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ABSTRACT

DETERMINATION OF OPTIMAL TIMING OF POULTRY WASTE DISPOSAL BY 
METEOROLOGICAL, HYDROLOGICAL, AND WATER QUALITY 

MODELING TECHNIQUES

Approximately one m i l l io n  Mg of  b ro i le r  l i t t e r  were generated in 
conjunction wi th Arkansas' 1989 b ro i le r  production. Common 
pract ices fo r  disposal of  the waste have the potent ia l  to damage 
the q u a l i t y  o f  downstream r ive rs  and lakes. This p o s s ib i l i t y  is 
enhanced due to the concentration of b ro i le r  production in areas 
of  the s tate with shallow so i ls ,  steep slopes, and l im i ted 
su i tab le  disposal area. Since the r isk  of  p o l lu t io n  is greatest 
immediately fo l lowing disposal and increases wi th ra in fa l l  depth 
and in te n s i t y ,  adverse water qua l i ty  impacts may be mitigated by 
t iming the appl icat ion to coincide with low p ro b a b i l i t y  of surface 
losses o f  the nutr ients  responsible for  eutrophicat ion.  The 
ob ject ive o f  th is  research was to iden t i fy  the time of  year which 
is optimal,  in terms of  surface water qua l i ty ,  f o r  disposal of 
b r o i l e r  l i t t e r  under Arkansas conditions. This ob ject ive was 
accomplished by using the Erosion Productiv i ty Impact Calculator 
(EPIC) model to simulate water qua l i ty  impacts of  land-appl ied 
b r o i l e r  l i t t e r  as a function pr imar i ly  of weather var iables. 
Nutr ient  losses were simulated fo r  long periods using varying 
app l ica t ion  dates. Output from the simulations was used to 
es tab l ish the re la t ionsh ip  between appl icat ion date and average 
nu t r ien t  losses, enabling the id e n t i f i ca t io n  o f  optimal t iming of  
disposal .  The procedure was repl icated fo r  three areas of the 
state in order to characterize spatial v a r i a b i l i t y  in optimal 
t iming o f  disposal .  The resu l ts  indicate that there ex is t 
"windows" w i th in  which waste appl icat ion can minimize nutr ient  
losses and maximize grass y ie lds .  These windows, however, vary 
depending on the parameter o f  in terest  and the locat ion being 
s imulated.

D.R. Edwards and T.C. Daniel

Completion Report to the U.S. Department of the In te r io r ,  
Geological Survey, Reston, VA, June, 1991.

Keywords - Agriculture/Model Studies/Nutr ients/Water Quali ty 
Control/Water Quali ty Modeling
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INTRODUCTION

Arkansas cu r ren t ly  produces more commercial b ro i le rs  than any 

other state in the U.S. (Arkansas A g r icu l tu ra l  S ta t i s t i c s  Service, 

1989). The production value of the 896 m i l l i o n  b ro i le rs  produced 

in 1988 was approximately 1.25 b i l l i o n  do l la rs  - only 4% less than 

the combined statewide production values o f  r ice ,  soybeans and 

cotton (Arkansas Agr icu l tu ra l  S ta t i s t i c s  Service, 1989). B ro i le r  

production thus dominates a l l  other commodities with respect to 

the s ta te 's  ag r icu l tu ra l  economy.

The waste associated with b r o i l e r  production, commonly 

re ferred to as l i t t e r  (a combination o f  manure and bedding 

mater ia l ) ,  is p e r io d ica l ly  removed from the b r o i le r  houses and 

disposed of. The customary method o f  disposal is  to spread the 

l i t t e r  over f ie ld s  in the v i c i n i t y  o f  the b r o i l e r  houses. In 

addit ion to preventing excessive accumulation of  l i t t e r ,  t h i s  

pract ice increases the f e r t i l i t y  o f  receiv ing areas since b r o i le r  

l i t t e r  t y p ic a l ly  contains about 4.1% to ta l  ni trogen (N), 1.4% 

to ta l  phosphorus (P), and 2.1% potassium (dry basis) (Edwards and 

Daniel, 1992). The nu tr ien ts  benef ic ia l  from a so i l  f e r t i l i t y  

perspective, however, can be detr imental to water q u a l i t y .  During 

storms, nutr ients contained in the l i t t e r  may be transported o f f  

the area of appl icat ion and enter streams and lakes. The 

potentia l  for  nu t r ien t  loss and thus eutrophicat ion promotion is 

greatest immediately fo l lowing l i t t e r  appl icat ion when the 

quant i ty  of ava i lable nutr ients  is  greatest.
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Concerns regarding water qua l i ty  impacts o f  sur face-appl ied 

b r o i l e r  waste are increasing in areas such as Northwest Arkansas 

where production is heavi ly  concentrated. Beaver Lake, the water 

source fo r  approximately 100,000 persons in Northwest Arkansas, is 

qu ick ly  becoming a focal point o f  such issues due to intense 

b r o i l e r  production in the White River basin and evidence o f  

eutrophic nu tr ien t  loadings in the upper reaches of  the lake. 

Compounding factors such as steep topography and shal low, cherty 

s o i l s  act to increase th is  apprehension. The potentia l  problems 

associated with b r o i l e r  l i t t e r  production are not, however, unique 

to Northwest Arkansas. S ign i f ican t  b r o i l e r  production occurs in 

the western and central port ions of the s ta te. As b r o i l e r  

production continues to expand, in terms o f  both number of  

f a c i l i t i e s  and areal extent,  anxiet ies regarding the environmental 

impl icat ions of  production w i l l  be shared by an increasing number 

o f  c i t izen s ,  local governments, service agencies, and regu la tory  

agencies.

I t  is  w i th in  the capab i l i ty  o f  users of  b ro i le r  l i t t e r  to 

con t ro l ,  to some extent , adverse water q u a l i ty  impacts re su l t in g  

from l i t t e r  disposal.  For example, nu t r ien t  loadings to streams 

and lakes may be reduced by spreading the l i t t e r  on land wi th  low 

slopes, by decreasing the appl icat ion rate ,  and by t iming the 

app l ica t ion  to coincide with low l ike l ih o o d  of  runoff-producing 

r a i n f a l l .  Management options such as these are known as Best 

Management Practices, or BMPs. BMPs are idea l ly  id e n t i f i e d  on the
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basis o f  experimental resu l ts  and then communicated to end users 

by customary dissemination channels. In some cases, cost sharing 

incent ives are of fered to increase BMP implementation.

The ro le  o f  BMPs in re c t i f y in g  problems associated with 

b r o i l e r  l i t t e r  disposal is  current ly  re s t r i c te d  by both p rac t ica l  

and technical problems. The practical problems stem from the fac t  

th a t  the user o f  the l i t t e r  may not have great la t i tu d e  with 

respect to choosing the receiving slopes and so i l s ;  the user is  

o f ten constrained to the ex is t ing s i tua t ion  insofar as i t  appl ies 

to  these two var iab les .  The technical problems are associated 

w i th  a lack o f  theo re t ica l  and experimental investigations which 

p rec ise ly  i d e n t i f y  optimal loading rates and appl icat ion times as 

a func t ion  of  physical and bio logical  var iab les. This is  not to 

say tha t  l i t t e r  users receive no guidance regarding proper loading 

ra te  and app l ica t ion  t im ing ;  the Univers ity  of  Arkansas 

Cooperative Extension Service currently  recommends an app l ica t ion  

ra te  o f  from two to fou r  tons of  l i t t e r  per acre, applied dur ing 

the spring.  However, t h i s  recommendation is  ostensibly derived 

from p lant /c rop n u t r ie n t  requirement considerations ra ther than 

from rigorous inves t iga t ions  of  runoff  water qua l i ty .  I t  i s  thus 

uncerta in whether pract ices which may be best from a plant  growth 

perspective are always best from a water q u a l i t y  perspective.

Optimal t iming o f  b r o i le r  l i t t e r  disposal is  l i k e l y  the leas t  

expensive BMP determination and the easiest BMP to implement. The 

ob jec t ive  o f  th is  research was to establ ish the time of  year which

3



is  best, from a water q u a l i t y  perspective, f o r  disposal o f  b r o i le r  

l i t t e r  by customary means. Characterizat ion of  the spatial 

v a r i a b i l i t y  o f  optimal disposal t iming is  encompassed in th is  

research ob ject ive.
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RELATED RESEARCH

As Magette et a l . (1988) have noted, pou l t ry  waste has not 

received the same amount o f  a t tent ion from researchers as other 

a g r ic u l tu ra l  wastes such as da iry  waste, swine waste, and others.

A comprehensive review o f  the contr ibu t ion o f  ag r icu l tu ra l  waste 

to non-point source p o l lu t io n  by Khaleel et a l . (1980) contained 

no mention o f  the ro le  o f  pou l t ry  waste. Although some studies 

have investigated water q u a l i t y  aspects o f  land appl icat ion of  

pou l t ry  waste, the pauci ty  o f  experimental information inh ib i ts  

attempts to develop methods to a l lev ia te  any adverse environmental 

impacts o f  pou l t ry  waste.

Giddens and Barnett (1980) analyzed ru n o f f  from 

l i t t e r - t r e a t e d  plots  f o r  sediment and microbial content. Runoff 

from bare p lo ts  receiv ing higher appl icat ion rates contained 

appreciable co l i fo rm bacter ia ;  in some cases, the col i form content 

exceeded recreational and dr ink ing water standards. The authors 

concluded tha t  no water q u a l i t y  problems should resu l t  from 

app l ica t ion  o f  "moderate" amounts o f  pou l t ry  waste unless 

"excessive" r a in f a l l  occurs. Since "excessive" r a in fa l l  

in e v i ta b ly  occurs, the authors'  conclusion suggests that the 

fu ture  research should invest igate the ro le  o f  r a in fa l l  

i n te n s i t ie s  wi th regard to p o l lu t io n  from land-appl ied poult ry  

waste.

McCleod and Hegg (1984) investigated surface water qua l i ty  

impacts o f  pastures t reated wi th municipal sludge, commercial
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f e r t i l i z e r ,  da iry  manure, and pou l t ry  manure. Runoff from p lo ts  

treated with these f e r t i l i z e r s  was analyzed fo r  to ta l  suspended 

so l ids ,  to ta l  Kjeldahl N, ammonium N, n i t r a te  N, to ta l  P, and 

other parameters. The experiment demonstrated the dependence o f  

runo f f  q u a l i t y  on the number o f  r a in f a l l  events a f te r  f e r t i l i z e r  

app l ica t ion .  Overal l ,  ru no f f  from plots  t rea ted with commercial 

f e r t i l i z e r  was worst in terms o f  water q u a l i t y ;  runo f f  from the 

f i r s t  r a i n f a l l  event exceeded dr ink ing water standards fo r  n i t r a te  

N concentrat ion. However, ru n o f f  from p lo ts  t reated with pou l t ry  

manure was second worst in terms of  water q u a l i t y .  Total Kjeldahl 

N in ru no f f  from poul t ry  manure p lo ts  was p r a c t i c a l l y  ident ica l  to 

that  from commercial f e r t i l i z e r  p lo ts  fo r  the f i r s t  r a in fa l l  

event; to ta l  P runof f  concentrat ion was greatest  fo r  the pou l t ry  

manure p lo t  fo r  the f i r s t  r a i n f a l l  event.

Westerman et a l . (1983) conducted a f a c t o r i a l  experiment to 

determine the re la t i v e  importance of  var iables a f fec t ing  surface 

losses o f  nu tr ien ts  from land treated wi th p o u l t ry  waste. The 

var iables considered were so i l  type, r a i n f a l l  in te n s i t y ,  manure 

type, app l ica t ion  ra te , and drying time. Both appl icat ion ra te 

and r a i n f a l l  i n te n s i ty  were found to s i g n i f i c a n t l y  a f fec t  surface 

nu t r ien t  losses. Id e n t i f i c a t io n  o f  app l ica t ion  rate  as a 

s i g n i f i cant causative var iab le  is  unsurp r is ing , and the 

impl ica t ions of  th is  f i n d i n g are s t r a i ght forward. The 

id e n t i f i c a t i o n  of  in te n s i t y  as a s ig n i f i c a n t  causative var iab le ,  

however, s t rongly  suggests an inf luence due to appl icat ion t im ing.
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Since r a i n f a l l  depths and in te n s i t i e s  are known to  e xh ib i t  

d e f in i t e  annual trends, i t  fo l lows that some times o f  the year are 

more l i k e l y  to be associated w i th  high r a in f a l l  i n te n s i t i e s  than 

others. Thus, waste app l ica t ion  dates during periods wi th a 

r e la t i v e l y  high p robab i l i ty  o f  intense r a in f a l l  w i l l  l i k e l y  be 

associated wi th  re la t ive ly  high surface n u t r ie n t  losses.

Having established tha t  r a i n f a l l  i n te n s i ty  plays a 

s i g n i f i c a n t  ro le  in po l lu t ion  due to poult ry  waste app l ica t ion ,  i t  

would be desi rable f ind an account o f  using t h i s  knowledge in 

conjunction wi th N and P k in e t ic s  to determine ap p l ica t ion  t imings 

which, on the whole, minimize ru n o f f  p o l lu t io n .  Unfortunate ly, 

there are no published resu l ts  o f  research to address t iming 

e f fec ts  on runof f  water q u a l i t y .  The reason f o r  t h i s  lack of  

information can be traced to the fac t  that there is  no 

mathematical simulation model developed s p e c i f i c a l l y  to p red ic t  

water q u a l i t y  impacts re su l t in g  from disposal o f  p o u l t ry  waste. 

However, the recently-developed EPIC model (Wi l l iams et a l . ,  1983, 

1989, 1990a, 1990b) contains a l l  the components necessary to 

answer the question of optimal t iming of  po u l t ry  waste 

ap p l ica t ion .  This comprehensive simulat ion model pred ic ts  ru n o f f ,  

sediment y i e ld ,  plant growth, nu t r ien t  uptake, and ru no f f  losses 

of n i t r a t e ,  organic N, and P.  EPIC al so computes n u t r ie n t  

m ine ra l iza t ion ,  d e n i t r i f i c a t i o n ,  and immobi l izat ion.
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PROCEDURE

This research followed the modeling approach in ide n t i fy ing  

optimal t iming of  b ro i le r  l i t t e r  disposal.  The model used was the 

Erosion Product iv i ty  Impact Calcula tor  (EPIC) model (Wil l iams, et 

a l . ,  1983, 1989, 1990a, 1990b). EPIC is a comprehensive model 

which simulates runoff ,  erosion, nu tr ien t  t ra nspo r t  and 

transformations,  crop growth, and numerous other processes. EPIC 

can accommodate varied management pract ices such as t iming of 

f e r t i l i z e r  appl icat ion, composition of  f e r t i l i z e r ,  i r r i g a t i o n ,  and 

others. Thus, the EPIC model is  very f l e x ib le  in terms of 

condit ions and management options i t  can use in computing water 

qu a l i ty  impacts. EPIC has been val idated (Jones and Wil l iams, 

1986) and appl ied in a wide v a r ie ty  of  analyses.

Site/management input f i l e s  were constructed f o r  hypothetical 

f ie ld s  at three locations in Arkansas: Texarkana, S tu t tg a r t ,  

and Fa ye t te v i l le .  General model input data f o r  the locations 

are given in Appendix A. The s o i l s  used in the s imulat ions were 

Sacul loamy sand, Crowley s i l t  loam, and Captina s i l t  loam fo r  

Texarkana, S tu t tga r t ,  and F a y e t te v i l le ,  re sp e c t ive ly .  These so i ls  

were selected as representative o f  the respective regions. The 

data used to describe the so i ls  appear in Appendix A. The 

f i e l d s  were taken as 2 ha wi t h  Bermuda g ra ss  p la n te d  a t  each  

s i te .  The Bermuda grass was simulated as being harvested fo r  hay 

on four to s ix  seek in te rva ls ;  the precise  h a rve s t  schedule varied
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with locat ion and was specified so as to re f lec t  common haying 

p rac t ices .

The f e r t i l i z e r  fo r  the f ie ld s  was simulated as being of 

approximately the same composition as b ro i le r  l i t t e r .  Al l  

ni trogen and phosphorus was assumed to be in organic form, and 

the f e r t i l i z e r  was taken as containing 4.5% to ta l  N and 2.5% to ta l  

P (dry bas is) .  Single appl icat ions of 7.4 Mg/ha-year (dry basis) 

were used, and the f e r t i l i z e r  was simulated as being l i g h t l y  

incorporated.

Meteorological data required by the EPIC model (maximum and 

minimum d a i l y  temperatures, solar radiat ion, re la t i v e  humidity, 

and wind run) were obtained from the Weather Generator (Richardson 

and Wright, 1984) model as modified by Edwards and Mayfield (1990) 

and from EPIC's internal weather data generation algori thm.

EPIC was used to simulate 50 years' surface losses of  N 

(organic and n i t r a te )  and P (sediment bound and soluble) at each 

location fo r  each of 12 d i f fe re n t  f e r t i l i z e r  app l ica t ion  dates 

(January 15, February 1 5 , . . . .December 15). Mean annual losses of 

these parameters were computed, and s ta t is t i c a l  tes ts  were 

performed to determine the e f fec t  o f  f e r t i l i z e r  app l ica t ion  date 

on surface N and P losses. In addit ion, mean annual grass y ie lds 

were computed and tested to analyze app l ica t io n  t im ing  e f f e c t s .

9



RESULTS

Mean annual N losses as a function of  f e r t i l i z e r  t iming fo r  

the Texarkana f i e l d  appear in Table 1. Mean annual n i t r a t e  N 

and to ta l  N losses are grouped with labe ls .  The organic N losses, 

however, can not be grouped with labels ; Table 2 shows ind iv idual  

comparisons o f  mean annual organic N losses as a funct ion of  

f e r t i l i z e r  app l ica t ion  date. Table 3 l i s t s  mean annual phosphorus 

losses as a funct ion o f  appl icat ion t iming. The re la t ionsh ips  

between nu t r ien t  losses and f e r t i l i z e r  appl icat ion t iming are 

depicted in Figures 2 and 3. Organic N losses are lowest fo r  

appl icat ions during June through December, whi le n i t r a t e  N losses 

are minimized fo r  appl icat ion during October through A p r i l .  As 

indicated by the grouping of  means, appl icat ion t iming makes 

l i t t l e  d i f fe rence in the magnitude of  surface losses o f  to ta l  N. 

Sediment-bound P losses are seen to be minimized fo r  appl icat ions 

during June through December. Soluble P losses, however, 

demonstrate l i t t l e  dependence on f e r t i l i z e r  appl icat ion t im ing. 

Total P losses are general ly less fo r  appl icat ions during the 

second ha l f  o f  the year.

Simulated mean annual surface N losses fo r  the S tu t tg a r t  

f i e l d  are shown in Table 4. N i t ra te  N losses could not be 

grouped with labe ls ;  t  - tes t  r esul t s o f  compar isons between means 

are shown in Table 5. Simulated P losses appear in Table 6 , and 

t - t e s t  resu l ts  o f  sedimerit-bound P (wh ich  could not be grouped 

wi th labels) losses are given in Table 7. The simulated mean

10



Appl ica t ion  
Date

Organic Na 
(kg/ha)

N i t ra te  Nb 
(kg/ha)

Total Nb 
(kg/ha)

January 11.23 3.84 bc 15.07 ab

February 11.74 3.77 bc 15.51 ab

March 12.35 3.84 bc 16.19 ab

Apri 1 13.07 4.08 bc 17.14 a

May 11.63 4.55 abc 16.18 ab

June 8.70 5.23 abc 13.93 ab

July 9.18 5.98 ab 15.16 ab

August 7.18 7.38 a 14.56 ab

September 9.60 4.18 abc 13.78 ab

October 8.60 4.44 abc 13.04 b

November 8.53 4.10 bc 12.63 b

December 9.48 3.54 c 13.02 b

a Organic N losses cannot be grouped with labels .

b Means wi th the same le t te rs  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f f e r e n t  by t - t e s t  at the 0.05 leve l .
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Table 1. Simulated mean annual N losses fo r  the Texarkana 
f i e l d .



Table 2. t-T e s t Results o f  simulated mean annual organic N losses 
fo r  the Texarkana f i e ld .

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan -

Feb NSa -

Mar NS NS -

Apr NS NS NS -

May NS NS NS NS -

Jun Sb S S S S -

Jul NS s s s s NS -

Aug S s s s s NS S -

Sep NS NS NS s NS NS NS NS -

Oct NS s s s S NS NS NS NS -

Nov NS s s s S NS NS NS NS NS -

Dec NS NS s s NS NS NS S NS NS NS -

a Not s ig n i f ic a n t ly  d i f fe re n t  at the 0.05 le v e l.  

b S ig n i f ic a n t ly  d i f fe re n t  at the 0.05 le v e l.
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Table 3. Simulated mean annual P losses fo r  the Texarkana 
f i e l d .

App l ica t ion
Date

Sediment Pa 
(kg/ha)

Soluble Pa 
(kg/ha)

Total Pa 
(kg/ha)

January 23.07 abcde 8.46 a 31.54 abc

February 24.10 abcd 8.52 a 32.62 abc

March 25.31 ab 8.49 a 33.79 ab

A p r i l 26.89 a 8.36 a 35.25 a

May 24.52 abc 8.42 a 32.93 abc

June 18.85 defg 8.65 a 27.50 bcde

Ju ly 19.81 bcdef 8.52 a 28.33 abcde

August 15.09 g 8.71 a 23.81 e

September 19.58 bcdefg 8.10 a 27.68 abcde

October 17.22 efg 8.16 a 25.38 cde

November 16.99 fg 7.88 a 24.87 de

December 18.92 cdefg 7.50 a 26.42 bcde

a Means wi th the same le t te r s  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f fe re n t  by t - t e s t  at the 0.05 le v e l .
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Fig. 1. E f fec t  o f  app l ica t ion  timing on N losses fo r  the Texarkana 
f i e l d .
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Fig. 2. E f fec t  o f  app l ica t ion  t iming on P losses fo r  the Texarkana 
f i e l d .
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Table 4. Simulated mean annual N losses f o r  the S tu t tga r t  
f i e l d .

Appl icat ion 
Date

Organic Na 
(kg/ha)

N i t r a te  Nb 
(kg/ha)

Total Na 
(kg/ha)

January 10.65 abc 6.97 17.62 ab

February 10.77 abc 6.97 17.74 ab

March 11.35 abc 6.71 18.07 ab

Apr i l 12.24 ab 6.08 18.32 ab

May 12.90 a 8.76 21.67 a

June 12.06 ab 9.33 21.39 a

July 9.00 c 8.97 17.96 ab

August 9.32 c 7.47 16.78 b

September 9.44 bc 7.95 17.39 ab

October 9.52 bc 9.52 19.05 ab

November 9.02 c 8.59 17.60 ab

December 9.60 bc 7.05 16.65 b
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a Means with the same le t t e r s  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f fe re n t  by t - t e s t  at the 0.05 le v e l .

b N i t ra te  N losses cannot be grouped wi th labe ls .



Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan -

Feb NSa -

Mar NS NS -

Apr NS NS NS -

May NS NS NS S -

Jun Sb NS S s NS -

Jul NS NS NS NS NS NS -

Aug NS NS NS NS NS NS NS -

Sep NS NS NS NS NS NS NS NS -

Oct S S S S NS NS NS NS NS -

Nov s NS S S NS NS NS NS NS NS -

Dec NS NS NS NS NS NS NS NS NS S NS

a Not s ig n if ic a n t ly  d if fe re n t a t the 0.05 le v e l.  

b S ig n if ic a n t ly  d if fe re n t at the 0.05 le v e l.

17

Table 5. t-T e s t resu lts  o f simulated mean annual n it ra te  N losses 
fo r  the S tu ttg a rt f ie ld .



Table 6. Simulated mean annual P losses fo r  the S tu t tga r t  
f i e l d .

Appl ica t ion
Date

Sediment Pa 
(kg/ha)

Soluble Pb 
(kg/ha)

Total Pb 
(kg/ha)

January 19.82 22.94 a 42.76 a

February 19.95 23.33 a 43.28 a

March 21.03 22.69 a 43.72 a

Apr i l 22.72 22.08 a 44.80 a

May 25.11 21.66 a 46.77 a

June 23.79 21.78 a 45.57 a

July 17.49 22.74 a 40.22 a

August 17.99 22.45 a 40.44 a

September 17.67 22.28 a 39.96 a

October 17.56 21.53 a 39.09 a

November 16.26 21.09 a 37.35 a

December 17.28 20.45 a 37.74 a

a Sediment P losses cannot be grouped with labe ls .

b Means with the same le t te rs  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f fe re n t  by t - t e s t  at the 0.05 le v e l .
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Jan -

Feb NSa -

Mar NS NS -

Apr NS NS NS -

May NS NS NS NS -

Jun NS NS NS NS NS -

Jul NS NS NS Sb S s -

Aug NS NS NS NS s s NS -

Sep NS NS NS NS s s NS NS -

Oct NS NS NS NS s s NS NS NS -

Nov NS NS NS S s s NS NS NS NS -

Dec NS NS NS NS s s NS NS NS NS NS

a Not s i g n i f i c a n t l y  d i f fe re n t  at the 0.05 le ve l .  

b S ig n i f i c a n t l y  d i f f e re n t  at the 0.05 leve l .
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annual n u t r ie n t  losses are depicted in Figures 3 and 4. Similar 

to the simulat ions fo r  the Texarkana f i e l d ,  organic N losses for  

the S tu t tg a r t  f i e l d  were greater f o r  appl icat ions during the f i r s t  

h a l f  o f  the year whereas n i t r a te  N losses were leas t  f o r  

appl icat ions during January through A p r i l .  Again, to ta l  N losses 

did not e xh ib i t  great dependence on the timing o f  f e r t i l i z e r  

app l ica t ion .  Sediment-bound phosphorus losses were greater for  

appl icat ion during January through June, but soluble P losses as 

well  as to ta l  P losses were la rg e ly  independent o f  appl icat ion 

t im ing.

Simulated mean annual n u t r ie n t  losses fo r  the Faye t tev i l le  

loca t ion  are given in Tables 8 through 10 and are i l l u s t r a t e d  in 

Figures 5 and 6. The trends establ ished by the data f o r  Texarkana 

and S tu t tga r t  held fo r  the F a ye t te v i l le  data. Organic N losses 

were greater f o r  appl icat ions from January through August, and 

n i t r a te  N as well  as to ta l  N losses were greater f o r  appl icat ions 

during May through September. Sediment-bound phosphorus losses 

were greatest f o r  March through August appl icat ions,  but both 

soluble and to ta l  P losses were not appreciably inf luenced by the 

t iming of  f e r t i l i z e r  app l ica t ion .

Table 11 shows the y ie lds  re su l t in g  from d i f f e r e n t  f e r t i l i z e r  

appl icat i on dates fo r  the three f ie ld s  s im u la te d . This table 

shows rather v i v i d l y  tha t  y ie ld  is  s ig n i f i c a n t l y  a f fected by the 

time o f  year at which the f e r t i l i z e r  is  appl ied. The best time of 

year to apply, from the standpoint o f  obtaining maximum forage

20



Fig. 3. Effect o f  app l ica t ion  t iming on N losses fo r  the 
S tu t tg a r t  f i e l d .
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Fig. 4. Effect o f  app l ica t ion  t iming on P losses fo r  the 
S tu t tga r t  f i e l d .
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Appl icat ion
Date

Organic Na 
(kg/ha)

N i t ra te  Nb 
(kg/ha)

Total Na 
(kg/ha)

January 5.26 ab 2.44 7.70 abc

February 5.33 ab 2.52 7.84 abc

March 5.47 ab 2.44 7.90 abc

A p r i l 5.81 ab 2.56 8.36 abc

May 5.87 ab 3.28 9.15 abc

June 5.70 ab 3.79 9.49 ab

July 6.15 a 3.48 9.62 a

August 5.25 ab 3.83 9.08 abc

September 5.05 ab 4.21 9.26 abc

October 4.79 ab 2.58 7.37 bc

November 4.46 b 2.56 7.02 c

December 4.85 ab 2.29 7.14 bc

a Means with the same le t t e r s  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f f e re n t  by t - t e s t  at the 0.05 le ve l .

b N i t ra te  N losses cannot be grouped wi th labe ls .
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Table 8. Simulated mean annual N losses fo r  the F a y e t te v i l le  
f i e l d .



Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan -

Feb NSa -

Mar NS NS -

Apr NS NS NS -

May NS NS NS NS -

Jun NS NS NS NS NS -

Jul NS NS NS NS NS NS -

Aug NS NS NS NS NS NS NS -

Sep Sb S S S NS NS NS NS -

Oct NS NS NS NS NS NS NS NS s -

Nov NS NS NS NS NS NS NS NS s NS -

Dec NS NS NS NS NS NS S S s NS NS -

a Not s ig n i f ic a n t ly  d i f fe re n t  at the 0.05 le v e l.  

b S ig n i f ic a n t ly  d i f fe re n t  at the 0.05 le v e l.
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Table 9. t-T es t resu lts  o f  simulated mean annual n i t ra te  N losses 
fo r  the F a ye tte v i l le  f ie ld .



App l ica t ion  
Date

Sediment Pa 
(kg/ha)

Soluble Pa 
(kg/ha)

Total Pa 
(kg/ha)

January 9.79 abc 8.61 a 18.40 ab

February 9.93 abc 8.55 a 18.48 ab

March 10.17 abc 8.63 a 18.80 ab

A p r i l 10.81 abc 8.64 a 19.45 ab

May 11.16 ab 8.61 a 19.78 ab

June 11.26 ab 8.40 a 19.66 ab

Ju ly 12.36 a 8.33 a 20.69 a

August 10.39 abc 8.36 a 18.74 ab

September 9.45 abc 8.02 a 17.47 ab

October 8.75 bc 7.62 a 16.37 ab

November 8.00 c 7.45 a 15.45 b

December 8.71 bc 7.57 a 16.28 ab

a Means wi th the same le t t e r s  with in the same column are not 
s i g n i f i c a n t l y  d i f f e r e n t  by t - t e s t  at the 0.05 leve l .
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Table 10. Simulated mean annual P losses fo r  the Faye t tev i l le  
f i e l d .



Fig. 5. E f fec t  o f  app l ica t ion  timing on N losses fo r  the 
F a ye t te v i l le  f i e l d .
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Fig. 6. E f fec t  o f  app l ica t ion  t iming on P losses fo r  the 
F a y e t te v i l le  f i e l d .
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Table 11. Simulated mean annual grass y ie ld s .

Appl icat ion
Date

Yield (Mg/ha)

Texarkanaa S tu t tg a r ta F a ye t te v i l le a

January 7.61 a 8.61 a 11.28 a

February 7.59 a 8.93 a 11.24 a

March 7.62 a 8.94 a 11.26 a

Apr i l 7.22 ab 8.67 ab 11.02 a

May 6.26 c 4.89 d 9.49 b

June 5.27 d 3.83 f 8.57 c

July 5.22 d 4.08 e f 6.94 d

August 5.73 d 4.23 e 7.44 d

September 6.36 c 4.94 d 8.51 c

October 6.94 b 6.73 c 9.99 b

November 7.40 a 8.12 b 10.94 a

December 7.51 a 8.52 ab 11.10 a
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a Means with the same le t t e r s  w i th in  the same column are not 
s i g n i f i c a n t l y  d i f f e re n t  by t - t e s t  at the 0.05 le v e l .



y ie ld ,  is without exception during the months o f  November through 

A p r i l .  The dependence of  grass y ie ld  on app l ica t ion  t iming is 

shown in Figure 7.

The preceding resul ts  have indicated tha t  the best time of  

year to apply l igh t ly - inco rpo ra ted  waste having the same 

composition as b ro i le r  l i t t e r  varies depending on which po l lu tan t  

losses one wishes to minimize. This optimal t iming may be 

d i f fe re n t  i f  instead of  minimizing simulated mean annual po l lu tan t  

losses, one wishes to maximize y ie ld .  This po in t  is  i l l u s t r a te d  

in Table 12, which l i s t s  the best time o f  year to apply waste fo r  

each of  the three locations as a function o f  d i f f e r e n t  c r i t e r i a .  

Table 12, however, l i s t s  optimal appl icat ion t iming based sole ly  

on the magnitudes of  simulated nu t r ien t  losses and y ie ld s .  I t  

would be more proper, based on the resu l ts  o f  the s ign i f icance 

tes t ing ,  to speak in terms o f  optimal "windows", w i th in  which the 

resu l t ing  nu t r ien t  losses and y ie lds  are not s i g n i f i c a n t l y  

d i f fe re n t .  These optimal app l ica t ion  windows are presented in 

Figures 8 through 10. Figure 8 indicates tha t  f o r  Texarkana, 

appl icat ion during November minimizes a l l  n u t r ie n t  losses and 

resu l ts  in maximum y ie ld .  Appl ica t ion during other months e i th e r  

does not minimize nu t r ien t  losses and/or does not maximize y ie ld .  

Figure 9 shows tha t  fo r  S tu t tga r t ,  the optimal window  is  broader 

from December through March. For F a y e t te v i l le ,  as shown in Figure 

10, the optimal window is  broader s t i l l .  App l ica t ions  during the
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Fig. 7. Effect  of  app l ica t ion  t iming on grass y ie ld s .
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Location

C r ite r io n Texarkana S tu ttga rt F a ye tte v i l le

Minimize annual 
organic N loss August July November

Minimize annual 
n i t r a te  N loss December A pril December

Minimize annual 
to ta l  N loss November December November

Minimize annual 
sediment P loss August November November

Minimize annual 
soluble P loss December December November

Minimize annual 
to ta l  P loss August November November

Maximize annual 
grass y ie ld March March January
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Table 12. Optimal timing of waste disposal based on simulation 
re s u l ts .



Fig. 8. Optimal appl icat ion t iming windows fo r  the Texarkana 
f i e l d .
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Fig. 9. Optimal app l ica t ion  t iming windows fo r  the S tu t tg a r t  
f i e l d .
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Fig. 10. Optimal app l ica t ion  t iming windows fo r  the Faye t tev i l le  
f i e l d .
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months o f  November through Apr i l  w i l l  r e s u l t  in minimum nu t r ien t  

losses and maximum y ie ld s .

I t  may be tha t  based on the nu t r ien t  status o f  downstream 

lakes, there is more concern about phosphorus losses from upstream 

f i e l d s  than about n it rogen losses or vice versa. In such cases, 

one could use only the optimal t iming windows that are re la ted to 

losses of  the n u t r ie n t  o f  in te res t  and develop more s i te - s p e c i f i c  

waste management s t ra teg ies .

There are aspects o f  th is  study which potentia l  users o f  th is  

information should be aware of  before drawing broad general 

conclusions. F i r s t ,  the re la t i v e l y  low grass y ie lds fo r  the 

Texarkana s i te  and the r e la t i v e l y  high y ie ld s  fo r  the Faye t tev i l le  

s i t e  were unexpected. I t  is possible tha t  the sandy soi l  used in 

the Texarkana simulat ions f a c i l i t a t e d  excessive n i t ra te  leaching 

which could have depressed y ie lds .  Without fu r the r  study to 

va l ida te  these resu l ts  or to r e c t i f y  the model and/or parameter 

values, however, i t  is  not possible to say whether the simulated 

y ie ld  resu l ts  accurate ly r e f l e c t  actual condi t ions. In the event 

tha t  the plant  growth component of  EPIC does merit  fu r the r  

refinement fo r  the s i tu a t io n  studied, i t  is  probable that  such a 

ref inement would have more impact on the magnitudes of simulated 

n u t r ie n t  losses ra ther  than the re la t i ve di f ferences between 

n u t r ie n t  losses as a funct ion of  app l ica t ion  t iming.

A very s ig n i f i c a n t  aspect o f  th is  study is  that EPIC does not 

contain a ni trogen v o la t i l i z a t i o n  component. This is why the
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waste was simulated as being l i g h t l y  incorporated rather  that  

surface-appl ied as is  most commonly pract iced.  I t  is well known 

tha t  s ig n i f i c a n t  ammonia v o la t i l i z a t i o n  can occur fo l lowing 

app l ica t ion  of  b r o i le r  l i t t e r .  Since warm temperatures favor 

v o l a t i l i z a t i o n ,  i t  is  l i k e l y  tha t  less surface losses of  

n i trogen would have been simulated fo r  warm season appl icat ions i f  

sur face-app l icat ion ,  ra ther  than l i g h t  incorporat ion,  o f  the waste 

had been simulated. This would probably have the e f fec t  of  

fu r th e r  depressing y ie lds  with only a minor impact on simulated 

phosphorus losses. Thus, i t  is  possible tha t  the optimal 

app l ica t ion  t iming windows fo r  y ie ld  and phosphorus losses 

i d e n t i f i e d  fo r  the scenario o f  l i g h t l y  incorporated waste are 

s im i la r  to those which would be id e n t i f i e d  f o r  a s i tua t ion  of  

surface-appl ied waste. Obviously, however, t h i s  should not be 

assumed u n t i l  EPIC has been modified and a new study has been 

performed.

The general resu l ts  o f  the EPIC simulat ions appeared quite 

reasonable. As has been stated e a r l ie r ,  the model has already 

been val idated fo r  selected s i tua t ions .  Before the model is  used 

to aid in any type of  po l icy  development, however, i t  should be 

r igo rous ly  tested fo r  the type of  s i tu a t io n  to which i t  is  to be 

appl ied. I t  i s  most l i k e l y  tha t  f u r t h e r  te s t in g  and

modi f ica t ion  would not re s u l t  in re su l ts  th a t  are s ig n i f i c a n t l y  

d i f f e r e n t  from those obta ined w i th  the current  model (except in 

the instance o f  ammonia v o l a t i l i z a t i o n ) .  S t i l l ,  such an
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inves t iga t ion  should be performed in order f o r  users of  the model 

to gain confidence in model resu l ts  and to ensure a p p l i c a b i l i t y  of  

the re su l ts .
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CONCLUSIONS

The fo l lowing conclusions are drawn from the resu l ts  of  th is  

study:

1. Simulated grass y ie ld  and surface losses o f  N and P due to 

l i g h t  incorporation of  waste wi th cha rac te r is t ics  s im i la r  to 

b r o i l e r  l i t t e r  vary depending on the timing o f  the app l ica t ion .

2. Based on the resu l ts  o f  the s imulat ions, there are 

appl icat ion "windows" w i th in  which the waste can be appl ied and 

cause minimum nutr ien t  losses and maximum y ie ld s .

3. The locat ion and length o f  these windows varies with 

location of  the s i te  being analyzed and is most l i k e l y  re la ted to 

meteorological variables.

4. Under the conditions studied, the ap p l ica t ion  window 

resu l t ing  in minimum nu t r ien t  losses and maximum grass y ie lds  fo r  

Texarkana is  the month o f  November; for  S tu t tg a r t ,  the window is  

December through March; fo r  Faye t tev i l le ,  the window is  November 

through A p r i l .

The fo l lowing addit ional issues must be addressed to extend 

the a p p l i c a b i l i t y  of th is  type o f  study:

1. A v o la t i l i z a t i o n  component should be added to EPIC to 

describe nitrogen dynamics in the s i tua t ion  o f  unincorporated 

waste appl icat ion.

2. The plant growth component of  EPIC should be adjusted to 

re su l t  in predicted y ie lds  o f  magnitudes more s im i la r  to observed 

y i e l d s .
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3. The model should be r igorous ly  tested using actual water 

q u a l i t y  data from f ie ld s  in Arkansas which are treated with 

b r o i l e r  l i t t e r .

39



LITERATURE CITED

Arkansas A g r ic u l tu ra l  S ta t i s t i c s  Service. 1989. Arkansas

a g r ic u l tu ra l  s t a t i s t i c s  1989. Report Series 312. Arkansas 

A g r icu l tu ra l  Experiment S ta t ion ,  Univers i ty  o f  Arkansas, 

F a y e t te v i l le .

Edwards, D.R. and J.D. Mayfield. 1990. Computer generation of 

d a i ly  weather var iab le  values f o r  Arkansas. Arkansas Farm 

Research 3 9 (6 ) :8.

Edwards, D.R. and T.C. Daniel. 1992. Environmental impacts of 

on-farm p o u l t ry  waste disposal - a review. Bioresource 

Technology ( in  press).

Giddens, J. and A.P. Barnett.  1980. Soi l loss and

microb io log ica l  q u a l i t y  o f  ru n o f f  from land treated with 

pou l t ry  l i t t e r .  J. Environmental Quali ty 9:518-520.

Jones, C.A. and J.R. Will iams. 1986. Val idation o f  EPIC. In  

J.A. Maetzold and K.F. A l t  (Eds.) .  Forum on Erosion 

P rod uc t iv i ty  Impact Estimators, May 8-9, 1985, Washington, 

D.C.

Khaleel, R., K.R. Reddy, and M.R. Overcash. 1980. Transport 

o f  po ten t ia l  po l lu tan ts  in ru n o f f  water from land areas 

receiv ing animal wastes: a review. Water Research 

14:421-436.

Laurent, G.D. 1984. Soi l survey o f  Lafayette, L i t t l e  River, and 

M i l l e r  Counties, Arkansas.  Soi l  Conservation Service, U.S. 

Department o f  Agr icu l tu re ,  Washington, D.C.

40



Laurent, G.D. and T.A. Johnson. 1975. Unpublished data.

Un ivers i ty  o f  Arkansas Soi l Characterizat ion Laboratory, 

Un ivers i ty  o f  Arkansas, F a y e t te v i l le .

Magette, W.L., R.B. B r in s f ie ld ,  and D.A. Hrebenach. 1988.

Water q u a l i t y  impacts o f  land appl ied b r o i l e r  l i t t e r .  Paper 

No. 88-2050. ASAE, St. Joseph, MI.

McLeod, R.V. and R.O. Hegg. 1984. Pasture runo f f  water

q u a l i t y  from app l ica t ion  o f  inorganic  and organic nitrogen 

sources. J. Environmental Qua l i ty  13:122-126.

Richardson, C.W. and D.A. Wright. WGEN: a model to generate 

d a i ly  weather var iab les .  ARS-8. A g r icu l tu ra l  Research 

Service, U.S. Department o f  A g r icu l tu re ,  Washington, D.C. 

Rutledge, E.M. 1977. Unpublished data. Univers i ty  o f  Arkansas 

Soi l Characterizat ion Lab, U n ive rs i ty  o f  Arkansas, 

Fa ye t te v i l le .

Rutledge, E.M., L.T. West, and R. Sojka. 1975. Unpublished data. 

Univers i ty  o f  Arkansas Soi l Characterizat ion Lab, Univers i ty  

o f  Arkansas, Fa ye t te v i l le .

Scott ,  H.D., J.A. Ferguson, R.E. Sojka, and J.T. Batchelor. 1986. 

Response o f  Lee 74 soybean to i r r i g a t i o n  in Arkansas. Bul l .  

886. Arkansas Agr icu l tu ra l  Experiment Stat ion, Univers i ty  of 

Arkansas, F a y e t te v i l le .  

Thiesse, B.R. 1984. V a r i a b i l i t y  o f  the physical propert ies of  

Captina s o i l s .  Unpublished M.S. Thesis. Department of  

Agronomy, Un ive rs i ty  of  Arkansas, Faye t te v i l le .

41



Westerman, P.W., T.L. Donnelly, and M.R. Overcash. 1983.

Erosion of  so i l  and poul try  manure - a labora tory  study. 

Trans. ASAE 26:1070-1078, 1084.

Wil l iams, J.R., P.T. Dyke, and C.A. Jones. 1983. EPIC - a 

model fo r  assessing the e f fec ts  o f  erosion on so i l  

p roduc t iv i ty ,  pp. 553-572. In  W.K. Laueroth, C.V. 

Skogerboe, and M. Flug (Eds.). Analysis of  Ecological 

Systems: S ta te -o f - the -A r t  in Ecological Modeling, May 24-38, 

Colorado State Un ivers i ty ,  Fort C o l l in s ,  CO.

Wil l iams, J.R., C.A. Jones, J.R. K in i ry ,  and D.A. Spaniel.

1989. The EPIC crop growth model. Trans. ASAE 

32:497-511.

Wil l iams, J.R., C.A. Jones, and P.T. Dyke. 1990a. EPIC - 

Eros ion/Productiv i ty  Impact Calcu la tor  Model: 1. Model 

Documentation. Tech. Bul l .  1768. A g r icu l tu ra l  Research 

Service, U.S. Department o f  A g r icu l tu re ,  Washington, D.C.

Wil l iams, J.R., P.T. Dyke, W.W. Fuchs, V.W. Benson, O.W. Rice,

and E.D. Talyor. 1990b. EPIC--Erosion/Productiv i ty  Impact 

Calculator: 2. User Manual. Tech. B u l l .  1768. Agr icu l tu ra l  

Research Service, U.S. Department o f  Agr icu l tu re ,  Washington, 

D.C.

42



APPENDIX A 

MODEL INPUT DATA

43



Table A .1. Common input va r iab le  values

Variable Value

Drainage area (ha) 2.0

Distance from ou t le t to 
fu r thes t point (km) 0.14

Average channel slope 0.02

Channel roughness factor 0.04

Surface roughness factor 0.24

Slope length (m) 118.0

Slope steepness 0.02

Table A .2. Input variable values fo r  d i f fe re n t  loca tions

Texarkana S tu t tg a r t F aye ttev il l e

Curve number 71 78 71

Latitude 33° 27' 34° 28' 36° 06'

Elevation (m) 110 60 387
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Tab le  A . 3. Input  data  used to  descr ibe  the  Sacul s o i l 3

Layer

1 2 3 4 5 6 7 8 9

Al bedob 
0.15

Depth f rom sur face  (m) 
0.01 0.15 0.25 0.51 0.66 0.97 1.35 1.75 2.03

Bulk  d e n s i t y  (Mg/m3) c 
1.47 1.47 1.45 1.45 1.45 1.65 1.43 1.51 1.51

Sand c o n te n t  (%)
73.6  73.6 67.7 27.9 20.7 19.9 27.5 56.9 44.8

S i l t  c o n te n t  (%)
25.3  25.3 25.1 22.8 28.6 30.3 29.1 16.5 29.9

pH
5.5  5.5 5.7 5.3 5.1 5.0 4.9 4.7 4.6

Sum o f  bases (cmol/kg) 
1.2 1.2 1.4 5.4 4.3 3.6 2.2 1.5 1.1

Organic  carbon (%)
0 .29 0.29 0.23 0.17 0.06 0.06 0.06 0.06 0.06

Cat ion  exchange c apa c i t y  
4 .2  4.2 4.2

(cmol /kg)  
24.5 20.4 21.2 22.0 16.0 13.5

a Taken from Laurent and Johnson (1975) and Laurent  (1984) un less  o therw ise  
s p e c i f i e d .

b Assumed the same as Ruston se r ies  in W i l l i a m s  e t  a l . (1990b) 

c Assumed the  same as Bowie-B in W i l l i ams e t  a l . (1990b)
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Tab le  A . 4. Inpu t  da ta  used t o  descr ibe  the  Crowley s o i l a

Layer

1 2 3 4 5 6 7

A lbedob 
0.14

Depth f rom su r face  (m)c 
0.01 0.05 0.15 0.30 0.46 0.66 0.76

Bu lk  d e n s i t y  (Mg/m3 ) c
1.17 1.17 1.41 1.52 1.53 1.40 1.36

F i e l d  Capac i ty  a t  33 kPa (cm3/cm3 ) c 
0 .26  0.26 0.24 0.22 0.25 0.35 0.38

Sand c o n te n t  (%)
3 .2  3 .2  3 .4 7.0 1.4 1.2 1.2

S i l t  c o n te n t  (%)
78.0  78.0 76.1 72.2 36.6 36.5 36.5

pH
5.2 5.2 5.6 4.4 4.6 4.7 4.7

Sum o f  bases (cmol /kg)
8 .3  8.3  9.0 3.8 8.9 11.5 11.5

Organ ic  carbon (%)
0.92 0.92 0.81 0.40 0.73 0.62 0.62

Cat ion  exchange c a p a c i t y  (cmo l /kg )  
18.2 18.2 18.8 13.7 42.1 44.4 44.4

Sa tu ra ted  C o n d u c t i v i t y  (mm/h)c 
77.2 77.2 28.7 5.5 6.5 0.1 3.8

a Taken from Rut ledge e t  a l . (1975) unless o the rw ise  s p e c i f i e d ,  

b Assumed the  same as Grenada s e r ie s  in  W i l l i a m s  e t  a t .  (1990b) 

c Taken from S co t t  e t  a l . (1986)
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Table A . 5. Inpu t  da ta  used t o  desc r ibe  the  Capt ina soil a

Layer

1 2 3 4 5 6 7 8 9 10

Albedob
0.15

Depth f rom s u r fa ce  (m)
0.01 0 .15 0.30 0.45 0.61 0.76 0.91 1.06 1.22 1.37

Bulk  d e n s i t y  (Mg/m3 )
1.28 1.38 1.38 1.44 1.52 1.51 1.48 1.53 1.50 1.39

F ie ld  c a p a c i t y  a t  33 kPa (cm3/cm3) 
0.33 0 .29 0.28 0 .28 0.31 0.32 0.33 0.34 0.33 0.34

Sand c o n te n t  (%)
23.2 23.2  18.8 17.2 15.6 16.0 16.8 16.4 20.3 14.5

S i l t  c o n te n t  (%)
68.5 67.1 66.2 62.3 58.4 54.9 52.7 52.4 48.6 54.0

pH
5.2 5 .2  5.6 6.1 6 .0 5.1 5.1 5.1 5.1 4.9

Sum o f  bases ( c m o l / k g ) c 
3.2 3 .2  3 .9  5.3 7.3 6.9 6.9 6.9 6.9 11.9

Organic carbon (%)c
0.52 0.52 0.43 0.30 0 .28 0.12 0.12 0.12 0.12 0.13

Cat ion exchange c a p a c i t y  (cmo l /kg )  
9.1 9.1 9.4 11.1 14.9

c
16.5 16.5 16.5 16.5 19.5

Sa tu ra ted  C o n d u c t i v i t y  (mm/h) 
1.35 1.24 1.29 1.36 1.54 2.36 1.67 0.82 1.02 0.83

a Taken from Thiesse (1984) un less  o the rw ise  s p e c i f i e d . 

b Assumed the  same as Nixa s e r i e s  i n  W i l l i a m s  et  a l . (1990b) 

c Taken from Rut ledge (1977 ) .
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Table B .1. S imu la ted  Mean Monthly P r e c i p i t a t i o n

Month P r e c i p i t a t i o n  (mm)

Texarkana S t u t t g a r t F a y e t t e v i l l e

January 97.2 101.0 53.0

February 98.2 76.8 42.8

March 103.7 121.4 107.6

A p r i l 127.9 124.6 105.6

May 134.0 112.3 129.5

June 124.8 109.5 125.2

J u ly 102.2 78.5 83.5

August 99.4 72.7 77.1

September 107.7 68.5 126.1

October 103.1 94.5 118.4

November 135.3 119.5 105.2

December 136.3 127.5 89.7

Tota l 1369.8 1206.9 1163.8
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Tab le B.2.  S imu la ted  Mean Month ly  Runo f f

Month Runoff  (mm)

Texarkana S t u t t g a r t F a y e t t e v i l l e

January 2.0 10.1 1.8

February 2.7 8.7 0.9

March 3.0 13.6 1.9

A p r i l 3 .6 17.3 1.4

May 4.1 12.1 5.2

June 4.1 7.3 5.0

J u l y 1.2 4.9 2.5

August 5.5 4.1 1.3

September 7.5 4.5 6.4

October 2.7 7.2 4.0

November 5.9 18.5 4.4

December 7.6 17.2 4.7

To ta l 49.9 125.5 39.5
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Table B .3 . S imulated Mean Monthly S o la r  R a d ia t io n

Month S o la r  R ad ia tion  (MJ/m2)

Texarkana S tu t tg a r t F a y e t t e v i l le

January 9 8 9

February 11 11 11

March 15 14 15

A p r i l 19 19 19

May 23 22 22

June 24 24 24

J u ly 24 25 24

August 22 22 22

September 18 18 18

October 14 14 14

November 10 10 10

December 9 8 8
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Table B.4.  S imu la ted  Mean Monthly Maximum and Minimum Temperatures

Month Temperature (°C)

Texarkana S t u t t g a r t F a y e t t e v i l l e

Max Min Max Min Max Min

January 10.3 -2 .0 8.6 -1 .3 7.5 -4 .5

February 13.3 -0.1 10.4 -0 .5 9.5 -2 .5

March 17.0 2.9 15.6 4.7 14.0 2.3

A p r i l 22.7 8.8 20.9 9.7 20.2 7.7

May 27.0 13.1 25.9 14.9 23.7 11.6

June 30.8 17.6 30.7 19.7 28.3 16.7

J u l y 33.5 20.3 33.1 22.2 31.6 19.9

August 33.6 20.2 32.8 21.7 32.2 19.8

September 31.1 17.5 29.5 17.8 28.9 16.6

October 25.3 10.9 24.8 11.8 22.6 9.8

November 18.8 5.5 17.6 6.5 15.5 3.6

December 13.7 0.8 11.6 1.2 10.6 -1.1
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