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Effect of Thiols for Nitrogen Reduction to Ammonia 

Zakary R. Ford1 

Abstract 

Ammonia is an important chemical used for fertilizers and also a potential carbon-free 

hydrogen storage medium. The Haber-Bosch process is the main production process, which 

requires large energy- and capital-input. Therefore, it is crucial to develop an alternate scalable 

synthesis that provides a less energy intensive and more economical route for synthetic ammonia 

production. In this paper, a 1Fe1Ni film was functionalized with C3OH and C6OH for the 

electrochemical synthesis of ammonia. This work will provide some insight on how thiol ligands 

can increase the selectivity of the catalyst for nitrogen reduction reaction and can be improved on 

to provide a new synthesis for ammonia.   
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1. Introduction 

With more than 200 million metric tons produced in 2013, ammonia production has 

increased by 12.5% since 1997 becoming one of the most produced chemicals in the world [1-4]. 

Ammonia is mainly used to produce artificial fertilizers (80% of total amount produced), which 

has contributed to human population growth on Earth. The other 20% is used for synthetic 

chemicals for cleaning agents, dyes, and plastics [1,3]. Besides its uses in fertilizer and synthetic 

chemical production, ammonia has shown promise to be a cheap and safe substitute for hydrogen 

in fuel cell technology because of its ease of transportation and storage [1-3]. Three typical 

pathways for nitrogen fixation exist: catalyzed by nitrogenase, the Haber-Bosch process, and 

electrocatalysis (Fig. 1) [1]. 

Out of the three pathways, synthetic ammonia is almost exclusively produced by the 

Haber-Bosch process which was developed over one hundred years ago by Fritz Haber and Carl 

Bosch. The Haber-Bosch process relies on highly-concentrated streams of nitrogen and hydrogen 

at high pressure (150-300 bar) and temperature (400 -500 oC) to be reacted over iron catalysts to 

form ammonia with the following reaction [4-7]: 

N2 + 3H2 → 2NH3 

Although the thermodynamics of equation 1 suggests ammonia synthesis is favored at 

lower temperatures (ΔrH300 = -46.35 kJ mol-1) [7], the harsh conditions are required to overcome 

the sluggish kinetics, a consequence of high nitrogen dissociation energy (E(N≡N) = 941 kJ mol-1) 

[5]. This inevitably connects ammonia synthesis to a large annual energy consumption of over 

1% of the total global primary energy supply. In addition, the H2 used in the reaction is produced 

via the steam reforming process generating large amounts of “greenhouse” gases (CO2 is the 

most abundant) in the range of 300 million metric tons [8-9]. Furthermore, large economies are 

(1) 
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required to satisfy the need of the substantial infrastructure of the Haber-Bosch process, which 

hinders developing countries from producing their own ammonia [8-9].   

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A representation of the three pathways for nitrogen fixation. The products can be used 
for fertilizer, synthetic chemicals, or energy storage.  

Now, this current scenario of ammonia production has garnered research efforts of 

scientist to pursue a milder route of ammonia production, such as mimicking the enzyme 

nitrogenase [10-13] or using electrochemical systems [14-17].  For instance, structural and 

electronic characterization of Mo(HIPTN3N) showed same catalytic functions as the enzyme 

nitrogenase [18]. Alternatively, photochemical reduction has been reported to produce NH3 from 
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N2 in a chalcogel system of double-cubane and single-cubane [16]. However, many drawbacks 

still exist with the reported methods, including low yields and slow kinetics [1,3,14].    

Another approach is the electrocatalytic N2 reduction reaction to NH3 in low-temperature 

and low-pressure systems, ideally powered by renewable energies (e.g. hydroelectric or 

geothermal). N2 molecules can come directly from the air and the protons can be produced by 

oxidizing water. Electrons would be driven to the surface of the catalyst by applying a potential 

to the system. This possible solution has enormous potential to impact the energy and 

environmental sustainability of the production of NH3 for fertilizers and hydrogen carries. 

However, the faradaic efficiency of the N2 reduction reaction are generally low, typically only a 

few percent [1,3]. Maximum ammonia production rates are also low, on the order of 10-8 mol 

cm-2 s-1 [1,3,14]. These results are due to the major side reaction of the N2 reduction reaction 

(NRR). Hydrogen evolution reaction (HER), in which water is reduced to H2 gas, in most cases 

dominates over the NRR. Currently, scientists have been exhaustively studying the catalysts used 

in the NRR to be able to overcome the strong nitrogen triple bond energy requirement and push 

the reaction to favor NRR over HER [1-3,14].  

 To add to this collection of research, the present study focuses on the transition metal 

complexes based on iron nanoparticles. It has been shown that iron nanoparticles can reduce 

nitrogen to ammonia at room temperature and ambient pressure [1,2,15,16]. Little is known 

about the mechanism of this process and in most cases hydrogen evolution dominates over 

nitrogen reduction to ammonia. In 2012, Skùlason provided insight into optimal catalyst surfaces 

by performing density function theory (DFT) calculations of ammonia production on flat and 

stepped surfaces. Analysis of their DFT data suggests that iron will have significant overpotential 

for nitrogen reduction. As the electrochemical reduction of nitrogen also suffers from selectivity 
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issues, the result is consistent with experimental observations of iron showing low activity at low 

temperatures.  

The above analysis suggests there must be alternatives in how to design the 

electrocatalysts for electrochemical nitrogen reduction. Recent progress of N2 reduction has 

focused on Fe systems with P and N ligands; however, imitating the sulfur donors of the 

nitrogenase enzyme have shown promise in catalyst design [19]. Additionally, thiols were used to 

create a selective surface on Pd/Al2O3 catalysts for hydrogenation reactions. The research 

showed that high sulfur loading was shown to prevent the adsorption of H2 on the surface of the 

catalyst. Reaction selectivity was found to be controlled by the sulfur atom while the carbon 

chain length dictated the catalyst activity [20]. This research suggest that a thiol ligand may be 

used to control the surface selectivity for electrochemical reactions. By absorbing 3-mercapto-1-

propanol (C3OH), and 6-mercapto-1-hexanol (C6OH) to iron films through physisorption, the 

role of sulfur and carbon chain length of thiols in the selectivity of the reaction can be observed.  

 Furthermore, the DFT analysis suggests that a bimetallic catalyst consisting of elements 

from either side of the volcano plot may provide a more optimized surface [17]. With this concept 

in mind, a Fe-Ni nanocomposite will replace the pure iron catalysts. This change in return will 

increase the current density leading to an increase in ammonia production. However, a decrease 

in Faradaic efficiency is expected [21,22]. In conclusion, I propose thiol functionalized Fe-Ni based 

catalysts will mimic the nitrogenase FeMo cofactor function of controlling access of water to the 

surface of the catalysts and will improve NH3/H2 surface selectivity, thus, enhancing the rate of 

ammonia production. 
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2. Experimental 

The following procedure lays out the experimental foundation used to evaluate the roles 

of thiol ligand structure and thiol surface loading on water access to the catalyst surface and 

catalyst selectivity for NH3. For this approach, two different commercially-available thiols, 

C3OH and C6OH, were used based on their organic chain structure. The thiols were attached to 

the catalyst through a physisorption method. Based on previous trials in the laboratory, the most 

successful catalyst tested had a 1:1 ratio of Fe to Ni composition. 

 Electrochemical studies were carried out using a VSP-300 potentiostat (BioLogic) in a 

three-electrode liquid electrochemical cell (Fig. 2). A quartz crystal microbalance (QCM) by 

Biolin Scientific was used to measure the mass response of the working electrode (WE). 

 

Figure 2. A representation of the three-electrode liquid electrochemical cell. The produced 
ammonia would be trapped in sulphuric acid in the acid trap.  
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The commercial WE, an Au quartz crystal wafer (5 MHz, 14 mm diameter) was 

purchased from Quartz Pro. A carbon rod was used as a counter electrode (CE). A silver-silver 

chloride electrode immersed in a salt bridge filled with 3 M NaCl was used as the reference 

electrode. All potentials are reported with respect to this reference electrode. Ultrapure water was 

used for the preparation of all aqueous solutions. A phosphate buffer solution with no saline was 

used as the electrolyte. All glassware used in this paper was cleaned by 10% H2SO4 solution.  

 Before the experiments, the Au crystal electrode was first prepared by following the 

protocol outlined in section 6.1 until stable QCM frequency response was obtained. A Fe-Ni 

layer was electroplated on the Au electrode in a solution of 0.1 M total metal content of FeSO4 

and NiSO4 with and unpublished technique developed by Sergio I. Perez Bakovic in the 

Greenlee research team. Iron-nickel film coverage was checked by the QCM. Then a 0.1 M thiol 

solution was flowed over the electrode while still in the QCM. Thiol ligand absorption was 

determined using the QCM. After rinsing the electrochemical cell with water, degassed 

electrolyte with nitrogen was introduced. All experiments were performed under ambient 

temperature and pressure. 

Ammonia quantification was done using the indophenol blue method and 

spectrophotometric analysis. The concentration of indophenol blue was determined using the 

absorbance at a wavelength of 660 nm and the concentration of ammonia was calculated from a 

calibration curve prepared by using standard ammonium chloride with a series of concentrations. 

3. Results and discussion  

3.1 film thickness and thiol loading 

QCM was used as the primary source of loading analysis. The QCM allows for quick in 

situ mass analysis to asses both the film thickness and the total loading of C3OH and C6OH onto 
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the surface of the film. The Sauerbrey equation can calculated film mass as it is related to the 

mechanical resonance frequency change as shown in equation 2: 

∆𝑓𝑓 = −𝐶𝐶𝑓𝑓 × ∆𝑚𝑚 

where ∆𝑓𝑓 is the change in mechanical resonance frequency before and after film deposition, 𝐶𝐶𝑓𝑓 is 

the sensitivity factor of the 5 MHZ quartz crystal wafer, and ∆𝑚𝑚 is the mass change per area. 𝐶𝐶𝑓𝑓 

was defined to be 6.6729 that was calculated by 2𝑓𝑓𝑜𝑜2

𝐴𝐴�𝜌𝜌𝑞𝑞𝜇𝜇𝑞𝑞
 where 𝑓𝑓𝑜𝑜 is the resonant frequency of the 

crystal wafer, A is the active area of the piezoelectrical crystal, 𝜌𝜌𝑞𝑞 is the density of the quartz, 

and 𝜇𝜇𝑞𝑞 is the shear modulus of the crystal. Uniform thickness across the quartz crystal was 

assumed to use the Sauerbrey equation. 

   

 
Figure 3. (a) A bar graph showing the film thickness (nm) of each film. (b) A bar graph showing 
the mass (μg) of each film. 
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Figure 4. (a) A bar graph showing the mass loading of C6OH before and after ethanol flow. (b) 
A bar graph showing the mass loading of C3OH before and after ethanol flow.  

The resulting film thickness and mass change over the Au quartz crystal are show in 

Figure 3a. Assuming a density of 5.24 g cm-3, as well as the Sauerbrey equation holding, the 

overall frequency change corresponds to a film thickness of 102.6, 128.2 and 122.7 nm for 

0Fe1Ni, 1Fe0Ni, and 1Fe1Ni, respectively. To calculate the film thickness the mass of the films 

were first calculated and plotted in Figure 3b. 

Thiol mass loading of C3OH and C6OH were also analyzed using QCM. As Figure 4a and 

4b illustrate there was absorption of C6OH and C3OH in the range between 0.325 to 0.356 μg 

and 0.148 to 0.214 μg, respectively. The maximum absorption for both thiols occurred with the 

1Fe1Ni film and the minimum with the pure nickel film. This absorption trend illustrates thiols 

have a higher affinity for Fe and for better absorption higher iron to nickel ratios could be used.  
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To test the stability of the thiols on the surface of the films, ethanol was flowed over the 

films while in the QCM. The thiol mass unloaded is show in Figure 4a and 4b as well. There was 

stable attachment with the C6OH on each film composition, 1Fe1Ni showed the most promise 

with 0.115 μg still absorbed to the surface after ethanol flow. As for C3OH, the mass after 

ethanol flow was found to be less than the mass before. This mass loss could be explained from 

some of the film being washed away with the C3OH. In other words, there was no C3OH 

absorbed to the film during the electrochemical analysis.     

3.2 ammonia production and determination 

In the process of electrocatalysis, N2 gas and Ar gas were continuously fed to the 

electrochemical cell, and cyclic voltammetry (CV) tests were performed in Ar- and N2- saturated 

0.1 M phosphate solution between .205 and -0.935 V (vs. RHE). The CV curves (Fig. 5) were 

different in N2 and Ar. The NRR is initiated at -0.6 V under N2-saturated solution, and the 

current density in N2-saturated solution is slightly higher than that in Ar-saturated solution, 

indicating that the 1Fe1Ni film functionalized with C6OH can effectively catalyze the nitrogen 

reduction reaction at the potentials range of between -0.6 V and -0.935 V. The same analogous 

trend is seen with the 1Fe1Ni films functionalized with C3OH (Fig. 6). However, the CV curve 

for Ar-saturated solution has some anomalies caused by bubble on the working electrode. 

The NRR performance of both films were further estimated by chronoamperometry tests. 

The chronoamperometry curves in N2- and Ar- saturated solutions are displayed in Figure 7 & 8. 

Each curve of the films in different saturated solutions indicate the current density mostly 

remains constant, indicating their stability for NRR. After electrolysis, concentrations of 

produced NH3 in phosphate solution and acid trap were detected by the UV/Vis 

spectrophotometer. 
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Figure 5. Fifth cycle of CVs collected at 20 mV s-1 in 0.1 M phosphate solution for 1Fe1Ni 
functionalized with C6OH.  

The NH3 yield and faradaic efficiency (FE) of the different films are calculated and 

plotted in Figure 9. The yield and FE decreased with the change in the thiol from C6OH to 

C3OH, with maximum values of 41.3 μg h-1 mgcat.
-1 and 6.20%, respectively. FE and ammonia 

yield of C3OH were both negative indicating no ammonia was produced and were overwhelmed 

by the competitive hydrogen reaction. The yield and FE have a significant decrease when 

analyzing the phosphate solution, which could be explained by the counter electrode oxidizing 

the produce ammonia in the solution. This performance of the films show promise in NRR and 

could be improved to be comparable or better than reported catalysts. 
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Figure 6. Fifth cycle of CVs collected at 20 mV s-1 in 0.1 M phosphate solution for 1Fe1Ni 
functionalized with C3OH.

Figure 7. Chronoamperogram of 1Fe1Ni C3OH functionalized films in 0.1 M phosphate solution 
under a nitrogen and argon atmosphere.  
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Figure 8. Chronoamperogram of 1Fe1Ni C6OH functionalized films in 0.1 M phosphate solution 
under a nitrogen and argon atmosphere.  

 
Figure 9. Rate of ammonia formation and FE in (a) in acid trap and (b) 0.1 M phosphate 
solution.  
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4. Conclusions 

In summary, 0Fe1Ni, 1Fe0Ni, and 1Fe1Ni were successfully electrodeposited onto the 

quartz crystal to create a surface for C3OH and C6OH to be absorbed. C6OH was shown to be 

stable on the surfaces of the all three composites with 1Fe1Ni having the best success. C3OH was 

able to absorb to the surface of the films, however, they proved to be unstable and were easily 

washed off with ethanol. To improve absorption a second ligand with dual affinity for iron and 

sulfur should be attached to the surface of the film first before the thiol.  

 Electrochemical tests were performed only on the 1Fe1Ni film for NH3 yield. The rate of 

NH3 yield was 41.3 μg h-1 mgcat.
-1 and the Faradic efficiency was 6.20% at -0.935 V (vs. RHE) at 

room temperature and ambient pressure in 0.1M phosphate solution with the 1Fe1Ni film 

functionalized with C6OH. The C3OH functionalized film proved to produce no ammonia.  I 

believe that this work shows promise for functionalizing Fe-Ni bimetallic composites with thiols 

to improve ammonia production and Faradic efficiency. To improve the results a H-shaped 

electrochemical cell should be used to separate the chemistry between the cathode and the anode. 

Additionally, a better absorption method to attach thiols to the surface of the films should be 

used to improve the stabilization of the thiols.  
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6. Appendix 

6.1 Cleaning of Au QCM Sensor 

For efficient removal of organic and biological material on the surface of the QCM 

sensors the following protocol was followed. The entire procedure should be done with standard 

personal protective equipment under the hood. First, treat the sensors with UV/ozone for 10 

minutes. Then prepare a 5:1:1 mixture of fresh ammonium peroxide solution (milliQ water, 25% 

ammonia, and 30% hydrogen peroxide) and heat the mixture to 75 oC. Allow the sensor to be 

immersed for five minutes then removed the sensor immediately and rinse with large amounts of 

water. The sensor was then dried with nitrogen gas and treated with UV/ozone for 10 minutes.   
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