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ABSTRACT:  In this paper we propose a new approach to sustainable public pension funding, as 

an alternative to: (i) traditional actuarial full-funding policies, on the one hand; and (ii) recent 

proposals aimed instead at stabilizing pension debt at current levels.   Actuarial contribution 

policies aim to fund liabilities that are wrongly discounted at the expected rate of return on risky 

assets; and these policies promise to do so with amortization schedules that terminate in a 

precipitous future drop in contributions, which never materializes.  Conversely, recent debt-

stabilization proposals (Lenney, Lutz, and Sheiner, 2019a; 2019b) properly discount liabilities at 

a risk-free rate, but effectively untether contribution policy from those liabilities.   Our analysis 

integrates properly discounted liabilities with investment strategies that may be risk-tolerant to 

some degree, in a policy framework that more transparently conveys the tradeoffs we face. 

 

We begin with the fundamental equations of motion for assets and liabilities – how these two 

sides of the ledger evolve with contributions, asset returns, and newly accrued liabilities.  From 

these equations we formally derive the characteristics of steady-state pension funding – which 

we take as the definition of sustainability.  We also derive the set of contribution adjustment 

parameters that smoothly achieve steady-state – a non-trivial exercise.  The resulting 

contribution schedules differ conceptually from the traditional setup of normal cost plus 

amortization.  Building on previous work (Costrell, 2018, Costrell and McGee, 2020), we 

examine the steady-state implications of differentiating between the assumed return on assets (r) 

and the discount rate on liabilities (d).  We integrate these insights into a semi-formal social 

optimization framework to sketch out a contribution policy approach that conveys the tradeoffs 

between intergenerational burden-sharing, the pursuit of returns, and the cost of risk-bearing. 
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Robert M. Costrell and Josh McGee  

University of Arkansas 
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Introduction and Summary 

Sustainability is the central concern of public pension funding.  But the precise meaning 

of the term, let alone the conditions for its satisfaction, vary with the user and is often not 

precisely defined or analyzed at all.  In this paper, we propose a formal economic definition of 

sustainability as a funding policy that generates a steady state in the contribution rate and funded 

ratio.  We begin with the standard equations of motion for assets and liabilities, contingent on the 

parameters of the system and the funding policy, which govern the trajectory of contributions.  

From these parameters (rate of return on assets, discount rate for liabilities, payroll growth rate, 

normal cost rate, benefit payout rate) and the policy specification, we derive the steady state 

contribution rate.  This allows us to analyze the determinants of contributions in a formal model 

and compare that rate with actual contributions currently observed in public pension plans.   

Although this exercise oversimplifies actual systems, since the parameters themselves 

never settle into steady states, the approach offers insights akin to other simple economic models.  

Steady state analysis lays out the system’s resting point, even if it is a moving one.  That said, 

there are two further important issues to explore.  The first is the issue of convergence.  Steady 

states are of less interest if the system does not converge.  We find that the conditions for 

convergence/non-convergence in such systems are surprisingly non-trivial, even in this simple 

class of models.  We analyze this issue formally, determining the range of adjustment parameters 

that yields convergence.  This generates a novel contribution policy outside of steady state, 

differing markedly from the standard actuarial policy of normal cost plus amortization.   
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The second issue is how to determine the target funded ratio in the presence of risk. 

Specifically, our key steady-state result shows how -- depending on the target funded ratio -- the 

contribution rate depends on the gap between the assumed rate of return on risky assets and the 

low-risk discount rate on guaranteed benefits for properly valuing liabilities.  Specifically, the 

steady-state contribution rate can fall well below the normal cost rate, due to implicitly assumed 

arbitrage profits represented by that gap.  This leads us to sketch out a contribution policy 

approach that conveys the tradeoffs between intergenerational burden-sharing, the pursuit of 

returns and risk tolerance. 

 

Operationally Defining Sustainability 

Although pension plan sustainability is a central concept in policy discussions, the usage 

of the term varies and it is not always well-defined.  In general terms, the underlying question is 

whether the current plan can continue more or less as is, or whether it will require substantial 

change (such as a rise in contributions) to stave off insolvency or some other form of collapse.  

We believe the formalization of this concept is to be found in steady-state analysis.  What would 

a steady-state look like under current plan parameters, provisions, and policies, and how does the 

contribution rate in such a steady state compare with current rates?  If the steady-state 

contribution rate is significantly higher than the current rate, then one might well conclude the 

system is not sustainable with current contributions.  This framework still leaves several issues to 

be specified as we continue with this analysis, but it seems a good starting point at least.  Steady-

state analysis is based on the fundamental laws of motion of a pension plan, those of assets and 

liabilities.  Let us begin with assets. 
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Steady State Condition for Contributions and Asset Accumulation 

We can consider asset accumulation as either a stand-alone basis for ascertaining 

sustainable funding policies, or as the first step toward considering policies that set asset targets 

tied to liabilities.  In this section we consider asset accumulation on a stand-alone basis, which 

generates insights of its own, and then bring in liabilities in the next section. 

There are two sources of pension funding and two uses: contributions and investment 

income go to cover the payment of benefits and the accumulation of assets.  Of these four flow 

variables, the stream of benefit payments is exogenous to our analysis (determined by the tiered 

benefit formulas and workforce assumptions), and investment income is governed by the 

sequentially determined stock of assets and the exogenous series of annual returns.1  This leaves 

the series of contributions and that of asset accumulation, which are mechanically linked. That is, 

the funding policy is simultaneously a contribution policy and an asset accumulation policy. 

Formally, this relationship is captured in the fundamental asset growth equation: 

(1) At+1  = At(1+rt) + ctWt − cp
tWt , 

where At denotes assets at the beginning of period t, rt is the return in period t, Wt is payroll, 

while ct and cp
t are the contribution and benefit payment rates, respectively, as proportions of 

payroll (Table 1 lists notation).  Assets grow by investment earnings, plus contributions, net of 

benefit payments.  Equation (1) is simply an accounting identity.  To give it economic content, 

for sustainability analysis, we need to specify a funding policy to drive ct.  Given returns and 

benefit payments, the contribution policy sets asset growth.  We will spell out our approach to 

the choice of contribution policy below, but even before doing so, equation (1) helps focus on the 

fundamental tradeoffs among these policies without getting overly distracted by their details. 

 
1 Of course, the exogeneity assumed here is conditional on the investment policy, i.e., the asset allocation. 
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 It will be useful to re-express equation (1) in terms of the ratio of assets to payroll, a ≡ 

(A/W).  Dividing through (1) by Wt, and denoting the growth rate of payroll by g, we have: 

(1′) at+1(1+gt) = at(1+rt) + ct − cp
t . 

The big picture here can be illuminated by examining the steady-state relationship between 

contributions and assets.  In steady-state, the growth of assets must equal the growth of payroll, 

so the asset ratio is constant, at+1 = at = a*.  Removing the time subscript for the steady-state 

values of the benefit payment rate cp, the rate of return r, and the payroll growth rate g, we have 

the relationship between the steady-state values of the contribution rate and the asset ratio: 

(1*) c* = cp
 − (r − g)a*. 

The interpretation is straight-forward:  benefit payments are covered by a mix of contributions 

and investment income (net of growth), where the mix is determined by the funding policy.  

Under a policy of pay-go, where no assets are accumulated (a* = 0), the contribution rate must 

cover the benefits payment rate cp.  Under a policy of pre-funding, to one degree or another, the 

goal is to accumulate a certain asset level, a*, so the income from those assets (net of growth) 

can help fund benefits, ultimately reducing reliance on contributions.   

 One very simple test of sustainability is to consider whether current contribution rates are 

sufficient to sustain a steady state at current asset levels.  That is, if we set a* = a0, would the 

current contribution rate, c0, need to rise or not to sustain the asset level? 

 Let us consider the trends and magnitudes of the relevant variables.  Figure 1 depicts the 

aggregate values of ct and cp
t for FY01 – FY20, of the 119 state and 91 local plans in the Boston 

College Public Plans Data, which account for 95 percent of state and local pension assets and 

members in the U.S.  As is well-known, the contribution rate, as a percent of payroll, has been 

steadily climbing since the turn of the century, from about 12 percent to 27 percent. The benefit 
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(or “pay-go”) rate has also trended up, from 20 percent, but may now be leveling off at about 38 

percent.2   It is important to note that throughout this period the benefit rate exceeds the 

contribution rate by a large margin, exceeding 10 percentage points since 2010.  That is, the 

basic cash flow (excluding investment income) is negative, due to some combination of plan 

maturity and possibly some contribution shortfall (the question we are considering in some 

form).   Thus, if assets were to be depleted, contributions would have to jump to cover benefits.  

 Figure 2 depicts the asset ratio a ≡ (A/W) from the same dataset.  This has fluctuated with 

market returns and has also been affected by the trends in benefit payments, but in recent years 

assets have hovered around a multiple of 5 times covered payroll.   

For illustrative purposes, we can consider typical plan assumptions of g = 3% and r = 7% 

to calculate c* = cp
 − (r − g)a0  = 0.38 – (0.07 – 0.03) × 5 = 0.18 < c0 = 0.27.  Thus, taken at face 

value, this would suggest that, in the aggregate, the current configuration is not only sustainable, 

but that contribution rates could fall and still support current asset ratios.  Of course, this depends 

on a host of assumptions, not least of which are the assumed rate of return and growth rate.  

However, we can see that as long as (r – g) exceeds about 2 percent (e.g. r > 5 percent), current 

contributions could be sustainable in the aggregate.   

This picture also holds generally for the individual plans in the PPD database.  Using 

each plan’s assumed return (the vast majority lie between 7.0 and 7.5 percent for FY20), we find 

that in 158 of the 188 plans for which c* can be calculated, the contribution rate exceeds that 

value.3  This also holds for 69 of the 79 largest plans, with assets exceeding $10 billion.  

Reducing each plans’ assumed return to 5.0 percent changes the picture.  Under this calculation, 

 
2 Lenney, Lutz, and Sheiner (2019a; 2019b) project that the benefit rate will peak around [year?] and decline 

thereafter, as recent hires, in less generous tiers, enter retirement, and beneficiaries of more generous tiers die. 
3 The assumed growth rate for payroll is only available in the PPD for 76 plans.  Of those, the vast majority lie 

between 2.75 and 3.5 percent, so we set the growth rate at 3.0 percent for the calculation of c* in all plans.   

https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
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the contribution rate for most plans (107 of the 188 plans, and 48 of the largest 79 plans) is not 

high enough to sustain the current asset ratio. 

 

Contribution Policy for Convergence to Steady State Asset Accumulation: Analytics 

Although steady-state calculations (those above, and further specified below) are 

instructive, they are not compelling unless there is a dynamic process that converges toward a 

steady state.  Of course, the steady state is always a moving target, as the parameters cp, r, and g 

vary over time, but we can analyze whether the system moves in the right direction at any given 

time, taking these parameters as constants, at their steady state values. 

Convergence is not automatically assured, as can be discerned by considering the asset 

accumulation equation (1′) alone (before adding in a contribution policy equation).  To simplify 

notation, let R = 1+r, G = 1+g, and re-express (1′) as: 

(1″) at+1 = at(R/G) + (ct − cp)/G. 

For R > G (as usually assumed), the coefficient on the prior value of the state variable a exceeds 

one, which is destabilizing.  For example, suppose we consider a policy that sets the contribution 

rate to some target rate and holds it constant.4  Unless that target rate corresponds to the steady-

state value for maintaining the current asset ratio, the system will diverge.  Stated alternatively, 

suppose one aims at an asset ratio a* ≠ a0, and immediately sets c = c* (using (1*)), jumping up 

or down from c0, and holding it there.  Then the system will move away from a*, rather than 

toward it.  If a* is set greater than a0, then at, will shrink further away from a*, and conversely if 

a* is set lower than a0.
5  The reason is straightforward.  Setting a higher a* means setting a lower 

 
4 This is not a fanciful policy scenario.  The Lenney, Lutz, and Sheiner (2019a; 2019b) policy simulation is to set c 

equal to a steady-state value and hold it there. 
5 Formally, the solution is at = a* + (R/G)t(a0  − a*). 

https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
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c* for r > g (see equation (1*)), since one expects to rely on higher investment income, in lieu of 

contributions, to cover benefits.  But since assets are not yet at that higher level of a*, the 

investment income falls short of that which would obtain in the steady state one aspires to.  Thus, 

by prematurely setting contributions at the correspondingly low level c* one embarks on a path 

of asset decumulation.  And conversely for a* > a0. 

 So, what would a contribution policy look like that converges to a steady state targeted at 

a* with contributions c*?  It might be thought that an adjustment process that gradually closes 

the gap between current contributions and c*, rather than a sudden jump to c* would do the job, 

but as we shall see below, it will not.  The reason, as would be suggested by the discussion 

above, is that the contribution required to cover benefits depends on the gap between current 

assets and a*.  Alternatively, one might then suppose that an adjustment process for 

contributions based on the asset gap would do the job.  However, as we shall see, that will not 

suffice either.  For a convergent path, we show that the policy should adjust contributions based 

on both gaps, between c* and ct and between a* and at, in combinations to be derived below.   

Before doing so, note that the policy we are deriving differs not only from a discrete 

jump to c*, but also from the trajectory of actuarial funding policies.  The actuarial payment 

schedule is either a constant percent of payroll, or ramps up to such a rate, and then falls off a 

cliff at the end of the amortization period, once full funding is expected to be achieved.   The 

policy we derive below aims to converge on a steady state, either monotonically or through 

dampened oscillations (depending on the adjustment speeds chosen), and then to stay there. 

Specifically, consider a contribution and asset-accumulation policy that starts by 

specifying a target asset ratio, a* (more on how that might be chosen, in a later section), then 

calculates the corresponding steady-state contribution rate c*, using (1*) above.  We then posit a 
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contribution policy that adjusts the contribution rate based on the gaps between the target and 

actual asset ratio and contribution rate: 

(2) ct+1 = ct + β(c* - ct) + γ(a* - at), where β є (0,1). 

Together with (1″), we have a simple system of two linear difference equations that can be 

usefully expressed in matrix form: 

[
𝑎
𝑐

]
𝑡+1

= [
(𝑅/𝐺) (1/𝐺)

−𝛾 (1 − 𝛽)
] [

𝑎
𝑐

]
𝑡

+ [
(−𝑐𝑝/𝐺)

(𝛾𝑎∗ + 𝛽𝑐∗)
] . 

Denote the transition matrix above by A.  Then the asymptotic stability condition is6 

|tr (A)| < 1 + det(A) < 2, which, in the present case, implies 

(i) γ > β(R − G) ≡ γmin > 0, and 

(ii) γ < G - R(1 – β) ≡ γmax. 

Condition (i) shows formally what was alluded to above:  a piece of the adjustment mechanism 

must be based on the asset gap, not just that of the contribution rate.  The logic is straight-

forward.  Suppose the contribution rate is already at its target c*, but the asset level is below the 

target a*.   Then contributions will have to rise in the short run to accumulate more assets, before 

eventually dropping back down toward c*.   Condition (ii) implies that the adjustment 

mechanism must include the contribution gap, too.  Formally, since we must have γmax > γmin, this 

requires β > (R − G)/G > 0.  The logic here is also straight-forward.  If assets are at their target 

ratio, but the contribution rate is below c*, then it needs to rise. 

 As our discussion above suggests, the convergence to steady-state may not be monotonic.  

Indeed, it may not only reverse direction once (asymptotically monotonic), it may be oscillatory.  

The condition for asymptotic oscillation is [tr (A)]2 < 4‧ det(A), or, in the present case:  

 
6 See, for example, Neusser (2021), equation (3.18), p. 84. 

http://www.neusser.ch/downloads/DifferenceEquations.pdf
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(iii) γ > G[(R/G) – (1 − β)]2/4 ≡ γm/o, 

where the subscript m/o denotes the border between monotonic and oscillatory. It can be shown 

that for γmax > γmin (i.e., β > (R − G)/G), γm/0 lies in between.  Thus, the asymptotic behavior of 

the system varies with the range of γ as follows: 

Table 2: Convergence Conditions 

Range of γ Asymptotic Behavior of (1″)-(2) 

γ < γmin (given by (i)) Monotonic divergence 

γmin < γ < γm/o (given by (iii)) Monotonic convergence 

γm/o < γ < γmax (given by (ii)) Oscillatory convergence 

γmax < γ Oscillatory divergence 

  

Figure 3 illustrates the combinations of β and γ that correspond to these asymptotic 

behaviors.  In general, it seems reasonable to presume that policy-makers would prefer 

monotonic convergence to oscillatory convergence.  Thus, the combinations of β and γ to be 

considered would lie between γmin and γm/o, depicted by the black and blue curves in Figure 3.  

 

Contribution Paths Toward Steady State Asset Accumulation: Simulation 

Armed with these analytics, we illustrate some dynamic paths for contributions and assets 

under policies that might plausibly be suggested.  We begin with the representative plan 

assumptions given above, R = 1.07, G = 1.03, cp = 0.38, c0 = 0.27 and a0 = 5.  If, as discussed in 

the previous section, our goal is simply to maintain the current asset level, then a* = 5 and c* = 

0.18.  In this case, policy-makers might be expected to choose a path that reduces contributions 

as quickly as possible, without overshooting.  This means choosing the adjustment parameters β 
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and γ arbitrarily close to one and γmin respectively, at the right boundary of the black γmin curve in 

Figure 3.  Under these parameters (β = 1.0, γ = γmin = 0.04), simulation confirms the contribution 

rate drops immediately to just below c*, while the asset ratio shades slightly above a0 = a*. 

 Suppose we consider a more ambitious target ratio of a* = 7.  This increase of 40 percent 

above a0 would accumulate approximately the assets needed to match liabilities (discussed in the 

next section), i.e., full actuarial funding (discounted at the expected return).  At a* = 7, (1*) 

gives us c* = 0.38 – (0.07 – 0.03) × 7 = 0.10 < c0 = 0.27, thus allowing eventually for a 

dramatically lower contribution rate.  Here, the choice of adjustment parameters β and γ must 

navigate an intertemporal policy tradeoff.  Contributions need to rise in the short run to 

accumulate the assets required for the long-term reduction to c*.  Thus, the tradeoff is between 

speed of reaching c* vs. tempering the short-term rise in c required to reach a*.  Suppose we set 

a target of approaching c* by year 30 (corresponding to a somewhat conventional time horizon 

for actuarial amortization schedules) and set the contribution adjustment parameter β equal to 0.5 

(half speed).  Then we find that the tradeoffs are plausibly managed by choosing the asset 

adjustment parameter γ near the maximum value for monotonic convergence, γm/o = 0.075.  

Figure 4a depicts the corresponding paths for the contribution rate (red curve, on the right scale) 

and asset ratio (blue curve, on the left scale).  This path raises the contribution rate for about 7 

years to a maximum of 36 percent (a 9 point hike), before ultimately dropping down to 

approximately 10 percent by year 30.  Setting β any faster requires a sharper short-term rise in 

contributions and setting it any slower fails to so closely approach c* in 30 years. 

Naturally, these results are sensitive to the assumed rate of return.  As discussed above, if 

r = 5% instead of 7%, the required contributions are rather different.  Under the first scenario, to 

simply maintain the current asset ratio of 5, the contribution rate must rise by a point, instead of 
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falling by 9 points.  Similarly, for the more ambitious scenario of raising a* by 40% (to reach 

full funding), the picture is more daunting if r = 5%.  As Figure 4b shows, the contribution rate 

would need to rise in the short run by 20 percentage points (to nearly 50 percent of payroll), for 

an ultimate reduction of only about 3 points, a much more challenging picture than Figure 4a. 

There are several take-aways from these exercises.  First, our dynamic analysis shows 

how to generate smooth adjustment paths, unlike the actuarial scenario of the contribution cliff 

that is supposedly reached upon completion of the amortization schedule.  Second, as is well-

known, but illustrated here in a formal dynamic context, deterministic scenarios have their 

limitations, given the risk of investment returns.  Finally, even within a deterministic context, 

one needs some criterion to anchor the asset accumulation goal.  That criterion has traditionally 

been based on liabilities, to which we now turn. 

 

Steady State Condition for Liabilities 

We begin with the fundamental growth equation for liabilities: 

(3) Lt+1  = Lt(1+d) + cn
tWt − cp

tWt , 

where Lt denotes accrued liabilities at the beginning of period t, d is the discount rate, and cn
t is 

the “normal cost rate,” the rate at which new liabilities accrue, as a percent of payroll.  Liabilities 

grow by the interest on past liabilities, plus newly accrued liabilities, net of benefit payments that 

extinguish prior liabilities.  Equation (3) is analogous to the asset growth equation (1), but with 

some key differences:   

 First, the formulation in (3) allows for a distinction between the discount rate d and the 

rate of return on assets r.   Standard actuarial practice, of course, has traditionally equated the 

two.  By contrast (as is well known and much-discussed), finance economics has consistently 

made the case that guaranteed benefits should be discounted by interest rates of correspondingly 
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low-risk bonds, at least for accounting purposes.  If asset accumulation, and projections thereof, 

continue to reflect actual and assumed returns on a higher-risk pension fund portfolio, this raises 

the question of how a dual rate system should play out in contribution policy.  In the previous 

section, where our analysis was confined to asset accumulation, the contribution policy, both in 

steady-state and in adjustment to steady-state, depended only on r and not on d.  We consider 

below how the consideration of liabilities, discounted at d < r, should or should not factor into 

contribution policy. 

 The second difference between the liability growth equation (3) and the asset 

accumulation equation (1) is the role of cn
t, the normal cost rate, vs. ct,, the contribution rate.  The 

normal cost rate is determined independently of the contribution policy.  It is completely driven 

by the benefit formula, the cohort’s assumed separation probabilities over its members’ careers, 

and the discount rate.7  The normal cost rate may be used to help determine the contribution 

policy (as in standard actuarially determined contributions), but if the benefit formula is taken as 

exogenous to our analysis, equation (3) is stand-alone.  It is recursively prior to the asset 

accumulation and contribution equations.  We will return to this point below. 

 To examine the dynamics of liability accrual, we express (3) in the state variable λ = L/W 

= liabilities/payroll, using the same steps as in the derivation of (1′):  

(3′) λt+1(1+gt) = λt(1+d) + cn
t − cp

t . 

If we take the benefit formula and demographic/worklife assumptions as exogenous, then so are 

cn and cp.  Thus, we can readily derive the steady-state liability ratio: 

(3*) λ* = (cp
 − cn)/(d − g). 

 
7 It also depends on the specific actuarial cost method for allocating liabilities between past and future accruals.  To 

fix ideas, we have in mind the standard entry age normal cost method. 
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This expression has a simple interpretation.  First note that the present value of future payroll in 

steady-state is Wt/(d – g), consistent with the standard formula for a growing perpetuity.  Then 

note that the present value of future benefit payments and future liability accruals (normal costs) 

are, respectively, fractions cp and cn of the PV of future payroll.  Thus, equation (3*)’s steady-

state ratio between accrued liabilities and payroll represents the difference between the present 

values of future benefit payments and future normal costs (scaled to current payroll).8  A 

decrease in d raises the former more than the latter, since future benefit payments for any given 

cohort (and thus for all cohorts taken together) have longer duration than future normal cost 

payments.  Thus, λ* rises. 

It is worth clarifying here that (3*) must hold, as an accounting identity, if we are in 

demographic steady-state, with a constant growth rate g (along with unchanging separation 

probabilities and benefit formula).  Any deviations of the liability ratio from the steady-state 

value can only be due to past or future variation in payroll growth, in the plan’s run-up to (or 

run-down from) the mature membership configuration of steady-state age distribution among 

actives and retireds.   In such non-steady-state periods, the payment rate, cp
t, would deviate from 

the steady-state value cp (lower in the run-up to plan maturity, due to lower ratio of 

retireds/actives, and conversely in the run-down from maturity) and that would drive the 

deviations of λt from λ* through the accounting identities of (3) and (3′).  Thus, unlike the asset 

accumulation dynamic, where deviations from steady-state arise from the contribution history, 

and which pose a non-trivial question of stability, as examined above, there is no such issue here: 

 
8 This follows from the basic identity that the present value of all future benefit payments equals the present value of 

benefits yet to be accrued (the present value of future normal costs) plus the present value of benefits previously 

accrued, but not yet paid out.   The latter term is the accrued liability, so it equals the difference between the present 

value of all future benefits and the present value of future normal costs. 
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non-steady-state liability ratios resolve themselves simply by virtue of evolving benefit payment 

rates in the transition to the steady-state demographic configuration. 

Figure 5 depicts the aggregate liability ratio, drawing again on the Public Plan Database, 

where the liabilities are reported based on each plan’s assumed return, r.   That ratio (depicted by 

the red curve) has gradually risen from about 4.6 in FY01 to about 7.2 in FY20.  Several factors 

have contributed to this trend, including reductions in the assumed return and a rise in the ratio of 

retireds to actives, as plans have matured and gone beyond maturity.9,10 Liabilities are much 

higher when discounted at a low-risk rate d, instead of r.  Estimates vary, comparing the liability 

estimates of the Federal Reserve Board of Governors (depicted by the blue curve in Figure 5)11 

with those of the PPD suggest that properly discounted liabilities are 60 percent higher.12 

 

Linking Asset Accumulation and Contributions to Liabilities 

The natural link between our steady-state analysis of asset accumulation and liabilities is 

to tie the asset goal to liabilities.  Of course, this is the actuarial goal of full funding.  We here 

consider the more general goal of a target funded ratio, f* (e.g., the putative “standard” of 80 

percent funded).13  Setting the asset goal of a* = f*λ*, and, for the moment, following the 

actuarial convention of d = r, we find, from (1*) and (3*): 

(4) c* = cp
 − (r − g)f*λ* = cp

 − f*(cp
 − cn) = (1− f*)cp + f*cn. 

 
9 Benefit changes of course, have also affected the trends, but in no simple fashion, as many plans raised benefits in 

the early 2000’s and then cut benefits for new hires in the 2010’s. 
10 Comparing the liability ratios with the calculated values of (cp

 − cn)/(r − g) for FY01, FY10, and FY20, we find 

these values match for FY01 (4.6 vs. 4.5), but for FY10 and FY20, the liability ratios exceed the calculated values, 

5.7 vs. 4.3 and 7.2 vs. 6.1, respectively.  There are many potential explanations for these gaps, but they would be 

consistent with plans that are beyond mature, rather than in steady state. 
11 The denominator in the ratio depicted is the PPD payroll series. 
12 Estimates from Lenny, Lutz, Schule, and Sheiner (2020), using reported liabilities and rediscounted liabilities 

indicate that the latter is about 80 percent higher. 
13 See Costrell, 2018, where equation (4) was previously derived. 

https://edre.uark.edu/_resources/pdf/coepjuly18.pdf
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As the funded goal varies from zero to full funding, the steady-state contribution rate varies from 

the pay-go rate to the normal cost rate, with a weighted average of the two for intermediate 

funding targets. 

 Let us now consider the steady-state implications of a dual rate system:  discount rate d 

for liabilities and assumed return r on assets.  We then have: 

(4') c* = cp
 − (r − g)f*λ* = cp

 – [(r − g)/(d – g)]f*(cp
 − cn). 

As before, if the funding goal f* is zero, the contribution target is pay-go, and as f* is set higher, 

the contribution target falls.   

However, our question here is the impact on c* of reducing d below r.   We have already 

seen from (1*) that the only avenue for a drop in d to affect c* is through its impact on the asset 

target a*.   Since we are considering asset goals of the form a* = f*λ*, this means that a drop in 

d below r would raise the target contribution rate through a rise in the liability ratio λ* unless it is 

offset by a reduction in the target funded ratio f*.   

If, for example, we take as our funding goal to simply maintain the current asset ratio, a* 

= a0, then the rise in λ* from revaluation at d would, in effect, be completely offset by an 

implicit drop in the target funded ratio f*.14 In this polar case, setting d to a low-risk rate for the 

valuation of liabilities is purely an accounting and reporting measure, unrelated to funding goals. 

More generally, however, one might expect that recognizing liabilities as guaranteed and 

that asset returns are not, might lead policymakers to consider how much risk they wish to bear 

and how much they wish to defray with higher contributions.  To help elucidate the issue, let us 

consider further the steady-state contribution rate c*, given in (4').  Here, we must interpret r as 

the expected return on assets (rather than a deterministic rate) that exceeds the risk-free rate d 

 
14 This is implicit in the Lenney, Lutz, and Sheiner (2019a; 2019b) model.  This explains why the contribution rate 

in their model is effectively independent of d, despite their claim that setting d < r makes their model conservative. 

https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
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used for evaluating liabilities and their rate of accrual cn.  The first implication of this is that a 

full-funding policy f* = 1, or anywhere near it, implies that c* < cn:  the contribution rate will not 

cover normal costs (properly evaluated).   Formally, (4') implies 

(4'') c* − cn = (cp
 − cn)(1 – [(r − g)/(d – g)]f*) < 0, for  f* >[(d − g)/(r – g)]. 

To fix magnitudes here, consider the values we have been using, r = 0.07 and g = 0.03, along 

with d = 0.04 (a typical discount rate used in private pension accounting).  The critical value of 

f* in the expression above is then 25 percent.  For any target funded ratio exceeding 25 percent, 

steady-state contributions need not cover the normal costs (when rediscounted at d).  Note how 

strikingly this contrasts with standard actuarial funding schedules, under which contribution rates 

drop to (but not below) cn, upon reaching full funding.  

The point can be illuminated by re-writing (4') and simplifying to obtain: 

    (4''') c* = cp
 − (d − g)f*λ* − (r − d)f*λ* = (1− f*)cp + f*cn – (r − d)f*λ*. 

Comparing with (4), we have a rediscounted normal cost rate (higher cn), but the third term may 

be interpreted as the implicitly assumed arbitrage profits between the return on accumulated 

assets and interest on covered liabilities.  These assumed arbitrage profits help defray the higher 

normal costs, in lieu of contributions that might otherwise be required.   Alternatively, this term 

may be interpreted as the risk premium, which would be borne by the plan as the implicit cost of 

risk under the contribution policy implied by this approach. 

 

Sketching Out an Approach to Integrating Dual Rates into Contribution Policy 

The debate over actuarial discounting brings out a bit of schizophrenia over dual rates.  It 

is increasingly (if grudgingly) recognized that the finance economists are right about discounting 

liabilities at a low-risk rate that corresponds to the guaranteed nature of promised benefits.  And 
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yet, the finance economists are typically careful to restrict their conclusion to reporting 

requirements, and not necessarily to funding policy.   

Our analysis above points to an approach that at least informally integrates dual rates into 

a contribution policy:  report liabilities λ accurately, using d, and then set a target funded ratio, 

f*.  As with standard actuarial policy, the asset accumulation goal is tied to liabilities, since that 

represents the cost of the benefits to which asset accumulation is directed.  As we have seen from 

(4), when the goal is set in this fashion, the required contribution rate is governed by both cost 

rates:  the pay-go rate cp
 and the (properly discounted) normal cost rate cn. 

The open question, then, is how to set the target funded ratio, f*.  For example, if we 

were to aim at reproducing current funding goals, represented by the target asset ratio of a* = 7 

depicted in Figure 4a, but with rediscounted liabilities, then the target funded ratio would be 

reduced from f* = 100% (of wrongly discounted liabilities) to about f* = 60% (of accurately 

discounted liabilities). 

Our proposal, however, is to go back to fundamentals.  In general terms, for public plans 

the target ratio should be based on the public’s preferences for intergenerational cost-sharing and 

its tolerance for risk in pursuit of returns.  We believe that our equation (4''') can be helpful in 

systematizing an approach to this decision, in conjunction with a semi-formal social welfare 

function.  Let us posit the latter as –V[(a* - a0), E(c*), σ(c*)], where (a* - a0) is a short-hand 

measure of the costs required over some period to reach the asset target; E(c*) is the expected 

value of the steady-state contribution rate at which the asset target is aimed, given by (4'''); and 

σ(c*) is the risk associated with that target.  Since these three arguments to V are social “bads,” 

we preface V with a minus sign and let the partials V1, V2, and V3 be positive.     
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The optimization problem over these three “bads” requires a joint decision on two 

instruments:  (i) the investment allocation plan, formally represented by the target return r, and 

the associated risk premium (r – d); and (ii) the target funded ratio, f*.  We do not propose here 

to spell out a full solution to this complex problem, but rather to sketch out the considerations 

that might generate such a joint decision and to infer some contours of what that would look like.  

Specifically, we consider the optimization of –V[(a* - a0), E(c*), σ(c*)], subject to (4'''), over the 

choice variable f*, conditional on the investment decision represented by (r – d). 

We first consider the polar case, where the plan has no tolerance for risk (V3 is effectively 

infinite).   In this case, the plan would invest entirely in fixed income, so r would be reduced to 

d, and the third term in (4''') would vanish.  (Semi-)formally, the plan would only raise f* so long 

as the marginal social benefit of a higher target exceeds the marginal social cost.  Here, the 

benefit of raising f* is the reduction in the steady-state contribution c*, and the cost is the extra 

effort required to reach the target asset ratio: 

Raise f* as −V2 dE(c*)/df* > V1 da*/df*. 

Using (4''') and a* = f*λ*, we have: 

 Raise f* as V2 (c
p – cn) > V1 λ*. 

The key point here is that if liabilities are properly discounted at d, instead of r, so would 

their rate of accrual, the normal cost rate, cn.  This would raise cn much closer to the pay-go rate 

cp.15  Consequently, in this case of total risk-aversion, there may be relatively little benefit (V2 (c
p 

– cn)) to any marginal increase in the target asset ratio.  The extent to which the target would be 

raised rests heavily on the degree to which future generations are weighed against current 

generations (V2 vs. V1).  It seems unlikely that a totally risk-averse public plan would pursue full-

 
15 The normal cost rate would actually exceed the pay-go rate if d < g.  We assume d > g, but maybe not by much.  

Estimates in Lenney, Lutz, Schule, and Sheiner (2020) put rediscounted normal cost higher than the pay-go rate. 

https://www.brookings.edu/bpea-articles/the-sustainability-of-state-and-local-government-pensions-a-public-finance-approach/
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funding (f* = 1), or anything approaching it, since that would require the accumulation of 

sufficient assets to generate fixed income flows matched to anticipated benefit payments.  

Undoubtedly, this would require massive hikes in contributions, imposing unacceptably high 

transition costs on the current generation for relatively little benefit in the steady-state. 

However, public plans do appear to have some tolerance for risk by investing in assets 

with higher expected returns, r, but with greater risk.  Our expression (4''') helps understand the 

additional considerations in play for optimizing f*.  Our expression for comparing marginal 

benefit and marginal cost would now be: 

Raise f* as V2 [(cp – cn) + (r − d)λ*] > V1 λ* + V3 ρ(r − d)λ*, 

where we take ρ as the standard deviation of return per unit of risk premium.  Thus, in 

comparison with the polar case of total risk aversion, the additional marginal benefit is the extra 

expected return from a higher target asset ratio and the additional marginal cost is the extra risk.   

Clearly for any degree of risk-tolerance there is some range of f* over which the benefit from the 

extra return exceeds the cost of risk.  Thus, we would expect the optimal f* to exceed that under 

total risk-aversion.  Under what conditions (if any) we would expect the goal to be full-funding 

(f* = 1) is not a question we can answer here.   Our more modest intention is that the semi-formal 

expressions we provide can guide future empirical work to help integrate the insights of finance 

economics and steady-state analysis into pension funding policy. 

 

Conclusion 

Standard actuarial practice pursues intergenerational equity by employing funding rules 

that seek to ensure each generation pays for the services they receive. These rules do this through 

the concepts of normal cost and amortization, which together, in theory, should result in fully 
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funded benefits for each cohort of workers and taxpayers. Normal cost is meant to pre-fund the 

full cost of benefits earned by a cohort of employees over their careers, while amortization is 

meant to close funding gaps that result from payment shortfalls and unrealized assumptions. 

In practice, these rules have failed to adequately link earned benefits and contributions.  

The true market cost of earned benefits have been understated, leading to the accumulation of 

large pension debt and steeply rising contributions to amortize that debt.  These payments are 

crowding out spending in other areas like infrastructure and education. Given this result, it is 

questionable whether current actuarial practice has effectively maintained intergenerational 

equity, as current generations are paying for past benefits. In addition, standard amortization 

practice often builds in a large drop in taxpayer contributions at the end of the amortization 

period. The current generation of taxpayers is arguably being asked to bear a disproportionate 

share of the atonement for past sins compared to future generations. 

A primary cause of public pensions’ current financial problems was the failure to 

adequately consider the risks involved and the implications of those risks and uncertainties for 

future generations of public workers and taxpayers. In this paper, we strive to better elucidate 

pension funding dynamics using basic parameters and steady-state analysis. We propose a new 

pension funding approach that allows for proper liability discounting, clearer consideration of 

risk, and smooth contribution adjustment. We believe our analysis may offer a more honest 

approach, both in properly discounting liabilities, and not promising a mortgage-burning party 

when contributions plummet.  Finally, we sketch a social welfare framework that could be used 

to balance intergenerational equity, the quest for returns, and investment risk based on the 

sponsoring government’s assessment of public preferences. 
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Our approach can be thought of as replacing both pieces of current actuarial practice:  

normal cost and amortization.  Normal cost is effectively replaced by the steady-state 

contribution rate given in (4'''), which (i) allows for a blend between normal cost (properly 

discounted) and pay-go, depending on the target funded ratio; and (ii) allows for excess returns (r 

– d) in exchange for the risk borne by the sponsoring government. 

The other part of our proposal effectively replaces amortization schedules, which are 

currently based on the quantity of pension debt, a set amortization period, and an assumed 

payroll growth rate to backload payments using the “percent of payroll” method. All of these 

elements have flaws, as the debt is understated by aggressive discounting, the amortization 

period sets a funding cliff, and the “percent of payroll” method often moves funding farther away 

from the target, through initial periods of negative amortization.   

Instead of an amortization schedule, our approach sets out equation (2), which specifies 

the adjustment process to the steady-state contribution rate and target asset ratio.  This ties to the 

first argument of the social welfare function sketched out above, spelling out the contribution 

trajectory required to reach any specified target asset ratio, such that the near-term burden can be 

weighed against the long-term (steady-state) reduction in contributions. 

Our future work will delve into how we might operationalize the ideas we lay out here 

and the implications of real-world application. Specifically, we will explore the impact of 

stochastic investment returns on funding and contributions and implications of plan maturity and 

cash flow for our proposed funding approach. We hope that our pension funding analysis will 

help us learn from the sins of the past rather than repeating them in the present, imposing likely 

burdens on the future. 
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Table 1:  Pension Funding Notation 

 

A = assets on hand 

L = accrued liabilities, the present value of future benefits earned to date 

f = funded ratio, A/L (full funding goal is f = 100%) 

W = payroll 

a = A/W = assets/payroll 

λ = L/W = liabilities/payroll 

c = contribution rate, % of payroll 

cp = benefit payments as % of payroll (“pay-go rate”) 

cn = newly accrued liabilities as % of payroll (“normal cost rate”) 

r = return on assets; R = (1+r) 

d = discount rate used to calculate present value of liabilities; D = (1+d) 

g = growth rate of payroll; G = (1+g) 
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Source: Center for Retirement Research at Boston College
MissionSquare Research Institute, and National Association of State Retirement Administrators

Figure 1. Normal Cost, Contribution and Benefit Rates, FY01 − FY20
Public Plans Data: 119 state & 91 local plans
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Figure 2. Assets/Payroll, FY01 − FY20
Public Plans Data: 119 state & 91 local plans
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Figure 4a.   Simulation of Contribution Rate & Asset Ratio
R = 1.07, G = 1.03, a* = 7.0, c* = 0.10, β = 0.5, γ = γm/o = 0.075
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Figure 4b.   Simulation of Contribution Rate & Asset Ratio
R = 1.05, G = 1.03, a* = 7.0, c* = 0.24, β = 0.5, γ = γm/o = 0.069
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Figure 5. Assets & Liabilities, True & Reported, FY01 − FY20
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