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Abstract 

Single celled eukaryotic organisms are advantageous in the production of proteins for use 

in biopharmaceuticals due to their ease of cultivation and manipulation. Because of high cell 

density during fermentation and an ability to allow post-translational protein modifications, yeast 

is particularly well-suited. To maximize the specific formation rate of the desired proteins, an 

optimum specific growth rate of the yeast should be found and maintained. This rate is 

dependent upon pH, temperature, dissolved oxygen content, and carbon feed rate. Fermentation 

can be done in a fed batch reactor system, and it is possible to use a Buglab (online biomss) 

sensor to monitor the conditions in the reactor. The focus of this project was to create a 

Proportional Integral Derivative Controller algorithm to optimize the specific growth rate of a 

yeast automatically. Using real time data provided by the online biomass sensor, the algorithm 

will be able to calculate an output to correct any deviations in the optimum growth rate by 

controlling the feed rate. Maintaining this specific growth rate will in turn optimize the 

production of heterologous proteins. 

 

Background 

Eukaryotes are known to be a standard recombinant protein expression host, allowing for 

a relatively inexpensive and highly successful system for production of many different 

heterologous proteins. Despite being single celled, yeast is capable of post-translational 

modifications including: protein folding, formation of disulfide bridges, proteolytic processing, 

and glycosylation. Thus, yeast can express proteins containing complicated structures and 

functions. These modifications also contribute to the production of biologically active molecules 

that are often found as inactive in bacteria protein expression.3 Kluyveromyces lactis was chosen 



as the main organism for this project, and its preference for respiratory growth creates the ability 

to culture at high cell densities. This fermentation quality allows for high cell density without the 

production of large amounts of ethanol that would limit growth.1 

K. lactis can be cultured in a fed batch system with relatively inexpensive medium 

components: carbon source (glucose), biotin, and various salts to achieve high cell density. To 

maximize the growth rate an exponential feeding rate would have to be performed.7 A balance 

must be struck between providing glucose at rates fast enough to continue the fermentation, and 

slow enough to not poison the culture with too much carbon source.  This research will 

investigate the following hypothesis: 

 

Online biomass monitoring can form the basis for a control strategy that provides glucose at a 

rate necessary for high growth and protein expression without overfeeding the fermentation. 

 

The fed batch operational strategy is designed to optimize conditions for growth and 

maximum product formation.5 Optimum productivity for the system is dependent on the pH, 

temperature, and nutrient supply. Productivity, or the specific formation rate of the target protein, 

shares a distinct relationship with the specific growth rate of biomass in the reactor. An optimum 

specific growth rate can be determined based on the target protein, as well as the operating 

conditions and nutrient Therefore, a robust system capable of controlling the organisms’ specific 

growth rate is desired. 

A novel strategy using sensor measurements and a PID control algorithm is proposed to 

provide continuous control to maintain a desired specific growth rate in fed batch systems. Very 

few strategies that employ fed batch (if any) permit changes in specific growth rate.  Indeed, the 



growth rate (𝜇).  The noninvasive BugEye sensor can provide real time measurements of 

biomass that can then be used in by a PID algorithm to maintain feed at an optimal level. The 

optical density readings given in arbitrary Bug Units (BU) from the BugEye sensor along with 

the rate of change are used to calculated the specific growth rate at a specific time (t) in the 

fermentation using the equation below:  

𝜇 =
1
𝐵𝑈

∗
𝑑𝐵𝑈
𝑑𝑡

 

This project had three objectives: to determine the hardware requirements that would pass 

information from the BugEye to the fermentation control software, to provide written code in 

BioExpert (control software) that would calculate MU and the feed rate, and finally to test the 

control structure.  Ultimately, the project centers around rapid and consistent response to changes 

in cell mass during fermentation. After the hardware elements were determined, the first 

fermentation experiment was used to confirm the system and optical density probe setup was 

appropriate. The next two experiments explored the possibility of growth rate calculations in the 

software, and the ability for exponential feeding. Next, an exponential feeding profile was 

written that could control on-line variables of a standard eukaryotic fermentation. This feed 

profile is a modified version of a code used in the Ph.D. dissertation of Dr. McKinzie Fruchtl.8 In 

this program, the feed rate is determined by the following equation: 

𝐹 𝑡 = 𝑃 ∗
𝜇

𝑌𝑥𝑠 ∗ 𝑆𝑖𝑛
∗ 𝑋2 ∗ 𝑉2 ∗ 𝑒56 

In this equation, the feed rate at any given time is a function of the specific growth rate, µ, 

substrate yield coefficient, Yxs, substrate concentration in the feed, Sin, initial cell mass 

concentration, X0, and initial volume, V0. The general yield coefficient used in this experiment is 

0.5 (g/g) and was determined based on E. coli, a common eukaryote used in protein expression.8 



Finally, the proportional steady state gain constant, P, was to be found using a guess and check 

method in the final experiment of the project. 

 

Materials and Methods 

Materials: 

 Before the actual fermentation, the hardware was set-up and connected appropriately. It 

was necessary to convert the BugEye output of 4-20 milliamps to 0-2 volts. This was done by 

adding a resistor across the output and ground. This voltage was then read by the analog to 

digital controller by the control system.  

All cell cultures were purchased from New England Biolabs and initially grown in shake 

flasks in small volumes of either Lysogeny broth or YPGlu media prior to inoculation of the 

fermentation vessel. The dehydrated LB concentrate used was purchased from Sigma Aldrich as 

well as the Bacto Peptone and Yeast Extract used for the YPGlu media. All media was mixed the 

day before the start of fermentation and sterilized at 121℃.  Table 1 shows a summary of 

information for each fermentation.  

Experimental Data 

Run Experiment Organism Media Temp 
(℃) 

Agitation 
(rpm) 

1 Set Up Confirmation Saccharomyces cerevisiae LB 30 250 
2 Feed Pump Set Up Kluyveromyces lactis LB 30 350 
3 Rate Functions Escherichia coli LB 37 350 
4 Code Run Kluyveromyces lactis YPGlu 30 450 

 

All optical density data was taken using a DU 800 spectrophotometer (Beckman) 600 

nanometers. When E. coli was cultured, ampicillin purchased from VWR was added at a 

concentration of 50 ug/ml. 



 

Initial Set-Up confirmation: 

A 500 ml LB media solution was inoculated with 10 ml of Saccharomyces cerevisiae 

(baker’s yeast) in a 1L fermenter. Inoculation proceeded after the fermenter contents were heated 

to 30ºC at time equal to 0.5 hours. Other growth parameters included: agitation rate of 250 rpm, 

air pressure at 5 psi, and an initial pH of 6.5 The grow was just shy of 60 hours, and data was 

taken intermittently. The absorbance of 0.5 ml samples was measured at 600nm, and 

corresponding optical density readings from the BugEye sensor and the software were recorded. 

Also, the voltage signal from the BugEye to the analog data recorder was measured for 

comparison using a voltmeter. 

 

Feed Pump Set-Up: 

The next growth was performed with a similar set up as previously mentioned with 

500ml of LB media in a 1L fermenter. However, the yeast strain used was K. lactis, and the 

agitation rate was increased to 350 rpm. To contest the low dissolved oxygen levels in the first 

run, an oxygen tank was set up. This allowed bursts of pure oxygen to enter the fermenter when 

levels were detected to be too low (less than 35%). Inoculation occurred at time equal to 6 hours. 

Once steady growth was established and optical density began to decline, a rectangular feed 

pulse was introduced to stimulate growth. At time equal to 21 hours, an arbitrary feed profile was 

started that added approximately 100 ml feed of a 40 % glucose solution over a period of 6 

hours. 

 

 



Determination of Rate Functions: 

To explore the BioXpert software, a fermentation was done using 2 ml of E. coli and 500 

ml of LB media in a 1L vessel. The temperature and agitation were set to a constant 37ºC and 

350 rpm respectively.  Ampicillin was also included at the time of inoculation (time equal to 4.9 

hours). The rate of the BugEye’s measure OD changes was calculated in the BioXpert software 

and plotted as well as the specific growth rate. To cut down on the noise and create a graph that 

is easier to interpret, the average of the change in optical density as well as the specific growth 

rate taken over 120 minutes was plotted.  

Code Check: 

After the control code was finalized, another trial was performed to tune the proportional 

control via a guess and check method on the steady state gain constant. To see the code used, 

refer to the appendix. This run was done completely sterile in a 3L vessel using the K. lactis 

yeast. The larger vessel provided a longer cultivation time to optimize the control settings. 

Similarly, to the previous runs, the yeast was grown previously in a shake flask and transferred to 

200 ml of the YPGLu media. 1.5 liters of the same media was used and heated to a temperature 

of 30°C while a 40% glucose feed as well as a 45% ammonium hydroxide solution were hooked 

up to the fermenter. The ammonium hydroxide base was used to regulate pH during the 

fermentation. The constants, V0=1.5L, and X0=0.15 gcells/L were send at time equal to 1 hour, 

the vessel was inoculated with 60ml of the K. lactis solution. This gave an initial optical density 

of 0.5 as determined by the spectrophotometer. The yeast grew for 96 hours and a final optical 

density reading of 22.1 was obtained. 

 

 



Results and Discussion 

The initial set up confirmation fermentation was done to ensure the system was running 

correctly and the software was reading the online variables. This included the correct 

interpretation of the optical density probe into units for the software to use. To test this, the data 

for optical density from the BugEye probe, and the measured absorbance were plotted as well as 

the optical density data over time for both the software, and hand taken data points. Figure 1 

below shows straight line correlations between the Bug Units and the absorbance measured at 

600nm as well as the output voltage from the probe that would be read by the control system.  

 

 

 

 

 

 

 

 

 

Figures 2a and 2b plot the correlation between the optical density data over time between 

the system software, and measured data points. These graphs show a distinct and similar pattern 

meaning the software could correctly take the signal from the BugEye sensor and use it to plot 

growth over time.  
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Figure 1: Absorbance and Voltage dependence on Bug Units 
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Figure 2b: Software Developed Bug Unit Data Over Time 

Figure 2a: Hand Taken Bug Unit Data Over Time 



The second fermentation was performed after the set-up of the feed pump to ensure it was in 

working order and to delve into the software and explore the profile options for feed. Figure 3 

below shows the growth profile measured by the BugEye over the 27-hour fermentation plotted 

along with the dissolved oxygen in the fermenter and the feed pump profile.  

 

 

This graph, generated by the BioXpert software, shows the growth of the K. lactis yeast 

as well as the decline in dissolved oxygen around six hours after inoculation. This six hour 

period represents	the characteristic lag phase of exponential growth. As expected, a decline in 

dissolved oxygen is observed when growth begins. After this, the software corrects the lack of 

dissolved oxygen using the pure oxygen provided. The feed pump was started after a declining 

growth trend was observed. A rectangular pulse of 2 ml per minute was administered to 

reestablish growth in the yeast. Then an arbitrary feed profile was programed that would feed 94 

milliliters of the 40% glucose solution over the next 6 hours. This profile was executed perfectly 

by the software as shown in the triangular patterns in feed rate towards the end of the 

fermentation. Eventually the cells became exhausted, evident by a sharp decline in the optical 

Figure 3: Software Generated Growth Profile 



density even with the feed still being introduced to the reactor. Other small abnormalities in the 

growth and dissolved oxygen levels at time equal to 21.5 and 26.5 hours occur due to a pause in 

agitation for samples to be taken.  

 The purpose of the fermentation using the E. coli was to test if the software would 

measure not just the optical density and overall growth, but the rate at which the growth occurs. 

The following formulas were added to the list of on-line variables before inoculation:  

𝑅𝑏𝑢𝑔 = 𝑟𝑎𝑡𝑒(𝐵𝑢𝑔𝑒𝑦𝑒)   𝑀𝑢 = A
BCDEFE

∗ (𝑟𝑎𝑡𝑒 𝐵𝑢𝑔𝑒𝑦𝑒 ) 

 To reduce the noise in the graph during the fermentation, the average of the rate of 

change as well as the average of the specific growth rate were plotted in Figure 4.  

 

 

Data averages were taken over two-hour time intervals to produce a graph that is easily 

read and interpreted. The formulas added were successful in calculating the specific growth rate 

over the 47-hour fermentation. Not only was the deviation kept within a range of 0.01, but the 

Figure 4: Rate and Growth Averages 



trend shows the expected decrease to zero when the cells stop multiplying (around time equal to 

30 hours), and a plateau is reached in the BugEye reading.  

 The final growth done with the full code showed some room for improvement. Figure 5 

below shows the growth profile highlighting the specific growth rate, BugEye reading, feed 

pump, and pH reading.  

 

 

 

 

The optical density curve itself (black) shows sigmoidal curves signature to exponential growth 

as expected. The optical density sample taken at the beginning of growth was 0.5 at 600nm while 

the final sample taken measures 22.1 at 600nm. This level of growth was satisfactory. The feed 

pump (in green) triggers on when there is a small spike in the specific growth (red) and a rise in 

optical density. However, the feed remained consistent at 0.1 milliliter per minute. The radical 

changes in BugEye reading and specific growth rate at around 20 to 25 hours are from changes 

Figure 5: Code Check Growth Profile 



in the speed of agitation. The changes occur because of the dependence of optical density to 

agitation rate. The speed was adjusted, however, to try to account for loss in dissolved oxygen.  

 Even when the gain constant, P, from the feed equation was changed to 10, the feed 

pump remained at 0.1 milliliter per minute. This means after an order of magnitude change, the 

feed remained the same. There could be many reasons for this including the tubing size used for 

the feed, the rise in pH shown in Figure 5, or the coding itself.  

Future Work 

 From this project, it is clear that creating an automated feed system based on non-

invasive optical density readings using a BugEye probe is feasible. The next step would be to 

trouble shoot the written code and software calculations to ensure they are working properly. 

Some investigation was done at the end of this project on the rate function used to calculate 

specific growth rate in the software. The change in BugEye reading over time for hours 72 

through 82 were plotted in Figure 6. The slope of this line should correspond to the average rate 

of growth calculation by the software. However, the average rate of growth of -0.24 was not 

nearly close to the average slope of growth of 32.3. Therefore, the next step of this project would 

be to find the error in the software’s calculations and decide on a way to correct this. 
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