
Inquiry: The University of Arkansas Undergraduate Research Inquiry: The University of Arkansas Undergraduate Research

Journal Journal

Volume 7 Article 14

Fall 2006

Dynamic Composition of Agent Grammars Dynamic Composition of Agent Grammars

Kyle Neumeier
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/inquiry

 Part of the Graphics and Human Computer Interfaces Commons

Recommended Citation Recommended Citation
Neumeier, K. (2006). Dynamic Composition of Agent Grammars. Inquiry: The University of Arkansas
Undergraduate Research Journal, 7(1). Retrieved from https://scholarworks.uark.edu/inquiry/vol7/iss1/
14

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Inquiry: The University of Arkansas Undergraduate Research Journal by an authorized editor of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/inquiry
https://scholarworks.uark.edu/inquiry
https://scholarworks.uark.edu/inquiry/vol7
https://scholarworks.uark.edu/inquiry/vol7/iss1/14
https://scholarworks.uark.edu/inquiry?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol7%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol7%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/inquiry/vol7/iss1/14?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol7%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/inquiry/vol7/iss1/14?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol7%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

COMPUTER ENGINEERING: Neumeier--Dynamic Composition Of Agent Grammars 81

DYNAMIC COMPOSITION OF AGENT GRAMMARS

By Kyle Neumeier
Department of Computer Science and Computer Engineering

Faculty Mentor: Craig Thompson
Department of Computer Science and Computer Engineering

Abstract:

In the very near future, as pervasive computing takes root,
there will be an explosion of everyday objects that are uniquely
identifiable and wrapped by a computational layer- effectively
bringing the object to life. An important component of this
system is the mechanism that will allow humans to interface with
the objects. Menu Based Natural Language Interfaces (MBNU)
seem like a good candidate for this job because of the intuitive
way in which they allow the user to build commands. However,
the MBNLI system will have to scale with the number of objects
in the system. This project describes context free grammar
modules which are small grammar files that can be composed to
formalargergrammar. Grammarmodulescanthenbeassociated
with individual objects, and in this way allow the MBNU to scale
according to the size of the system.

1 Introduction:

1.1 Problem

In a world where electronic devices are shrinking rapidly
and the ability to associate unique identifications with objects is
becoming commonplace, computing is escaping the desktop and
becoming pervasive. The idea behind pervasive computing is
that computers are migrating quickly from the familiar desktops,
laptops, and PDAs that people use and are being incorporated
into everyday objects. These objects-refrigerators, coffee makers,
sprinkler systems, web pages, etc.-will look the same as they do
today, but they will be wrapped in a computational process that
will give them the ability to communicate with people, the
outside world, and even other objects via a programmatic interface
and often a wireless connection [1].

In order to scale such a collection of network devices, or
more generally a system of agents - everyday objects with a
computational wrapper- humans will need some sort of control
mechanism(s). One possible solution is to associate an interface
grammar, or a set of rules describing the object's command set,
with each object. The grammar could then be downloaded into
a sort of next generation remote control which could in tum be

used by a human to control any object that had such a grammar
[2]. In order to accomplish this, the grammars would need to be
able to be composed so that larger grammars could be synthesized
from smaller ones in such a way that allowed for the ability of
grammars to be "plugged in" and allowed for the reuse of
common grammars.

Furthermore, the actual mechanism of communication
with these agents must be intuitive. It is reasonable to think that
an easy, familiar way for humans to communicate with machines
is through the same mechanism that we use to communicate with
each other, that is, through our natural languages (e.g. English).
Therefore, the system of grammars that allow a user to control
the agent should allow commands to be issued via natural
language.

1.2 Objective

The objective of this project is to define a system for
creating multiple grammars (called grammar modules) that can
be composed to build a larger grammar. Such a system would
provide a natural language interface for a multi-agent architecture.

1.3 Scope

The focus of this thesis is dynamic grammar composition
for use with a menu-based natural language system (described
below). A smart home RFID application is assumed but the
results from this thesis are relevant to a much broader collection
of applications that could include asset management. robots,
semantic web, and other applications.

1.4 Organization of this Thesis

Chapter 2 covers background information about Menu
Based Natural Language Interfaces (MBNLI), the Everything is
Alive (EiA) architecture, and grammar composition. Chapter 3
explains an approach to creating a system of composable
grammars via context free grammar modules. Chapter 4 discusses
the implementation of the system. Chapter 5 states the conclusions

and future work.

1

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

82 INQUIRY Volume 7 2006

2 Background:

2.1 Key Concepts

In order to better explain the problem that a distributed
grammar would solve and the method of creating a system of
composable grammars, a brief overview of a related concept is
provided. A discussion of the Everything is Alive project will
clarify the reason that a composable grammar system is desired
in the first place. Then an introduction to Menu Based Natural
Language Interfaces will show how grammars can be used to
build a natural language interface to an object. Next, context free
grammars are reviewed and a few terms relating to composable
grammars are defined. Finally, attributed grammars will be
introduced.

2.1.1 Everything is Alive Agent System Project

The Everything is Alive (EiA) project at the University of
Arkansas aims to develop a road map of pervasive computing.
As an ever increasing number of objects become identifiable by
a computer through technologies such as RFID and IPv6, there
will be a tremendous explosion of things that we can control via
a computer [l]. One goal of the EiA project is to develop an
architecture that organizes these objects with a communication
wrapper, which can be viewed as a kind of agent, into a system
that optimizes usability and scalability [3].

An example of a system of agents at work in the context of
the EiA world is a smart sprinkler system. Imagine that a flower
bed agent has a sensor device that can measure the amount of
water in its soil. When the soil is too dry for its flowers, it sends
a message to the sprinkler agent that tells it to tum on. The
sprinkler then asks the weather agent on the Internet if it will rain
in the next 24 hours. If no rain is likely, then the sprinkler agent
turns on and waters the flowers [1]. A second example is a
thermostat that knows to tum the air conditioner on when a light
turns on 1• The point is that the objects are the same as before
the sprinkler is still a sprinkler and the thermostat is still a
thermostat- but an agent wraps the object, effectively bringing
it to life.

Past work in the EiA project has produced an architecture
that facilitates agent-to-agent communication [4). The agent
class "wraps·· an object and allows it to communicate with other
agents by making available methods that send and receive XML
messages. When XML messages are received by an agent, they
are translated into the underlying object's native language so that
the command can be executed. A few agents have been
constructed, including an RFID reader agent that facilitates
commands such as "tum on," "read for 300 ms" and "tum off
[5].''

2.1.2 Menu Based Natural Language Interfaces

Building natural language interfaces to machines has been
a grand challenge problem for almost as long as computers have

existed. The idea is simple; it would be nice if a user could
control a computer simply by speaking, as if to another person.
The implementation, however, has proved to be extraordinarily
difficult. Problems arise because computers cannot interpret
connotations, cliches, body language, and idioms that all
contribute to our understanding of language. The resulting
situation is that the user either overshoots the ability of the NLI
system by phrasing a command that cannot be understood,
omundershoots the ability of the underlying system by not using
features that are available because the user is not aware of them
or not sure how to phrase the command to use them. This
mismatch between the user's phrasing and the NLI system's
capability is known as the habitability problem [6].

Menu Based Natural Language Interfaces (MBNLI) relieve
the habitability problem by employing a predictive parser and
cascading menus to present the user with a list of next possible
choices. When the user selects a phrase from the menu, the
parser generates a new list of next possible choices. This process
continues until a complete sentence or command is built. Such
a system guarantees that any command the user builds is
syntactically correct. Furthermore, the user can develop an
understanding of the capabilities of the underlying system by
exploring the menus [6].

One particularly useful application of MBNLI technology
is when it is used as the front end to a relational database. The
interface enables users to build queries in English rather than
SQL, allowing users who know nothing about SQL or about the
database schema (i.e. relation and attribute names) to extract
useful information from the database. In the past, NLis to
databases have typically been question and answer systems that
allow users to ask natural language questions; however, these
systems suffer from the habitability problem in that a user does
not know what is able to be asked and exactly how to ask it [7].

The Everything is Alive project has found its own use for
MBNLI. The project envisions a world in which many objects
in the form of agents can be controlled by humans. Thus, an easy
and standard way of issuing commands will be needed. Menu
Based Natural Language Interface technology offers a solution
to this problem. If all agents had an associated grammar, an
MBNLI interface could be generated based on the grammar. The
user would then be able to issue syntactically correct commands
by building them. Furthermore, the user would know exactly
what capabilities the agent has (by virtue of the cascading
menus) [8].

2.1.3 LingoLogic

LingoLogic is an implementation of an MBNLI system
created by Object Services and Consulting, Inc. It was based off
of an earlier implementation developed at Texas Instruments in
the 1980s called NLMenu. The intent of the project was to
develop an MBNLI generator for a relational database. The idea
was that if a static grammar and translation for SQL was

2

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

COMPUTER ENGINEERING: Neumeier--Dynarnic Composition Of Agent Grammars 83

developed, MBNLI interfaces could be generated relatively
easily by providing the parser with a description of the particular
database's schema [7].

LingoLogic consists of a front-end, implemented in Java,
and a parser, implemented in C. The parser works like a LISP
interpreter in that it is basically a read-eval-print loop. In other
words, a command is given to the parser which processes the
command immediately. The front end is a GUI that allows users
to build commands and queries via a cascading menu. When a
user has selected a word or phrase, the front end passes the
selected item to the parser via a port, the parser predicts a set of
next legal phrases, and sends them back to the front end. This
process is repeated until a complete sentence is built. If a target
language is specified, the parser can translate the complete
sentence into the language. It is then the task of the front end to
execute the translation (in whatever senseis appropriate). Because
Lingo Logic was intended as an interface generator for relational
databases, its front end has the ability to execute SQL queries
against a database and display the results [7].

2.1.4 Context Free Grammars

LingoLogic uses attributed context free grammars (CFG)
to specify the syntax of commands and queries. Context free
grammars consist of a finite set of terminals (T), a start symbol
(S) which is a memberofV, a finite set ofnonterminals (V), and
a finite set of production rules (P) that represent the recursive
definition of a language. The productions take the following
form:

Left Hand Side (LHS) ->Right Hand Side (RHS)

The LHS is a non terminal that is being defined. The RHS
is a string of terminals and non terminals that represent a way to
form the LHS. Formally, the production rules may be defined as
follows [9]:

a {3, where a E V, and {3 = (T
U V) *

A very simple version of the English language can be
specified using a CFG2•

S -> nounPhrase verb Phrase

nounPhrase ->article noun

verb Phrase -> verb nounPhrase

article-> THE I A

noun-> DOG I CAT

verb-> EATS I CHASES

Example I: A simple English grammar

This CFG allows the construction of sentences such as
"The dog chases a cat" and "The cat eats the dog."

2.1.5 Context Free Grammar Closure Under Union Operation

Central to the idea of composing smaller grammars to
create larger ones is the concept of grammar union, because a
larger grammar can be treated simply a union of smaller ones. It
is well known that context free grammars (CFGs) are closed
under the union operation. A proof of this fact can be found in
most textbooks on formal languages3

• This result provides a
theoretical basis for creating context free grammar modules that
are composable into larger grammars [9].

2.1.6 Attributed Context Free Grammars

LingoLogic grammars, however, allow for more
expressiveness than would normally be the case with a standard
CFG due to the use of attributes. Attributes are extra values
attached to the terminals in the form of name-value pairs. The
values can then be used in the grammar rules to add constraints
to rules. It is these constraints that give LingoLogic its expressive
power [10]. For example, suppose that the nonterminals in
Example I had an extra value called number associated with
them. The nonterminals might be re-written as follows"':

noun ->DOG[number=singular] I

DOGS[number=plural] I

CAT[number=singular] I

CATS[number=plura!J

verb-> EATS[number=singular] I

EAT[number=pluralJ I

CHASES[number=singular] I

CHASE[number=pluralJ

A constraint could then be added to the nounPhrase and
verbPhrase rules so these non terminals adopt the number attribute

of their terminals5
•

nounPhrase ->article noun

[nounPhrase.number = noun.number]

verb Phrase-> verb nounPhrase

[verbPhrase.number = noun.number]

Finally, a constraint to the top level rule could specify that
the number of the noun-phrase and verb-phrase must agree.

S -> nounPhrase verb Phrase

[nounPhrase.number == verbPhrase.number]

Example 2: A simple attributed English grammar

Addin" these attributes allow the parser to distinguish
between sin~ular and plural nouns and verbs, which means that

3

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

84 INQUIRY Volume 7 2006

sentences such as "Dogs eat cats" are allowed, while sentences
such as "Dogs eats cat" are not.

2.2 Translations

The LingoLogic parser also has the ability to translate a
sentence into a target language [10]. Translations can take many
different forms. In the case of relational databases, the natural
language queries that are formed via the cascading menus are
translated into SQL. The agent system created by the EiA project
requires its messages to be XML, so translation rules could be
written to build well-formed XML messages. A third idea for a
target language is a function call that could then be evaluated by
another program. An example of this would be the sentence
"Microwave cook for 30 seconds" could be translated to a call to
a microwave method with arguments cook and 30 seconds. It
might look like this:

Microwave(cook,30);

2.3 Advantages of Distributed Grammars

In general, distributed systems have several advantages
over stand-alone type systems. The first is that distributed
systems can be more robust in that they eliminate single points
of-failure. For example, in a packet switched network, such as
the Internet, if a router crashes, packets are still able to reach their
destination via another route [11]. In the same way, if a very
large grammar file is broken into smaller pieces, these pieces
could be stored redundantly in different places, allowing the
entire system to function, even if a failure occurs with one piece
of the grammar. Secondly, distributed systems can be more
efficient because data that is not relevant does not need to be
processed. In terms of a distributed grammar, smaller grammar
files could be downloaded and composed on the fly, eliminating
the need to process rules and lexicons that will not be used.
Finally, distributed systems are scalable. This characteristic is
important and is one of the driving factors for creating grammar
modules in the first place, because it will allow for grammars to
be written for agents as they are made. This means there is no
need to update a central grammar each time a new agent is added
to the system; rather, when a new agent is added, its grammar will
be an extension and processed as it is needed.

2.4 Related Work

The idea of adding the ability for grammars to be composed
of smaller grammars in order to allow for them to be distributed
is not new. Because of the obvious benefits of flexibility and
robustness that would be gained from this capability, distributing
grammar files was a central concept in OBJS' quest to enable
agents to be controlled via an MBNLI on the Web.

2.4.1 AgentGram

AgentGram was a prototype of a l\ffiNLI system that was
developed from 1998-1999. Unlike LingoLogic, it did not parse

context-free languages; instead it handled only a simpler tree
grammar and did not handle translations. AgentGram did,
however, have the ability to load grammar files on-the-fly, thus
allowing grammars to be chained together. When a terminal or
nonterminal that was not specified in the current grammar file
was reached, a URL pointed to the grammar file that could
complete the rule. This URL was then followed, the grammar
downloaded and processed, and the parse continued seamlessly
[12]. For example:

<item name = "List the">

<item name = "hotels">

<item name= "in L.A.">

<item name= "[THEN]"

URL ="http:/ I ... hotels.xml">

<item name= "in Washington D.C.">

<item name= "[THEN]"

URL ="http:/ / ... hotels.xml">

The file hotels.xrnl would then have some information
specific to hotels. It might look something like this:

<item name = "where the hotel name is">

<item name= "Best Western">

<item name = "Clarion">

<item name= "where the hotel costs">

<item name = "less than $70 per night">

<item name= "between $71 and $100 per night">

<item name = "more than $101 per night">

Example 3: An AgentGram XML grammar

This example should clarify the advantages of a system of
distributed grammars. The MBNLI system has to load only
relevant grammar rules when it requires them instead ofloading
all rules that it might ever use. Furthermore, this distributed type
of system is easier to scale and maintain because, when the
system changes, only relevant files must be updated. For
example, if a new hotel were built in L.A. only the hotel grammar
would need to be modified.

2.4.2 Patent Application

The idea for a system of distributed grammars was conceived
for the LingoLogic MBNLI system as well, though it was not
implemented. An OBJS patent application (13] describes a
method of "chaining" grammars together by encapsulating the
grammars (productions, terminals, etc.) into grammar descriptors.
Besides containing the grammar, the descriptors would include
other information as well, such as a set of pointers to other

4

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

COMPUTER ENGINEERING: Neumeier--Dynamic Composition Of Agent Grammars 85

descriptors that the grammar references. The parser can either
process the references actively by recursively processing the
descriptors that the higher level descriptors point to until there
are no more links, or lazily by processing a descriptor only when
needed.

3 Approach:

A multi-agent system will contain many agents of various
kinds- various human roles as well as vehicles, equipment, pets,
sensors, and even passive things like pictures. Assume that each
agent can have an associated grammar. In order to scale a multi
agent system, agents can come and go so it must be possible to
add or remove grammars dynamically. This means that granunars
will have to be loaded on the fly and that grammars of the system
will need to be able to be composed dynamically. There are
various ways to do this. The LingoLogic patent application [13]
describes one way involving grammar descriptors and chaining
grammars together. In spite of a limitation of the current
implementation of LingoLogic (that all nonterrninals for a
grammar must be known before any rules are specified), we can
still simulate breaking up the grammar files for a system into
grammar modules.

3.1 Context Free Grammar Modules

In their most basic form, CFG Modules are simply CFGs
that have been broken into semantic groups. Each group is a CFG
in its own right, meaning that it has a start symbol, a set of
nonterrninals, a set of terminals, and a set of productions. The
difference is that a nonterrninal in the RHS of a higher level
grammar will link to the start symbol of a lower-level CFG
module, enabling the chaining of several smaller grammars into
a larger one.

3.1.1 Terminology

For the sake of clarity, two terms will be defined. A
dangling nontenninal is the RHS nonterrninal in a higher level
grammar that links it to the start symbol of a lower level
grammar. A receiving start-symbol is the LHS nonterrninal of a
lower level grammar to which a dangling nonterrninals points.

Figure 1: A dangling rwnterminal and a receiving start symbol

GRAMMAR 1 GRAMMAR2

S-->A
l"

A-->a

A

L'S" ~

Dangling Receiving

Non terminal Start Symbol

3.1.2 Types ofCFG modules

When using CFG modules as a way to distribute agent
MB~I granunars, there are two possible reasons for creating a
certam module. The first is that a "plug-in" ability is desired.
This is achieved when one dangling nonterminal points to
several receiving start symbols. The second is when module
reuse is desired. This is achieved when several dangling
nonterrninals point to one receiving start symbol. Although
these two types ofCFG modules are not mutually exclusive, both
types will be examined distinctly.

One-to-many modules

In order to scale the NLI system to many agents, it will need
to be easy to add or "plug in" an agent to the system. CFG
modules provide this feature naturally. In this case, a higher
level dangling nonterminal points to the receiving start symbols
of several agent grammars.

S - > AGENT

AGENT - > agent A

AGENT - > agent B

Many-to--one modules

Sometimes several agents will share similar features. In
this case, an ability to reuse grammar files is desired. CFG
modules support this scenario by allowing several dangling
nonterrninals to point to the same receiving start symbol.

AGENT A -> FEATURE 1

AGENT B -> FEATURE 1

FEATURE 1 -> too bar

3.2 Smart House: An Example

The idea behind CFG Grammar modules will become clear
with an example. A smart house example will be used. Imagine
a house full of normal objects that each have a wrapper that
allows them to be identified as unique objects by a computer and
can be controlled via devices that downloads the object's grammar.
The complete grammar of the house might look like this:

5 ->microwave MICROWA VECOMMAND

I oven OVEi'\!CONL\1AND

I thermostat THRMSTCOMMAND

5

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

86 INQUIRY Volume 7 2006

MICROWA VECOMMAND- >tum on

I turnoff

I time for TIME

I cook for TIME

OVEN COMMAND - > tum on

I tumoff

\ time for TIME

\ cook for TIME

I preheat until temp is
PREHEAT-TEMP

THRMSTCOMMAND- > tum on heat in ROOMS

I tumonheatinROOMSuntil
temp is ROOM-TEMP

I tum on air in ROOMS

I tum on air in ROOMS until
temp is ROOM-TEMP

I tum off heat in ROOMS

I tumoffheatinROOMSuntil
temp is ROOM-TEMP

I tum off air in ROOMS

I tum off air in ROOMS until
temp is ROOM-TEMP

TIME->30s 11m 12m I 3m 14m I 10m

PREHEAT->TEMP->300 1325 1350 1374 1400 I
450

ROOMS-> ROOM

I ROOM and ROOMS

ROOM -> living room I dining room master
bedroom I kitchen

ROOM ->TEMP->60 165\70 [75180

Example 4: The smart house grammar

3.3 Fanning CFG Modules

This grammar can be divided into semantic groups, and the
groups can be represented as files as follows:

MAIN GRfu\-1i\1AR

S- > DEVICE-AND-cOMMAl\ID

MICROWAVE GRAMMAR

DEVICE-AND-COMMAND -> microwave
MICROWA VECOMMAND

MICROWA VECOMMAND- > POWER I TIMER I
COOK

OVEN GRAMMAR

DEVICE-AND-COMMAND
OVEN COMMAND

-> oven

OVEN COMMAND-> POWER I TIMER I COOK I
PREHEAT

THERMOSTAT GRAMMAR

DEVICE-AND-COMMAND -> thermostat
THRMSTCOMMAND

THRMSTCOMMAND ->POWER heat in ROOMS

I POWER air in ROOMS

I POWER heat in ROOMS
until temp is ROOM-TEMP

I POWER air in ROOMS
until temp is ROOM-TEMP

I display_temperature in
ROOM

POWER GRAMMAR

POWER- > tum on I tum off

TIMER GRAMMAR

TIMER- > time for TIME

COOK GRAMMAR

COOK- > cook I cook for TIME

TIME GRAMMAR

TIME->30s 11m 12m I 3m I 4m 110m

********""***********************

PREHEAT GRAMMAR

PREHEAT-> preheat until temp is PREHEAT-TEMP

PREHEAT-TEMP->300 1325 1350 J375J400 1450

6

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

COMPUTER ENGINEERING: Neumeier--Dynamic Composition Of Agent Grammars 87

ROOMS GRAMMAR

ROOMS-> ROOM and ROOMS

ROOM - > living room I dining room I master
bedroom I kitchen

ROOM-TEMP GRAMMAR

ROOM-TEMP-> 60 I 65 I 70 I 75 I 80

Example 5: Smart house grammar modules

In this set of example grammar modules, it is easy to see
that both the one-to-many and many-to-one module paradigms
are used. The one-to-many type modules are used to add new
devices to the system. This is possible because the dangling
nonterminal in the highest level module is DEVICE-AND
COMMAND; adding a new device to the system relatively
simple: just make the receiving start symbol of the new device
grammar DEVICE-AND-COMMAND. Similarly, two modules
sharing a module, utilizing the many-to-one feature of CFG
modules, is also exemplified in the smart house set of grammar
modules. The microwave grammar and the oven grammar both
share the cook grammar module. They do this by have a dangling
nonterminal called cook. The cook module's receiving start
symbol is also named cook.

3.4 Limitations of Grammar Modules

Although the simple conversion of a CFG to a collection of
CFG modules addresses several issues that are important to
scaling a multi-agent system, it has several inherent limitations.
One of the major limitations of grammar modules is that all the
modules are global because there is no inherent scoping
mechanism. This limitation creates two problems. The first is
that there may be situations in which certain users should not be
able to control certain agents. The second problem is that certain
modules cannot be reused despite the fact that they share similar
features. A third problem (unrelated to the scoping problems)
with CFG modules is that many times a large (or even infinite)
number of nonterminals should be able to be used, but due to the
fact that it is difficult to specify ranges of values in CFGs,
presenting the user with a list of all possible values from which
to choose is not practical.

3.4.1 Security

In certain situations, certain users should not have access to
every feature of an entire system. This concept is familiar in the
world of operating systems, in which only administrators can
control certain programs. Similarly, perhaps a parent does not
want a child to be able to control the power feature of a thermostat

agent but would like him to be able to issue the
display_temperature command. Because all grammar rules are
global, a new thermostat grammar module would have to be
written that excluded the thermostat rules that began with the
nonterminalnpower. This new thermostat grammar module
would have to be loaded instead of the other one when the child
is using the thermostat. A better solution might be to add a way
to scope grammar rules so that the power rules are not accessible
to the child.

3.4.2 Reusability of many-to-one modules

In a related problem to that of the security issue, CFG
modules can only be reused when exactly the same feature set is
desired. For example, a new grammar module that allows a user
to control lamps is created such that it has the following grammar:

*****"'**************************

DEVICE-AND-COMMAND - > POWER lamp in
ROOMS

This lamp grammar would control lamps in the exact same
rooms in which the thermostat can control the temperature.
Suppose, however, that there is no lamp in the kitchen. This
means that a new rooms CFG module must be created that is the
same as the old rooms module but does not include the kitchen
as an available terminal. This inability to scope causes the need
for a new grammar module to be created despite the fact that one
that is very similar already exists. In a large scale system, the
inflexibility caused by the lack of a scoping mechanism might
undermine the benefits gained from the ability to reuse CFG

modules.

3.4.3 Inability to Specify a Value from a Range ofTemzinals

Many times the need to be able to specify a value from a
range is required. This limitation is illustrated in the smart house
example: the time module allows only a small handful of values.

One way to solve this problem would be to list every
possible value as a terminal. This method, however, would also
be cumbersome not only from the grammar writer"s point of
view, but also from the user's point of view when he has to pick
a value from a very large menu. Another possible solution would
be to write another grammar for the time module such as the

following:

Tl1\1E- >MIN SEC

.MIN - > DIGIT DIGIT min

SEC - > DIGIT DIGIT sec

DIGIT-> 0 jlj21314l5l617l8l9

The problem is that this grammar allows values such as 2

min 88 sec, which is not correct.

7

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

88 INQUIRY Volume 7 2006

3.5 Using Attributes to Scope CFG Modules

In Section 2.1.6, the idea of adding attributes to CFGs in
order to extend the expressiveness of them is discussed. Attributes,
which are essentially trees consisting of name-value pairs in the
context of LingoLogic, can be used in order to add a sort of
scoping mechanism to CFG modules.

3.5.1 Using Attributes to Solve the Security Problem

In the previous security example, a parent would like their
child only to be able to use the display-temperature command in
the thermostat module. In order to use attributes to solve this
problem, first assume that a global attribute called user was
added to the system. The thermostat module could be re-written
as follows:

*****************lt**************

THERMOSTAT GRAMMAR

DEVICE-AND-COMMAND - > thermostat
THRMSTCOMMAND

[global.user E THERMSTCOMMAND.users]

THRMSTCOMMAND- >POWER heat in ROOMS
[users= {parentl]

I POWER air in ROOMS [users= {parent}]

I display _temperature in ROOM

[users= {parent, child}]

********:f.************************

Example 6: Using attributes to add security to the Thermostat
grammar

Rewriting the thermostat grammar in this way, only allows
the parent to access the power commands because the DEVICE
AND-COMMAND rule is only able to be used when the user
attribute of a global attribute tree is a member of the users
attribute tree of THEMSTCOMMAND.

3.5.2 Using Attributes to Increase Reusability of Modules

As mentioned above, a module can be reused only if more
than one higher-level modules share the exact same feature set.
The previously used example was a lamp grammar that shares
many, but not all, of the same rooms as the thennostat grammar.
The solution, to create a new rooms grammar that contains a
subset of the rooms listed in the original grammar used by the
thermostat, is not scalable because it would create a multitude of
··ery similar grammars in a large scale system.

Attributes could be applied in a similar way to the solution
to the security issue to solve this problem. If an objslnRoom
attribute were added to each room in the rooms grammar, then
the set of objects available to be controlled in each room could
be specified.

ROOMS GRAMMAR

ROOMS-> ROOM and ROOMS

[ROOMS.objsinRoom = ROOM.objectslnRoom]

ROOM-> living room [objslnRoom ={thermostat,
lamp}}

I diningroom[objslnRoom= {thermostat, lamp}]

1 master bedroom [objslnRoom = {thermostat,
lamp}]

I kitchen [objslnRoom =(lamp}]

The thermostat and lamp grammar could be rewritten to
test for membership in each of the rooms.

THERMOSTAT GRAMMAR

DEVICE-AND-COMMAND - > thermostat
THRMSTCOMMAND

THRMSTCOMMAND- >POWER heat in ROOMS

[thermostat" ROOMS.objslnRoom]

J POWER air in ROOMS

[thermostat" ROOMS.objslnRoom]

I POWER heat in ROOMS until temp is ROOM
TEMP

[thermostat" ROOMS.objslnRoom]

I POWER air in ROOMS until temp is ROOM
TEMP

[thermostat" ROOMS.objslnRoom]

I display _temperature in ROOM

[thermostat" ROOMS.objslnRoom]

**************"'*****************

LAMP GRAMMAR

DEVICE-AND-COMMAND - > POWER lamp in
ROOMS

[lamp " ROOMS.objslnRoom]

Example 7: Using attributes to increase the reusability of
the Room grammar

In this way, attributes can make CFG modules reusable,
even if only a subset of its rules or terminals is to be used.

8

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

COMPUTER ENGINEERING: Neumeier--Dynamic Composition Of Agent Grammars 89

3.6 Using Experts to Specify a Value from a Range ofTerminals

It is difficult to specify ranges of values from which to
choose a value using CFGs. One solution is to let terminals be
either values (as they currently are) or function calls that return
a value. The function could then have some logic that would
allow a user to choose easily a value from a range. For example,
the time grammar could be changed so that instead of the CFG
rules used to specify a time, a function is called that executes
code that allows a user to specify the time.

TIME GRAMMAR

TIME - > timer()

TIMER FUNCTION

(* Note that this function is for specifying a timer
time, such as "count for 4 hours and 20 minutes." It
is not for specifying a time of day like "4:00PM".* I

1 INT hour, min;

2 PRINT "ENTER HOURS";

3GEThour;

4 IF (hour< 0) (PRINT "HOUR MUST BE >=0";

GOT02}

5 PRINT "ENTER MINUTES";

6GETmin;

7 IF (min > 60) (PRINT "MIN MUST BE < 60;

GOT05}

8 IF (min< 0) {PRINT "MIN MUST BE>= 0; GOTO 5}

9 RETURN hour + ":" + min;

Example 8: Using an expert to specify a range of timer
times

The functions that return values are called experts because
they are an "expert" at knowing a particular field. It can be seen
that experts can help a user choose a value from all kinds of
ranges including integers, currency, and time of day. If the logic
in the expert were more complicated than the simple timer
function above, a graphical user interface could be used to
specify the value. A useful example might be that the expen
produces a color chart and allows the user to visually select a
color (14].

4 Implementation:

4.1 Lingo Logic Grammar files

The smart house grammar was implemented using the
LingoLogic Toolkit. Lingo Logic consists of a predictive parser
and an interface. The interface lets the user choose a phrase from
a set of choices, each representing continuations of the sentence,
and then sends the phrase back to the parser which returns a set
of next possible choices. This process is continued until a
complete sentence is built. The LingoLogic parser is controlled
via Lisp-like commands. A Lingo Logic grammar has four parts:
the parser initialization, category declaration, lexicon definitions,
and rule definitions [10].

4.1.1 Parser initiation

The first step in writing a LingoLogic grammar is to
initialize the parser. This involves the following statement,
which instantiates a parser object and creates a pointer to the
newly created parser object. The parser initialization statement
has the following syntax, where parser] is the pointer to the
parser:

(setq parserl (ere ate-parser))

4.1.2 Parser Categories

Secondly, the parser categories are defined through a call
to the function set-parser-categories. Parser categories are the
set of nonterminals that will be used in the grammar. In other
words, no nonterminal may be used in the grammar rule unless
it was declared to the parser. Lingo Logic requires that all parser
categories be declared before the first rule is defined. The
function set-parser-categories may, however, be called multiple
times, as long as the final time that it is called is before the first
grammar rule is declared. The final set of parser categories is the
union of the parser categories declared in each call to set-parser
categories. The function set-parser-categories has the following
syntax, where'parserl is a pointer to the parser.

(set-parser-categories parser 1 ' (<category symbols>))

4.1.3 Lexicon

The lexicon is the set of terminals used in a cenain grammar.
Terminals are defined using a call to the function defword, with
the following syntax, where word/ is the name of the word being
defined, parser/ is a pointer to the parser, <attribute-tree> is a
tree of attributes associated with the word, <menu> is the menu
on which the word will appear, <print-info> is the string that will
appear on the menu, and[expen-info I is an optional function that
may be run to aid the user in specifying a value [15J:

(DEFWORD wordl parser! <attribute-tree>

(<menu> <print-info> [<expert-info>]))

9

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

90 INQUIRY Volume 7 2006

The most complex aspect of this definition is the <attribute
tree>. As previously mentioned in Section 2.1.6, LingoLogic
has the ability to parse attributed grammars. Attributes are extra
values attached to terminals that add semantics not imparted by
the syntax of the grammar [16]. In the context ofLingoLogic, the
attributes are defined as name-value pairs or name-value lists
that form attribute trees. Constraints can then be added in the
form of rules that use the trees to add expressive power. One
attribute, :cat, short for category, is required by the parser,
because it associates the word with a parser category. The
lexicon for the attribute English grammar ofExample 2, expressed
using calls to defrule would look as follows:

(defword dog pl (((:cat noun)(number sing)) nouns
"dog"))

(defword dogs pl (((:catnoun)(numberplural)) nouns
"dogs"))

(defword cat pl (((:cat noun)(number sing))
nouns"' cat"))

(defword cats pl (((:catnoun)(numberplural)) nouns
"cats"))

(defword chases pl(((:cat verb)(number sing)) verbs
"chases"))

(defword chase pl(((:cat verb)(number plural)) verbs
"chase"))

(defword eats pl (((:cat verb)(number sing)) verbs
"eats"))

(defword eat pl (((:cat verb)(number plural)) verbs
"eat"))

4.1.4 Grammar Rules

The most complex portion of a Lingo Logic grammar file is
the set of grammar rules. Like all other LingoLogic parser
commands, the grammar rules are written using a LISP-like
syntax6

• The rules are defined using the following syntax, where
rule 1 is the name of the rule, parser 1 is the pointer to the parser,
<tennl> is the LHS, <tenn2> ... is theRHSthatdefine <tennl>,
and [<constraint>] are optional constraints that may be added
due to the ability of the parser to handle attributes [l 0].

(defrule rulel parserl (<terml> -> <term2>
<term3> ...)

[<constraint> ...])

In Example l, a simple English language grammar is
introduced. If this grammar were written for Lingo Logic, the top
level rule would be defined as follows:

(defrulerulel parserl (5->nounPhraseverbPhrase))

Example 2 augments the simple grammar with attributes.
Grammar rules can then use these attributes in constraints that

add expressive power. For example, a constraint which requires
the number of the nounPhrase and verb Phrase to agree can be
added to the rule above.

(defmlemlel parserl (5->nounPhrase Verb Phrase)

((nounPhrase number)= (verbPhrase number)))

4.2 LingoLogic CFG Modules

The first step in implementing CFG modules in Lingo Logic
is to write the grammar rules and break them into conceptual
groups, as in Section 3.3. Then the grammar rules must be
translated to the LISP-syntax of the Lingo Logic parser command
set. Next, the parser category declarations have to be separated
into their own files. Finally, a parser initialization file must be
created.

4.2.1 Writing LingoLogic Grammar Files

The translation of the CFG production rules into Lingo Logic
grammar functions consists of writing a defrule function for each
definition of every non terminal in the grammar. In other words,
for each nonterminal ct. in grammar G, a defrule function must

bewrittenforevel}~.where ct.-> ~.1 1 ~.21 ... ~n· Forexample,

the microwave module has a production rule that looks like this:

MICROWA VECOMMAND -> POWER I TIMER I
COOK

The translation of this rule into a Lingo Logic grammar rule
involves writing three defrule functions.

(defmle mlel parserl (MICROWAVECOMMAND
->POWER))

(defrule mel2 parserl (MICROWAVECOMMAND
->TIMER))

(defrule rule3 parsed (MICROWAVECOMMAND
->COOK))

Furthermore, a defword function must be written for every
terminal in the grammar. The :cat attribute of the word must the
be non terminal which is defined by that word. For example, the
room module has a production rule that looks like this:

ROOM -> living room I dining room I master
bedroom I kitchen

In order to write the LingoLogic translation of this rule, a
defword function must be written for each room.

(defword livingroom parserl (((:cat room)) rooms
"Living Room"))

(deP.vord di.ningroom parserl (((:cat room)) rooms
"Dining Room"))

(defword mbedroom parserl (((:cat room)) rooms
"Master Bedroom"))

10

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

COMPUTER ENGINEERING: Neumeier--Dynamic Composition Of Agent Grammars 91

(defword kitchen parserl (((:cat room)) rooms
"Kitchen"))

One important detail of Lin go Logic defrule function is that
the RHS of the productions may consist only of pointers to parser
categories, which implies that the RHS of a production rule may
not contain a pointer to a defword function. This means that
terminals are included in grammar rules indirectly by means of
the parser category (:cat) attribute of the defword function.

A final aspect of translating a CFG into LingoLogic grammar
functions is the rule namespace. Each defrule and defivord
function is global, so care must be taken not to give two rules or
two words the same name.

4.2.2 Creating tlze Parser Category Files

The LingoLogic parser requires that all parser categories
be declared before the first grammar rule is defined. This
requirement is a result of the way the parser handles the
construction of some internal data structures. Therefore, for
each grammar module, a parser category file must be created.
This file consists only of a call to set-parser-categories (see
Section 4.1.2) and declares parser categories on the RHS of every
grammar rule in the file. In this way, the parser can first execute
all of the set-parser-categories functions by reading all of the
parser category files before it reads any of the defrule or defword
functions.

4.2.3 Parser Initialization File

The final file that must be created is a parser initialization
file, which has three parts. The first part is to create the parser
with a command such as the following:

(setq parserl (create-parser))

The second step is to load all of the parser category files.

(load "main.pc") ; ; load main parser categories.

(load "rnicrowave.pc") ; ; load microwave parser
categories

(load "oven.pc") ; ; load oven parser categories

... The third step is to load all of the grammar files.

(load "main.gnl");; load the main grammar

(load "microwave.gnl") ; ; load the microwave
grammar

(load "oven.gnl");; load the oven grammar

Finally, a batch file is created that starts the parser and
initializes it with the initialization file and starts the front end.

5 Conclusions:

5.1 Significance

As more and more objects are added to the Everything is
Alive agent system project, a standardized means to control them
will be needed. Lingo Logic, due to its intuitive, guided approach
to issuing commands is a good candidate for the mechanism to
control agents. In order for LingoLogic to be useful, however,
the agent grammars must be able to scale. Context Free Grammar
modules provide a means to create scalable agent grammars that
can be composed together at run time to create a menu based
natural language interface to the agent system.

5.2 Future Work

One area of improvement for this project involves the
binding time of the parser. Because the parser requires all parser
categories to be declared before the first grammar rule is defined,
grammar rules that involve new categories cannot be added after
the parser has been initialized. This means that grammars cannot
be added on the fly. It would be better if the parser were
improved to accept new parser categories even after grammar
rules have been declared. Then, grammars could be truly
dynamic, in that new modules could be added on the fly.

Along with the ability to add new grammars on the fly, it
would be useful if grammar descriptors, as described in [13]
were developed. Grammar descriptors would provide a better
encapsulation model for LingoLogic grammars, because a
descriptor would be meta information at the top of the grammar
file that describes how it is chained to other grammars.

Finally, another area of improvement to this project would
be to add the ability to detect which agents are connected to the
agent system, allow the user to select which agents he would like
to communicate with, then pull the selected agents' grammar
modules from a database. Such a system would simulate how a
soft controller might work in the future.

6 References:
[1) C. Thompson, "Everything is Alive," Architectural Perspective

Column, IEEE Internet Computing, Jan-Feb 200-t http:/ /csce.uark.edu/
-cwt/DOCS/2004-01-PAPER-IEEE-Jnternet-Computing-Every
thing-is-Alive.pdf

[2] C. Thompson, "Smart Devices and Soft Contro11ers," Architec
tural Perspective Column, IEEE Internet Computing, Jan-Feb 2005. http:/
j csce.uark.edu/-cwt/DOCS/2005- 01-PAPER-IEEE-lntemet-Com
puting-Smart-Objects-and-Soft-Controllers.pdf

[3] Vu,Minh,CraigThompson,"E2AgentPluginArchitecture:'' IEEE
Intemational Conference on lntegmtion of Krw:c/edge Intmsz:·e Multz-Agmt
Systems (KIMAS-05), Waltham, MA, April 18-21, 2005. http://
csce.uark.edu/-cwt/OOCS/2005-01-PAPER-KIMAS-05-Vu-Th
ompson-E2-agent-plugin-architecture.doc

[4] J. Robertson, C. Thompson, "herythin~ is Alive Agent Archit~'C
ture," IEEE Intmzational Conference on lntegratzan of Knowledge Intenst:'e
Multi-Agmt Systems (KIMAS-D5), Waltham, MA April 18-21, 2~5.
http:/ j csce.uark.edu/%7Ecwt/DOCS/200S-01-P APER-KL\IAS-O:r
Robcrtson-Thompson-Everything-is-Alive-"'\gent-System.doc "

[5} J. Hoag_ C. Thompson, "RFID Agent lVliddleware Architecture,

11

Neumeier: Dynamic Composition of Agent Grammars

Published by ScholarWorks@UARK, 2006

92 INQUIRY Volume 7 2006

Conference on Applied Research in Information Technology, Conway,
AR, March 3, 2006. http:/ /csce.uark.edu/ -cwt/COURSES/2006-01-
CSCE-490-590-RFID-Agent-Middleware /DOCS /2005-12-P APER
ALAR-RFID-Agent-Middleware-Hoag-Thompson-long.doc

[6] C. Thompson, P. Pazandak, "Introduction to Menu-based Natural
Language Interfaces," Technical Memo, Object Services and Consulting
Inc., 2000,http: //www.objs.com/ agility I tech-reports/0101-MBNU.doc

[7J C. Thompson, G. Hansen, "NLI Query Interface," Object Services
and Consulting Inc. September 1998, http:/ /www.objs.com/OSA/
NLI-Query-Service.html

[8] C. Thompson, "Talk to your Semantic Web," Architectural Per
spective Column, IEEE Internet Computing, Nov-Dec 2005.

[9] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata
Theory. Languages. and Computation. Addison-Wesley, 2001.

[10] G. Lystad and R. Roberts, Chapter 5 in "Lingo Logic Manual,"
Object Services and Consulting Inc., 2000.

[11] J. Kurose, K. Ross, Computer Networking. United States of
America, Pearson Education, 2005

[12) P. Pazandak, C. Thompson, "AgentGram: Natural Language
Interface for Agents," Project Summary, Object Services and Consulting
Inc. June 2002, http:/ I www .objs.com/ agility I final/ AgentGram/
AGENTGRAM-PROJECT-SUMMARY.htrnl

[13] P.Pazandak,C. Thompson, "GuidedNaturaiLanguagelnterface
System and Method." Patent Application, August 2000.

[14] G. Lystad and R. Roberts, Chapter 9 in "LingoLogic Manual,"
Object Services and Consulting Inc., 2000.

[15] G. Lystad and R. Roberts, Chapter 4 in "LingoLogic Manual,"
Object Services and Consulting., 2000.

[16] "Attribute Grammar," Wikipedia.com,http:/ I en.wikipedia.org/
wiki/ Attribute_grammar

Endnotes:
1 Although these examples may seem trite, imagine the benefits of

seamless object interaction in a hospital or an airport.
2 Please note the convention that nonterminals are lowercase and

terminals are upper-case
3 See Ullman, pg. 284 for one example of this proof.
• By convention, brackets indicate an attribute specification.
5 Note the convention that the dot indicates selection, the equal sign

indicates an assignment and two equal signs indicate a test for equality.
• The LISP-syntax of the parser command set is an artifact of the fact

that Lingo Logic's predecessor, NLMenu, was developed at Texas Instru
ments on LISP Machines in the 1980s. Although LISP is not as popular
today, its advantages should not be overlooked: LISP's ability to manipu
late symbols accounts for the resemblance of grammar rule definitions to
the traditional CFG arrow notation in the formal languages literature.

Faculty comments:

Dr. Craig Thompson, Mr. Neumeier's mentor, made the
following comments about his student's work:

First, a few words about Kyle- as it happens, this
afternoon, Kyle is receiving an award as the Top
Undergraduate Senior in Computer Science from the
CSCE Department in the annual College of
Engineering end of year meeting. This follows on the
heels ofK yle providing technical support for a Walton
School of Business entrepreneurial team that placed
in the top ten out of 100 in the U San Francisco
Business Plan Competition held over Spring Break,
~ating out MIT, Harvard and other top schools, and,
more recently, also placing second in the Arkansas
Governor's Cup Business Plan Competition and
winning the Technology Award (based on the
technologydescribed~low). Finally,Kylehasserved

informally as TA in my graduate class on Natural
Language Interfaces this semester.

Now, about Kyle's work: Over the last year, Kyle
received two undergraduate research grants to work
with me on menu-based natural language on the topic
of grammar composition. Imagine a collection of
softwaresystems(calledagents)thatcancommunicate
with each other. Each one might represent and control
a different device or thing in a home, office, or
anywhere (cars, robots, sensors, thermostats, pictures,
0). Imagine each has an RFID tag (which is like a
barcode that can be read at a distance). Now imagine
when a person points a next-generation truly
"universal remote" at these things, a grammar for
controlling that thing is automatically downloaded
into the universal remote. This would allow the
person to communicate or control things in an
unprecedented manner. Add to this thatthe grammar
is in a sort of domain-restricted English and uses
menus so a user always knows what they can talk to
things about, even if they have never seen that
particular thing or kind of thing before. Kyle's thesis
is focused on the part of this vision that involves
downloading the grammars and composing
grammars so the user of the universal remote can
control multiple things at once. This is a significant
step towards pervasive computing where computing
is embedded in the world around us, not just on our
desktops.

12

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 7 [2006], Art. 14

https://scholarworks.uark.edu/inquiry/vol7/iss1/14

	Dynamic Composition of Agent Grammars
	Recommended Citation

	Dynamic Composition of Agent Grammars

