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Using combined prediction
models to quantify and
visualize stormwater runoff
in an urban watershed

Keshia M. Koehn*, Cristina M. Scarlat†, and Kristofor R. Brye§

ABSTRACT

Stormwater runoff can transport nutrients, sediments, chemicals, and pathogens to surface
waterbodies. Managing runoff is crucial to preserving water quality in rapidly developing urban
watersheds like those in Northwest Arkansas. A watershed containing the majority of the
University of Arkansas campus was designated as the study area because stormwater from it
drains into the West Fork of the White River, designated as an impaired waterbody due to silta-
tion. The project objective was to develop methodology to test existing stormwater drainage
infrastructure, identify potential areas of improvement, and estimate potentially contaminated
runoff by combining two widely used prediction models. The U.S. Department of Agriculture’s
Natural Resource Conservation Service’s curve number (CN) method was used to estimate
runoff depths and volumes, while a flow-direction model was created that integrated topography,
land use, and stormwater drainage infrastructure in a geographic information system. This study
combined the CN and flow-direction models in a single geodatabase to develop flow direc-
tion/quantity models. Models were developed for 5-, 10-, 25-, 50-, and 100-year floods and var-
ied by the antecedent moisture content. These models predicted flow directions within existing
drainage infrastructure and runoff volumes for each flood, and served as a hypothetical flood
analysis model. Results showed that between 24,000 m3 (5-year flood) and 60,000 m3 (100-year
flood) of runoff would be transported to the West Fork of the White River. The methodology
developed and results generated will help stormwater planners visualize localized runoff, and
potentially adapt existing drainage networks to accommodate runoff, prevent flooding and ero-
sion, and improve the quality of runoff entering nearby surface waterbodies.

* Keshia Koehn is a junior majoring in geology in the Department of Geosciences and in environmental, soil, and water science
in the Department of Crop, Soil, and Environmental Sciences.

† Cristina Scarlat is a GIS specialist working for the Center for Advanced Spatial Technologies (CAST) at the University of
Arkansas.

§ Kristofor Brye is the faculty mentor and an associate professor in the Department of Crop, Soil, and Environmental Sciences.
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INTRODUCTION

After a precipitation event, stormwater runoff trans-
ports nutrients, chemicals, sediments, and pathogens to
surface waterbodies. Managing this stormwater is crucial
in preserving water quality, especially in urban water-
sheds under heavy development like in Northwest
Arkansas, specifically Benton and Washington counties.
Northwest Arkansas is the home of several large-scale
corporations such as Wal-Mart, Tyson Foods, and J.B.
Hunt Transportation. According to the 2000 Arkansas
Census, Benton County’s population experienced a 57%
increase from the 1990 Arkansas Census and
Washington County has experienced a 39% increase, an
increase totaling over 300,000 people in both counties
combined (US Census, 2000).

Washington County is also home to the University of
Arkansas, the state’s land-grant institution. Since 2003,

more than nine buildings have been restored and more
than twenty buildings have been erected at the
University of Arkansas (FMPG, 2007). Of these newly
constructed buildings, three dormitories were built to
house the increasing student population. Like the popu-
lation growth in Northwest Arkansas, student enroll-
ment at the University of Arkansas has increased by
21%, from 15,396 in 2000 to 18,647 in 2007 (Voorhies,
2007).

The majority of stormwater runoff within the sub-
watershed surrounding the University of Arkansas in
Fayetteville flows into the West Fork of the White River;
both the White River and its West Fork are tributaries of
Beaver Lake, the source for much of Northwest
Arkansas’ municipal water supplies. However, the West
Fork of the White River has been identified as an
impaired stream by the Arkansas Department of
Environmental Quality due to “high turbidity levels and
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excessive silt loads” that were creating an aquatic envi-
ronment incapable of supporting adequate life
(ADPC&E, 1998).

After the West Fork of the White River was placed on
the Arkansas 303(d) list for impaired waterbodies in
1998, it was determined that sediment loads were origi-
nating from a variety of sources including stream bank
erosion, local construction and development, pastures,
forests, and urban areas (Formica et al., 2004). According
to a best management practice (BMP) study by the US
Environmental Protection Agency (EPA), average sedi-
ment contributions to surface waterbodies ranged from
213 million mg ha-1 yr-1 (190 lbs ac-1 yr-1) in medium-
density residential areas to 1.21 billion mg ha-1 yr-1 (1000
lbs ac-1 yr-1) in commercial areas (USEPA, 1999). With
the current high rate of expansion and development in
Northwest Arkansas, strategic modeling and planning of
stormwater runoff plays a critical role in preserving the
quality of surface water.

One of the most common stormwater runoff predic-
tion models is the U.S. Department of Agriculture’s
Natural Resource Conservation Service’s (NRCS) curve
number (CN) method (Thompson et al., 2003).
Formerly known as the Soil Conservation Service (SCS)
Method, the CN method calculates a net runoff depth
for a specific amount of precipitation. This method is
based on estimations of net runoff after initial losses of
accumulated rainfall due to soil storage, interception,
and infiltrated runoff (SCS, 1972).

There are several parameters that are used to deter-
mine a CN for an area. The land use of an area, or
amount/type of surficial cover, can be used to determine
the amount of runoff that can be intercepted and/or
infiltrated. For example, a paved area would have greater
runoff than a grassy area, which would have greater infil-
tration. Land use can also include land treatment in
agricultural settings where crop rotations, contour-
ing/terracing, and the amount of grazing and burning
affect quantity of stormwater runoff (Anonymous,
2007).

Soil properties can also have an effect on depth of
stormwater runoff. The hydrologic soils group (HSG) is
a classification of soil moisture based on the quantity of
water that is able to infiltrate the soil, which is influenced
by the condition of the soil surface and the soil profile
horizonation and includes slope, texture, and hydraulic
conductivity (USDA, 2007). Table 1 provides the HSG
classification definitions by the NRCS.

The antecedent moisture content (AMC) is another
soil property that has a significant effect on quantity of
stormwater runoff. AMC is defined as the level of soil
moisture before a precipitation event and is divided into
three classes: AMC I, AMC II, and AMC III

(Anonymous, 2007). A soil with AMC I conditions is
described as considerably dry, but not to the wilting
point for plants. A soil having AMC II conditions is
described as having an average soil moisture condition,
and AMC III conditions correspond to a soil that is near-
ly saturated (Novotny, 1995).

The amount of precipitation, land use, HSG, and
AMC are used in the CN method to calculate runoff for
an area. This method operates on the assumption that
each soil-land-cover combination produces a separate
curve number that can be used on catchment areas up to
1000 km2 (Williams and LaSeur 1976).

This project was designed to develop a stormwater-
runoff prediction model in an effort to simulate non-
point source contamination of local rivers, like the West
Fork. This study sought to develop a methodology to test
existing stormwater-drainage infrastructure and identify
potential areas of improvement and to estimate poten-
tially contaminated runoff volumes by combining two
widely used prediction models [i.e., the NRCS CN
method integrated with a geographic information sys-
tem (GIS) modeling approach].

With the methodology in place, the objective of this
study was to evaluate the effects of AMC on stormwater
runoff for 5-, 10-, 25-, 50-, and 100-year flood events.
The study area was defined as the portion of the
University of Arkansas main campus in Fayetteville that
contributes stormwater runoff and potential pollutants
to the West Fork of the White River. It was hypothesized
that the effects of AMC would increase as the flood-
return period increased.

MATERIALS AND METHODS

Study area. The study area was located in the City of
Fayetteville, Washington County, Northwest Arkansas,
and is a delineated sub-watershed of the NRCS 12-digit
Hydrologic Unit Code (HUC) Town Branch – West Fork
– White River Watershed (110100010404) (Fig. 1). This
sub-watershed has an area of 320 ha (~800 acres) and
contains the majority of the University of Arkansas’
main campus.

This site was chosen because of the availability of nec-
essary data, the diversity of land uses within the sub-
watershed, and because this area is a reasonably repre-
sentative model of small-scale, rapid development. The
region encompassing the actual study area is situated in
the Ozark Highlands, where geologic ages of the under-
lying stratigraphic layers range from Late-Mississippian
to Middle-Pennsylvanian sandstone with underlying
sequences of shale, siltstone, and limestone. (USGS,
2007). Soil data for the study area, obtained from the
NRCS Soil Survey Geographic (SSURGO) Database

32 DISCOVERY VOL. 9, FALL 2008



(Soil Survey Staff, 2006), indicate the most common
soil-surface textural class present in the study area is fine
sandy loam. In this area, stormwater runoff can carry
sediments from disturbed topsoil in construction zones,
chemicals from paints and fertilizers used on athletic
fields, pathogens from animal litter in parks and residen-
tial areas, and trash, oils, and heavy metals from parking
lot runoff.

Data development. A digital elevation model (DEM)
extracted from light detecting and ranging (LIDAR) data
[7.62 meter (25 ft) resolution] was used for calculations
in the flow-direction model. This DEM was made avail-
able by the Center for Advanced Spatial Technologies
(CAST) at the University of Arkansas and the Northwest
Arkansas Regional Planning Commission (NWARPC).
Aerial photography obtained in January 2007 [0.15 m (6
in.) resolution] was provided by NWARPC. Soils data
for the study area were obtained from the NRCS 2007
SSURGO Database (Soil Survey Staff, 2006). Finally, a
five-category impervious surface map was created from
the aforementioned aerial photography. The impervious
surface map was divided into five land-use categories:
impervious surfaces, woodlands, grasses, bare soil, and
water.

Positions of stormwater features and infrastructure
for the University campus features and City of
Fayetteville were identified and differentially corrected
(post-processed code) using a Trimble GeoExplorer XT
GPS unit (Trimble, Sunnyvale, Calif.). Collected
stormwater features included intakes like storm grates,
linear grates, culverts, area drains, floor drains, roof
drains, and curb inlets. Outflow features included out-
flow pipes and culverts. Other stormwater features that
did not play an active role in the flow-direction analysis
of runoff included manholes and cleanout features.
Locations and attributes of pipelines were provided by
the University of Arkansas Facilities Management and
the City of Fayetteville GIS Laboratory.

The study area was delineated from three, NRCS 12-
digit HUC watershed boundaries using the LIDAR
DEM. The three 12-digit HUC watershed boundaries
were selected based on their spatial proximity to the cen-
tral campus: the Hamestring Creek watershed
(111101030203), the Town Branch – West Fork water-
shed (110100010404), and the Mud Creek – Clear Creek
watershed (111101030202).

Flow-direction analysis. The first stage of synthesizing
the model was to establish flow directions of stormwater
runoff within the existing drainage infrastructure. A
flow-direction model will provide a way for planners to
assess areas needing improvement and will aid in tracing
potential contamination pathways.

Spatial and physical connectivity between stormwater

pipelines and features was established after creating a
geometric network using ArcGIS version 9.2
[Environmental Systems Research Institute (ESRI),
Redlands, Calif.]. Geometric network development
enabled the complex linear edges and point features of
the existing stormwater-drainage network to operate as a
complete system. Weights were added to the geometric
network such as pipe lengths, diameters, and elevations.
In addition, the material used to construct the infra-
structure was recorded. Using ArcHydro, and extension
of ArcGIS, these weights were used to design a set of
algorithms that were able to establish flow direction
within the desired stormwater-drainage network.

After determining flow directions of stormwater
runoff within the drainage network, the Utility Network
Analyst toolset of ArcGIS was used to determine sample
contamination pathways in addition to lengths of hypo-
thetical contamination pathways.

Runoff depth and volumetric quantification. It was
necessary to generate a set of spatially distributed CN for
the entire study area in order to estimate the potential
amount of stormwater runoff for a specific precipitation
event. Curve numbers were generated using the NRCS
CN method, an impervious surface map, surface topog-
raphy data from the DEM, soils information for the area,
and local precipitation data.

Volumes of runoff were calculated in 50 sub-water-
sheds using runoff depths from the CN method.
ArcHydro [Environmental Systems Research Institute
(ESRI), Redlands, Calif.] was used to delineate sub-
watersheds based on the stored flow directions within
stormwater pipelines and key outflow storm features.
Because the stormwater drainage network was used
instead of a surface water network, sub-watersheds were
developed based on flow directions within the pipelines.
The precipitation amount, initial abstraction (ie.,
amount of runoff lost to infiltration, interception, and
possible evaporation), and potential maximum subsur-
face storage were inserted as additional sub-watershed
attributes. These parameters were used to estimate
runoff using the CN method. Precipitation data were
derived for Northwest Arkansas for five flooding recur-
rence intervals, 5 (142 mm), 10 (159 mm), 25 (184 mm),
50 (203 mm), and 100 year (225 mm), provided by the
U.S. Weather Bureau (1958). These precipitation data
were used in the CN method to provide a base level for
net runoff.

Potential maximum flood model analysis. The poten-
tial maximum flood model was designed to be a hypo-
thetical scenario, created in order to visualize runoff
movement through the watershed. To assess potential
maximum flooding depths, it was necessary to generate
a flood environment confined by the study area bound-
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aries. The initial model assumed no addition of runoff
water from surrounding watersheds and no loss of
runoff water from the study area to surrounding water-
sheds. The depth of ponding in this model was used to
visualize localized runoff and to determine areas that
had volumetrically high runoff.

ArcScene (ESRI) was used to create a three-dimen-
sional, seamless model capable of representing the
advance and retreat of runoff water in the study area,
assuming it was a confined environment. The depres-
sionless DEM, aerial photography, and the sub-water-
shed and study-area vector boundaries were imported
into ArcScene (NAD State Plane 1987 FIPS 301 Feet,
Coordinate System). The base heights for the photogra-
phy and vector boundaries were set equal to the heights
of the DEM in order to achieve a seamless, three-dimen-
sional model.

The base heights for the “flood” layer were not set to
that of the DEM, but to the minimum elevation of the
study area. This boundary created a moveable, planar
layer that was able to simulate the flooding capacity of
runoff within the study area. This height of the “water”
layer was set to the starting position of “No Flooding.”
For each corresponding flood interval, this layer’s base
height increased relative to the maximum height of
ponded water. ArcScene was also used to model the max-
imum depth of ponded water for 5-, 10-, 25-, 50-, and
100-year flood recurrence intervals.

RESULTS AND DISCUSSION

Flow direction tracing. The flow-direction prediction
model that was developed for this study is important for
planning officials at the University of Arkansas and City
of Fayetteville at a small scale. However, even though the
study area only covered approximately 320 ha (800
acres), the methodology used to develop this flow-direc-
tion prediction model can be repeated for larger scales.
Since transportation routes of potentially contaminated
runoff can be visualized, the model can be used to trace
accidental spills, re-route runoff to treatment facilities,
and identify locations near outflow features that may be
particularly sensitive to contamination.

Curve number analysis. A composite CN map was
generated for each level of AMC (AMC I, II, and III)
using the impervious surface and soils maps (Fig. 3).
Each land-use/soil-group polygon was assigned a CN to
be used to calculate a weighted CN average for each sub-
watershed. Weighted CN that were calculated for each of
the 50 sub-watersheds were used to determine the
impact of land use and soils on the amount of direct
runoff. The CN maps generated for each AMC condition

illustrate not only the abundances of low-permeable
land uses in the study area, but also the effects these land
uses have on the volume of runoff water being trans-
ported into the West Fork of the White River.

Upon observation of the weighted, sub-watershed
CN map with reference to the impervious surface map,
areas that have the same land-use category, but different
HSG, have different local CN. This is shown in the
Western quadrant of the study area within the wooded
land-use area. This situation can be compared to a sandy
soil and a clayey soil under tree cover, because each soil
texture has different infiltration and water-holding
capacities that affect the amount of runoff. The HSG of
an area has a direct effect on the CN-runoff relation-
ship—sandy soils are capable of being more permeable
than clayey soils, thus sandy soils have a greater capacity
to filter runoff water. These areas are particularly impor-
tant in filtering contaminated stormwater runoff and are
comparable to the drain field of a septic system.
Increasing areas that have the capability of runoff infil-
tration and decontamination can decrease contaminant
loading to nearby surface waterbodies, such as the West
Fork of the White River.

The mean weighted CN for the sub-watersheds
increased with each increase in AMC level. Three maps
were developed depicting the weighted CN for each sub-
watershed varied by the level of AMC (Fig. 4). The three
maps show an increase in the average weighted CN for
each increase in AMC level supported by the areal
extents of higher CN. There is a clear relationship
between the weighted CN and the AMC level—as the
soil water content (i.e., AMC) increases, the weighted
CN for a watershed also increases, meaning more runoff
will occur because the soil has a decreasing capacity to
store more infiltrating water as the water content
approaches saturation (i.e., AMC III).

The minimum calculated curve numbers for AMC I,
II, and III conditions were 52, 71, and 85, respectively.
The maximum calculated curve numbers for AMC I, II,
and III conditions were 93, 98, and 99, respectively.
Average curve numbers for AMC I, II, and III conditions
were 79, 89, and 94, respectively.

Runoff depth and volume analysis. The CN method
was used to determine net runoff for each sub-watershed
for a specific single-storm event. Net runoff increased
for each increase in flooding-recurrence interval. As
expected, for each increase in precipitation amount,
there was a corresponding increase in runoff because of
decreasing soil storage capacity. Modeling depths of
runoff from precipitation data is important in visualiz-
ing the quantity of stormwater being transported by
existing infrastructure, given the soil moisture condition
(i.e., AMC I, II, or III) at the time of the event.
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Also shown by the weighted sub-watershed CN map,
for each increase in AMC level, there was a correspon-
ding increase in net runoff for the same precipitation
event. Table 2 summarizes the effects of increasing pre-
cipitation on the stormwater runoff in each sub-water-
shed per AMC level.

Net runoff depths calculated from precipitation data
were used to calculate volumes of water associated with
a specific precipitation event. Runoff data showed that
each increase in precipitation was associated with an
increase in the volume of runoff water. In addition, the
increasing trend in the volume of stormwater runoff was
directly related to depths of runoff and to the soil mois-
ture condition (i.e., AMC level). Calculated stormwater
runoff volumes were combined with the flow-direction
model to visualize maximum flood water retention
within the study area.

Maximum flood water retention. In order to model
maximum flooding depths of ponded water within the
area of study, a hypothetically closed-“bowl” system was
constructed to eliminate runoff volume additions and
losses to and from surrounding watersheds. Antecedent
moisture condition I provided the least areal extent of
flooding with increasing flood area in AMC II and AMC
III conditions, respectively (Fig. 5). This is directly relat-
ed to decreasing soil storage capacity as the AMC
increases.

For each increase in AMC level, there was an increase
in the areal extent covered by ponded water. For lower-
magnitude flood-recurrence intervals (i.e., 5 and 10
year), there was a smaller range of area covered by runoff
water. For greater-magnitude storm events (i.e., 25-, 50-,
and 100-year floods), there is a greater range of areas
covered by ponded water (Table 3).

The average height of rise of flood water in the hypo-
thetical closed-“bowl” study area was 0.95 meters (3.11
feet). This is a relatively shallow depth of water, but its
magnitude increases greatly when distributed over a
low-relief region of the study area. As previously
described, this model was conceived in a hypothetically
closed system and was able to represent the height of rise
and areal extent covered by ponded runoff water. In real-
ity, there would also be simultaneous additions and loss-
es of runoff water in the study area that likely keep max-
imum flooding depths lower than those predicted by the
model.

Significance of research. This project’s objective was to
develop a methodology to test existing stormwater-
drainage infrastructure and identify potential areas of
improvement and to estimate volumes of potentially
contaminated runoff by combining two widely used pre-
diction models. Using these developed models as a
guide, planners at the University of Arkansas and City of

Fayetteville can work to improve the quality of runoff
water being transported to the West Fork of the White
River. Using the flow-direction model and estimated
runoff volumes, stormwater-drainage infrastructure can
be improved in sub-watersheds that have been shown to
contribute the largest volumes of runoff from the study
area and in areas experiencing or predicted to experience
localized flooding and soil erosion on land and along
stream banks.

Currently, stormwater-drainage infrastructure within
the study area releases untreated runoff water directly
into College Branch Creek, which is a tributary of the
West Fork of the White River. During storm events,
nutrients, chemicals, sediments, and pathogens are ulti-
mately carried through the drainage network to the West
Fork of the White River. The southern reach of College
Branch Creek is presently showing severe erosion, and
thus is transporting sediment-laden runoff to the West
Fork (Fig. 6). This model can help planners re-route
runoff away from College Branch Creek, thus likely
reducing sediment loads transported to the West Fork.

Future implications. Surficial soil properties and land
use have been shown to have an impact on the amount
of runoff directly discharging from an area. Models of
runoff quantity and flow direction were not only created
to determine the quantity of stormwater runoff and its
flow through a watershed, but also to develop a repro-
ducible methodology for visualizing small-scale, urban
stormwater runoff.

The runoff flow-direction model of the existing
stormwater-drainage network is particularly useful for
tracing possible point-source contamination. In the case
of accidental spills or leaks, planners can accurately trace
the contamination pathway through the pipeline infra-
structure. In addition, drainage infrastructure surround-
ing potentially hazardous areas can be modified to trans-
port contaminated water away from surface waterbodies
in the likelihood of a spill or leak. Finally, the runoff
flow-direction model can be used to decrease localized
flooding by re-routing runoff water away from low-relief
areas that have greater potential to accumulate runoff
from a precipitation event.

Because of the current rate of expansion at the
University of Arkansas, construction sites are prevalent
throughout much of central campus and contribute to
the sediment loading of the West Fork after precipita-
tion. The amount of sediment in stormwater runoff
could be decreased by instituting various BMPs that
increase the percentage of permeable land, such as per-
meable pavement and green roofs and a series of deten-
tion ponds or grassy swales to slow the water velocity
and allow sediment to drop out of suspension before
entering College Branch Creek. By constructing moni-
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toring stations along key points in the stormwater-
drainage network, areas with high sediment or contami-
nant loads could be re-routed using the flow-direction
model within the existing drainage infrastructure.

Conclusions. In rapidly developing urban watersheds,
improperly managed stormwater runoff can degrade
surrounding surface waterbodies. In Northwest
Arkansas, sediment-laden stormwater runoff is trans-
ported to the West Fork of the White River, a surface
waterbody impaired by siltation. This project established
a repeatable protocol that resulted in a stormwater pre-
diction model that was varied by potential soil moisture
conditions in an effort to simulate non-point source
contamination of local rivers, such as the West Fork,
from urban stormwater drainage networks. The AMC of
the soils studied had a direct effect on the amount of
stormwater runoff from the study area because the soil
had a decreasing capacity to store additional infiltrated
water as the soil water content approached saturation.

The methodology developed by this research project
can be used to test existing stormwater-drainage infra-
structure and identify potential areas of improvement
and to estimate the volume of potentially contaminated
runoff. The runoff flow-direction model will be particu-
larly useful in tracing point-source contamination with-
in the stormwater drainage network. Volumes of runoff
water from specific storm events, calculated using the
CN method, can be used to gauge the effects semi-per-
meable land uses have on the quantity and quality of
runoff transported to surface waterbodies.

Designing a stormwater runoff prediction model that
includes both the water flow direction and quantity of
water transported is essential for not only urban
stormwater management planners, but also for city util-
ity officials and urban developers. In Northwest
Arkansas, larger-scale replicates of these prediction
models could play a crucial role in improving and pre-
serving the quality of surface waterbodies like the West
Fork tributary. With the advent of cost-effective moni-
toring programs, BMP construction, and education to
improve water quality, the West Fork of the White River
could eventually be removed from the impaired water-
bodies list and have its biological productivity return to
normal.
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Fig. 1. Delineated University of Arkansas sub-watershed with surrounding NRCS HUC 12-Digit
watershed boundaries. The study area was delineated from the West Fork – Town Branch –

White River Watershed.
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Fig. 2. Land-use quadrants within the study area are characterized 
by potential sources of runoff contamination. These sources 
include parking lots, construction zones, residential areas, and 

athletic fields. 
 

Fig. 2. Land-use quadrants within the study area are characterized by potential sources of
runoff contamination. These sources include parking lots, construction zones, residential areas,

and athletic fields.
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Fig. 3. Study area curve number (CN) analysis varied by AMC I, II, and III 
conditions.  For each figure, the AMC was increased, increasing the spatially 

distributed CN and runoff depths. 

Fig. 3. Study area curve number analysis varied by AMC I, II, and III conditions. For each figure,
the AMC was increased, increasing the spatially distributed CN and runoff depths.
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Fig. 4. Sub-watershed weighted curve numbers (CN) for varied AMC levels. For 
each map, left to right, the AMC was increased, thus increasing the average sub-

watershed CN and runoff depths. 
 

Fig. 4. Sub-watershed weighted curve numbers (CN) for varied AMC levels. For each map,
left to right, the AMC was increased, thus increasing the average sub-watershed CN and

runoff depths.
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Fig. 5. Maximum flooding extent for varied AMC levels 
showing the locations of potential flooding on aerial 

photography of the southern quadrant of the study area. 
 

Fig. 5. Maximum flooding extent for varied AMC levels showing the locations of potential
flooding on aerial photography of the southern quadrant of the study area.
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Table 3. Cumulative runoff depths and volumes for study area calculated by combining GIS calculations with the 
curve number method 

Variable 5-yr Flood 10-yr Flood 25-yr Flood 50-yr Flood 100-yr Flood 
Depth  - m -

AMC I 4313 5031 6159 7021 8011 
AMC II 5509 6297 7520 8443 9495 
AMC III 6289  7105 8363 9308 10381 

Volume  - m3 -

AMC I 24758 28975 35625 40716 46571 

AMC II 32167 36851 44127 49627 55893 

AMC III 37210 42083 49602 55252 61668 

Table 2. Statistical information for the net runoff from the sub-watersheds based on curve number calculations 
Statistic/ 
AMC level 
 

5-yr 
Flood

10-yr 
Flood 

25-yr 
Flood 50-yr Flood 100-yr 

Flood 

Minimum - mm - 
AMC I 28 36 51 63 77 
AMC II 66 79 100 116 135 
AMC III 100 115 139 158 179 

Maximum 
AMC I 122 138 163 182 203 

AMC II 136 153 178 197 219 

AMC III 139 155 181 200 221 
Mean 

AMC I 86 100 123 140 160 
AMC II 110 126 150 169 190 
AMC III 126 142 167 186 208 

Table 1. Natural Resource Conservation Service hydrologic soils group (HSG) classification descriptions (USDA, 
2007) 

HSG Description of Classification 

A
Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of 
deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water 
transmission. 

B
Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or 
deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse 
texture. These soils have a moderate rate of water transmission. 

C
Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that 
impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils 
have a slow rate of water transmission. 

D

Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of 
clays that have high shrink-swell potential, soils that have a permanent high water table, soils that have a 
claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. 
These soils have a very slow rate of water transmission. 

Fig. 6. Picture of southern reach of College Branch Creek showing significant soil 
erosion. 
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