to the user.
The program could then compare these returned gas prices and through a much more in-depth set
of calculations provide the exact cheapest trip possible with a given number of refueling stops.
However, an algorithm like this is not practical with the current parameters and API’s being used
by the program. Currently one of the biggest issues with the Gas Prices Scraper API being used
is that for modern-day technology it is incredibly slow. Retrieving six gas stations from a single
county takes up to an entire minute. If the same API were to be used with every city along the
given route, the program could likely take anywhere from 5 minutes to 30 minutes to run. It is
likely that the source of this slowdown comes from the way the gas station API is written or from
the hosting site, Apify. An alternative would be to use Google's own landmark listing API,
Google Places, which would remove the need for the gas station specific APl and would likely
result in a much faster run time. This faster run time would allow for the use of the previously
mentioned algorithm that would search every major location along the given route.

The final two improvements would be much smaller changes, but would result in a much

higher quality of life experience for the user. The reverse geocoder being used for this program

22

often has timeout errors, which is in no part on behalf of this program but instead on the

geolocator being used.

GeocoderUnavailable

geopy.exc.GeocoderUnavailable: HTTPSConnectionPool (host="nominatim.openstreetmap.org’,
port=443): Max retries exceeded with url: /search?q=austin+tx&format=json&limit=1
(Caused by ReadTimeoutError("HTTPSConnectionPool(host="nominatim.openstreetmap.org’,
port=443): Read timed out. (read timeout=1)"))

Figure 17: Nominatim timing out during runtime.

A possible improvement on this would be to simply use another geocoder that is more
consistent with its availability. Lastly, it would benefit the user greatly if the program was
adjusted to omit gas stations with “unavailable” prices. As these gas stations with unlisted prices
are likely lower quality than those that do, most users would prefer to ignore these options

regardless.

23

7. References

[1] Adam and Andrzej, “What Is The Algorithm Used by ORS API for QGIS,”
Openrouteservice, Feb-2021. [Online]. Available:
https://ask.openrouteservice.org/t/what-is-the-algorithm-used-by-ors-api-for-qgis/2476/2.
[Accessed: 25-Apr-2023].

[2] D. Rachmawati and L. Gustin, “Analysis of Dijkstra’s Algorithm and A* Algorithm in
Shortest Path Problem,” Journal of Physics: Conference Series, vol. 1566, no. 1, p.
012061, 2020.

[3] “Flask,” Welcome to Flask - Flask Documentation (2.3.x), Apr-2023. [Online]. Available:
https://flask.palletsprojects.com/en/2.3.x/. [Accessed: 25-Apr-2023].

[4] “Fuelly - Track and Compare Your MPG,” Fuelly, 2023. [Online]. Available:
https://www.fuelly.com/car. [Accessed: 25-Apr-2023].

[5] heiGIT gGmbH, Openrouteservice, 2022. [Online]. Available: https://openrouteservice.org/.
[Accessed: 25-Apr-2023].

[6] J. Dibbelt, B. Strasser, and D. Wagner, “Customizable Contraction Hierarchies,” ACM
Journal of Experimental Algorithmics, vol. 21, no. 1.5, pp. 1-49, Apr. 2016.

[7] N. Lekh, “Gas Prices Scraper,” Apify, 01-Jan-2023. [Online]. Available:
https://apify.com/natasha.lekh/gas-prices-scraper. [Accessed: 25-Apr-2023].

[8] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner,
“Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra's
Algorithm,” ACM Journal of Experimental Algorithmics, vol. 15, no. 2.3, pp. 2.1-2.31,

Mar. 2010.

24

	Fuel Prediction: Determining the Desirable Stops for the Cheapest Road Trips
	Citation

	tmp.1683128742.pdf.m34j1

