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WHERE DOES IT ALL END? ISSOUNDARIES BEYOND EUCLIDEAN
PACE

By Jonathan Thompson
Department of Mathematical Sciences

Faculty M'entd}:' Professor Bernard Madison
Department of Mathematical Sciences

: Prefa ce.'

Euclzdean space, named for the ancient Greek geometer
,Euclzd, Is in some sense the home of mathematics.
‘Mathematicians have been studying the structure and properttes
“of this place for over two thousand years, so they feel at home

here. Furthermore, it is a very smooth, homogeneous, frtendly
place inwhich to work, where their geometric intuition serves as
a dependable guide. If you studied geometry in high school
(which would have been Euclidean geometry), then you are’
familiar with this place. The plane in which you drew your
figures is two-dimensional Euclidean’ space. However in the,.
early part of the nineteenth century, mathematicians found that
Euclidean space has some dark corners that Euclid did not

foresee. In fact, there are many subspaces of Eucltdean Space ‘

:’that bear very Itttle Sfamily resemblance

deeply seated intuition was - sometimes mzsleadmg or even_.
useless.
concepts and definitions, such as what constitutes a boundary -
'point. A large and useful class of spaces they encountered that

~.allowed them 1o extend the utility of their classical intuition was

"the class of manifolds. A manifold is a space that can be very

~ unruly on the large scale, but on the small scale resembles .

Euclidean space. To be a bit more precise, given any point of a -
manifold, one can enclose it in a sphere (perhaps a very small
sphere) inside of which the space is mdzstmgmshable from
Euclidean space. Take as an example a basketball and suppose
that a recent technological breakthrough has provided us with
ashrinkray. Itwould be possible for us to reduce our sizeto such
apoint that, regardless of where we were to stand on the ball, its
curvature would be lmpercepttble 10 us and so it would appear
flat (much as the earth appears flat to us, though we now know
it to be a globe). Thus, on the small, local scale the ball:
resembles two-dimensional Euclidean space at every, point
making it a two-dimensional manifold, despite the fact that on
the large, global scale it is a three-dimensional object.

s This local resemblance to Euclidean space allows us 10 +.
. extend fairly easily many of the concepts formerly applied to

* Euclidean space, such as the idea of a boundary point. Consider
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a square cut from the plane, taken to include its edges. There is
an imtuitively clear difference between a point that is on the edge
of the square and a point that is not. To formalize this intuitive

« difference, we observe that the interior of an arbitrarily small
- circle centered around a non-edge point resembles all of

Euclidean space. The same cannot be said of points on the edge
of the square. The interiors of arbitrarily small circles centered
abour edge points resemble Euclidean “half-space”, that is
Euclidean space that extends infinitely in all dimensions but one,

. where it is cropped. Since this observation involves only local

properties, itmay be applied to manifolds. We can in essence say
that a point of a manifold is an edge point if locally it resembles
Euclidean half-space, and anon-edge pointiflocally it resembles

+ whole Euclidean space.

Let us apply this definition to a soup can. If we take any

In these pathologtcal subspaces they found that thetr* ,, point on the side it should be apparent that, much as with the
. basketball, we can enclose it in a circle sufficiently small as to
This situation demanded an extenszon of famtlzar -~ make the curvature of the can imperceptible within it. Thus the

side of the can be made to resemble the plane. A pointtaken from
the top is only different in that the circle enclosing it can be
larger, since the top is already flat. If we take a point on the circle
dividing the top from the side, though, we find that this is not the
case. Whether we start drawing our circle on the side of the top,
we find that even a circle small enough to mask the curvature will
" hang off the edge of the can and thus resemble Euclidean half-

“space. Therefore, the can is a two-dimensional manifold with
- boundary, and the boundary consists of the two circles separating

the top and bottom from the side. Although many manifolds have
a much more complex structure than our examples of the square
in the plane or the cylinder in three-space, the definition of
boundary point sketched above continues on where our intuition

becomes unclear.

However, there are many interesting spaces that are not
manifolds, that is, they do not resemble Euclidean space at all
locally (see fig. 2). In many of these examples, we have no

+ intuitive basis for labeling a point boundary or interior, and so

must devise formal definitions that both capture and extend our
intuitive notions. My thesis explores three proposed solutions
for this problem of generalizing the idea of boundary point.
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Introduction:

Given a topological space, it seemns intuitively clear that
there is a fundamental difterence between boundary points and
interior points, but what properties differentiate these two? In
the theory of manifolds there is a well-detined notion of which
points are boundary points and which are not. We can, in
essence, say that a point of an n-dimensional manifold is a
boundary point if it resembles half’ Euclidean n-space locally,
and a point is not on the boundary it it resembles all of Euclidean
n-space locally. This definition is somewhat restrictive because
it requires the space under consideration to be locally like
Euclidean space and so does not deal with intrinsic properties of
agiven point. Furthermore, there are many spaces of interest that
do not resemble Euclidean space locally, and so are not subject
to the previous definition.

Homotopy aftords us a generalization from manifolds to
spaces that are locally arcwise connecied. In the early nineteen
thirties Hopf and Pannwitz advanced the idea of stabil and labil
points, here referred to as homotopically stabil and homotopically
labil [Hopf]. Roughly speaking, a point is homotopically labil if
one can continuously deform the neighborhoods containing the
point, while leaving the rest of the space undisturbed, in such a
way that the resulting images of the neighborhoods no longer
contain the point. This definition replaces the requnement of
Euclidean neighborhoods with the requirement of arcwise
connected neighborhoods, which is less siringent, and so is in
fact an improvement in generality over the manifold definition.

In considering the work of Hopf and Pannwitz, Borsuk and
Jaworowski developed a definition of boundary point in the
middle of the twentieth century that further relaxed the
requirements on the space [Borsuk]. Again speaking roughly, a
point is labil if one can find continuous images of the entire space
containing the point so that the images do not contain the point
and every point of the space is moved “very little.” This
definition only requires a notion of distance, and so is applicable
to any meuic space regardless of its connectedness.

In this paper, we first present a brief overview ot topology
and homotopy to tamiliarize the reader with the subjects. Next
we intoduce soine preliminary definitions and results in topology
to set the stage for a more formal discussion of the boundary
definivons. Thirdly, we present the boundary definitions in full
formality, and argue that they are indeed successively more
general.  This is followed by a series of examples further
illustrating the interplay between the definitions. Finally, we
explore what sorts of processes preserve the pioperties of
homotopic lability and lability, and discuss briefly a
cohomological definition of boundary and interior that reflects
more recent progress in generality.

The Detinitions:

Let us begin with our definition of what it is to be on the
boundary of such a manifold. In the tollowing definition the set
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H'=(xeR|x20and xe = ... =x,= 0},

Definition B1: Given a k-dimensional manifold M, the
boundary of M is the set of all points x for which there exists an
open set U contaimng x, an open set vekR?, and a homeomorphism
h: U—# V such tha h(UnM) = VAH x {0}) = {x € V[x:20
andx,;=...=x =0} and h(x)=(x, x,..., x,, 0). A manifold
for which the boundary is nonempty is Cdlled a manifold with
boundary [Spivak 113].

That is, a point of a k-manifold is on the boundary if it has
a neighborhood horneormorphic to halt Euclidean k-space, and
the homeomorphism raps it onto a point on the boundary of the
half space. Again we observe that this definition is somewhat
unsatisfactory in its indirectness and limited applicability. Next
we move ot to our homotopic definition first given by Hopt and
Pannwitz [Hopf].

Definition B2: A pointa of aspace S is homotopically labil
whenever for every neighborhood U of a there exists a function
F: Sx I —#: S (where [ is the unit interval [0,1]) which is
continuous and satisties the following conditions:

1. F(x,0)=x foreveryxe§S

2. F(x.n=x forevery (x,p)e (S\U) x1
3. Fx)eU  for every (rf)e Ux 1
4. Fx,1)#a foreveryxeS.

~ A point that is not homotopically labil is homotopically
stabil. Note that homnotopical lability is a local property, in that
if a is a homotopically labil point of a space S and b is a point of
a space T and there exists a homeomorphism h that takes a
neighborhood U of a onto a neighborhood V of b such that h(a)
= b, then b is homotoplcaﬂy labil in T.

Our ﬁnal dehmtlon was motivated by the observatlon that
tor a meuic space, condmons equwdlem to 1 4 may be glven in
terms of the space s metnc as follows

Detlmtlon B2': ~A point g of ‘a metric space’ M is
homwtopically labil if for every €20, théere exists a mapping g:
(M x I)~—» ;M (where again 1 is the unit interval) satistying the
following conditions:

1", g(x,0)=x
2" 8(x, g(x,t))<e forevery (x,)e(M x )
3. gix)=a

for every xeM

for every xeM.

1t should be clear that a pointa&€M tthat is homotopically

labil by B2 is also homotopically labil by B2, but the skeptical

reader will require sorae support tor the clalm that the converse

is true. Suppose then wat under B2' 4 is homotoplcally labil,

g(x,1) is a rapping satisfying 1'-3' for some £>0, and that U is

a nelghborhood of a such that b(x a)<38 1mphes er ] Dehne F
M x I)*—-v M thus =
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for 8(x,a)se, 0<t<1

&x,0)
glx, (2 - (8(x,a)/€))] foresb(xa)<2e,0st<1

Frg) =
' for 8(x,a) = 2¢, 0 <t < 1 [Borsuk].

Having made this realization, Borsuk and Jaworowski saw
away to further generalize this concept of homotopic lability by
d1vorcmg it from homotopy. In their paper they introduce the
notion of lability, and define it thus:

... Definition B3: A point p of a metric space S is labil
- whenever there exists for every€>0, amappingg: S —# S
such that

la. §(x,g(x))<e for every x S

2a. g(v) ) p ~ foreveryx S.

A point that is not labil is stabil [Borsuk].

We note here that in contrast to hornotoplc lab111ty,
lability is not a local property. Consider the followmg sets. 1n
the Euclidean plane.

S,={Gyx?+y* =1} o
Sn {G)x=(1- 1/n)cos(-) y=01- l/n)smG |9[<(1t l/n)} forneN
S U0 Sn T= S {(xy)ix > z 0} (see Fxg l)[Borsuk]

Fig. 1

\(1,0)

Obviously, S and T are identical about the point (1,0), yet
. disconnected set, namely L Mpl, whichis another contradlcuon

" Thus we must conclude that no such f exists’ and hus p is

this point is stabil in S and labil in T.

Equivalences and Divergences:

We can show without much work that our manifold
definition implies our homotopic definition, whichintumimplies
our metric definition. For the first 1mpl1catxon assurne that ann-
dimensional manifold M is locally homeomorphxc to hall of
Euclidean n-space about the point p. (nven some s € >0 let

Uo=0, Ur= {(xy)| 8(x,p) < at}, and U Ure[O n Uz

For each t, define r(x,f) = r(x) as the retractlon mappmg r:
M——(M\U). It should be clear that r(x,r) sat1st1es condmons
1-4 forthe nei ghborhood Uof'the pointpinthe spaee M, and thus
P is homotopically labil. To see that our homotopic denmtlon

implies our metric definition, simply observe that if g is a ]

mapping satisfying conditions 1¢-3¢ for a point ¢ of a metric.

space L, then setting fix) = g(x,1) gives a mapping satisfying, .-

B 5 conditions 1a and 2a for geL.

Published by ScholarWorks@UARK, 2005

Obviously - the converse is-not true-in ‘general:for the
manifold and homotopic definitions, since a point labil in our
homotopic sense may not have a single *neighborhood
homeomorphic to half- or whole Euclidean space:- Our next
example shows that the converse is also false in general for our
homotopic and metric defini tions. For the following of example,
consider the set given as a subset of the Euchdean plane w1th the
induced topology i e

Fig. 2

LetN {l/nlnSN} J [ 1, 1J S= NxJ L —b\(NxJ) and

={1l/k} xJ (see F1g 2): First observe that any pomt of L, fails .
to have connected nelghborhoods and so by theorem 4 cannot
be homeomorphxc to” Euchdean space. ~ Thus-our manltold ’
definition is of no service to us.-We claim that any non-endpoint -
p of L is homotoplcally stabil,: but.labil." To'seé that p is
homotoplcally stabil, *assume" that there exists a function f
satisfying condmons 1-4 for’ 4 "and some nelghborhood U of p,
and consider the i 1mages of L,underf. 1f we assuime that j does
not map L, onto itself, then f maps L onto sorne L, and we have
asituation deplcted in hgure 2a’ Here we see that the contmuous
imageofL,a connected set, is s disconnected, and thlS contradicts
the fact that connectedness 1sa continuous invariant. Hence, it-
must be thatf maps L, onto itself. However, condmon 4 requires
that p not be an element of f(U 1), and so we arrive at the situation
depicted in figure 2b.” Again we have'L; mapped into a

homotoplca]ly stabil.
Flgure 2a.

b

Figure 2b.

i

R Wanny




Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 6 [2005], Art. 14

100 INQUIRY Volume 6 2005

The problem here arises from the fact that, for homotopic
lability, the space must remain fixed outside the neighborhood
U. Forlability there is no such requirement, so we are free to use
a restriction of a projection mapping to map onto some segment
L,.the segment L_ and all segments L, where k> k*, as depicted
infigure 2c. More specifically, let € beanarbitrary positive real
number, choose an n € N such thatn > 1€ , and define f: S—*S
as follows:

(Vks)yforksn

140,5) = (U/n,s) and f(1/k,5) =
’ (1/n,s) for k>n.

This mapping demonstrates the lability of p (see fig 2c.)

A slight modification of S indicates that our more general
definitions sometimes defy our intuition of what a boundary
point is. Let N* = {1/n|n€Z}, and define L *, S*, and L *
analogously to L, S, and L, (see Fig. 3). Note that the points of
L, * fail to have Euclidean neighborhoods as well. An argument
similar to that of our previous example shows that the non-
endpoints of L * are homotopically stabil as might be expected,
but a simple modification to f, shows that these points are still
labil, despite the fact that any arc drawn from such a point to a
simple closed curve enclosing the space intersects the space in at
least one other point.

Fig.3

Before we move on to our next topic we note that for a
rather large class of examples, the notions of homotopical
lability and lability do coincide: when the space under
consideration is an absolute neighborhood retract.

Property Preserving Processes:

A natural question to ask is ‘when are our boundary points
preserved?’ In the example depicted in figure 2, we see that a

http://scholarworks.uark.edu/inquiry/volé/iss1/14

sequence of homotopically labil points (i.e. the endpoints of each
L,) converges to a homotopically labil point (i.e. the endpoint of
L,). Is the limit of a sequence of labil (or homotopically labil)
points labil (or homotopically) labil in general? Consider in the
plane the triangle with vertices A = (1/2,0), B=(1,1),and C =
(0,1), and let X be the union of the set of all points on or contained
by the triangle and the segment of the x-axis between O and 1 (see
Fig 5).

Fig. 5

A sequence of retraction mappings almost identical to the
one at the beginning of the previous section shows that any non-
endpoint of the line segment AB is homotopically labil (and thus
labil), and the segment contains a sequence of points approaching
A. However, another connectedness argument shows that A is in
fact stabil (and thus homotopically stabil).

Borsuk and Jaworowski prove in their paper on lability that
the stability of a point, and also the homotopic stability, are
invariant under Cartesian division but leave the question of
Cartesian multiplication open. Itis fairly easy to see that lability
is invariant under this operation, and.in fact that a sufficient
condition for a point (a,b)€ A x B to be labil is for a to be labil in
A or b to be labil in B.For if we have a point a€A that is labil
in A and f isa fllIlCthI] satisfying condmons laand2afora, then o
function sausfymg la and 2a for any point in A x B of the form_
(a,y). Slrmlarly, we can argue that if beB is labil in B, then any )
point in A x-B of the form (x,b) is labil.

Soon after the paper of Borsuk and Jaworowski appeared,
Noguchi supplied an answer to the question of the invariance of
homotopic stability under Cartesian multiplication in two papers
published in 1954 and 1955. In the first paper, Noguchi supplied
the following homological characterizations of homotopically
labil and stabil points.

Theorem N1: Let Abea complex Apointaof *
Ais homotoplcally labilif and only if thereexists -~
a contractible nelghborhood complex of a_ ;
[Noguchi 1954). L e '

Theorem N2 LetAbea complex A pomt a of N
Ais homotoplcally stab11 1f and only if .there =
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exists a neighborhood complex of 4 which is not
contractible [Noguchi 1954].

In his paper of 1955, Noguchi used these characterizations
along with the homological properties of joins to show that in
fact homotopic stability is not invariant under Cartesian
multiplication, except in the special case of homogeneous
complexes [Noguchi 1955].

A Final Generalization:

Before we conclude we discuss one further generalization
of the boundary point concept due to J. Lawson and B. Madison,
who published a paper on the subject in 1970. Our homotopic
definition replaced the requirement of Euclidean neighborhoods
with that of arcwise connected neighborhoods; our metric
definition freed us from that restriction by using only a notion of
distance; our final definition lacks even that requirement making
it the most general to date. Lawson and Madison gave and
investigated two definitions in terms of cohomology, which they
call peripheral and marginal.

Conclusion:

We have now presented three successively more general
notions of a boundary point. In manifolds, we have identified
boundary points as those points having neighborhoods
homeomorphic to half-Euclidean space. In locally arcwise
connected spaces we have that a point is homotopically labil if
we can deform the neighborhoods of the point in the space
continuously in such a way that the result does not contain the
point, but the complements of the neighborhoods remain
unmoved. For any metric space we say that a point is labil if there
exist continuous images of the space containing the point that do
not contain the point and that do not move any point far.

We then argued that each of these definitions generalizes
the one before it. A pair of examples showed that these
definitions are not equivalent, and that in at least one instance the
more general definitions can have rather counterintuitive
consequences. After an investigation into various operations
applied to labil and stabil points we learned that Cartesian
division preserves both homotopic lability and lability, that
Cartesian multiplication preserves lability but not homotopic
lability, and that the limit process preserves neither lability nor
homotopical lability. Finally, we directed the interested reader
to more work in improving the generality of the boundary
concept. We hope that our discussion will be as illuminating for
others as it has been for us.
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Faculty comment:

Dr. Bernard Madison made the following remarks about

Mr. Thompson's work:

Jonathan'’s research is in an area that overlaps into
point-set topology and algebraic topology. Basically,
the goal of work in this area is to determine structures
and properties of spaces, e.g. subsets of Euclidean
space, using algebraic constructs. The particular
problem that Jonathan studied was distinguishing
boundary points from interior points in spaces that
aredifferent fromspaces thatarelike Euclidean spaces
locally. Locally Euclidean spaces such as a circular
disk are called manifolds and the notions of boundary
and interior are well known and reasonably obvious.
This interior versus boundary problem was studied
in the 1930’s and 1950’s by several European
mathematicians and resurfaced in the 1960’s and
1970’s because of relevance to work in topological
algebra.

We have no undergraduate course work here in any
areaof topology soJonathanhad tolearna considerable
body of material as background. Jonathan's work
centers on two different concepts of boundary points,
one defined in terms of metrics and one defined in
terms of homotopies. These notions were introduced
by H. Hopf and E. PannwilL.z (1933) and K. Borsuk and
J. Jaworowski (1952). Later, A. D. Wallace, K. H.
Hofinann, P. S. Mostert, ]. D. Lawson and I expanded
these definitions using cohomology structures and
applied the results to topological algebra structures.
Jonathan’s major creative contribution was to describe
and analyze several fairly complex subspaces of the
plane that provide examples that refine and
distinguish between the metric and homotopy
definitions of boundary. His apparent understanding
of these examples is impressive for an undergraduate,
and his exposition of his understanding is
extraordinary. Jonathan’s introduction to his paper is
an excellent effort to convey understanding of his

work to non-experts.
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