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WHERE DOES IT ALL END? BOUNDARIES BEYOND EUCLIDEAN 
SPACE 

By Jonathan Thompson 
Department of Mathematical Sciences 

"" 

Faculty Mentor: Professor Bernard Madison 
Department of Mathematical Sciences 

"Preface: 

Euclidean space, named for the ancient Greek geom~ter 
, Euclid, is in some sense the home of mathematics. 
'Mathemati~ians have been studying the structure and properties 
"of this place for over two thousand years, so they feel 'at" home 
here. Furthermore, it is a very smooth, homogeneous, friendly 
place in which to work, where their geometric intuition serves as 
a dependable guide. If you studied geometry in high school 
(which would have been Euclidean geometry), then you are-, 
familiar with this place. The plcme in which you drew your 
figures is two-dimensional Euclideari"space. However, in the 
early part of the nineteenth century, mathematicians found that 
E(lclidean space has some dark corners that Euclid did not 

foresee. In fact, there are many .subspaces of Euclidean space 
that bear very little family resemblance. · " 

, In these pathologicaz' subspaces, they found that their\ -
deeply seated intuition was sometimes misleading or even 
useless. This situation demanded an extension of familiar 

. co~cepts and definitions, such as what constitutes a boundary; 
pomt. A large and useful class of spaces they encountered that 
allowed them to extend the utility of their classical intuition was 
the class of manifolds. A manifold is a space that can be very 
unruly on the large scale, but on the small scale resembles 
Euclidean space. To be a bit more precise, given any point of a 
manifold, one can enclose ii in a sphere (perhaps a very small, 
sphere) inside of which the space is indistinguishable from 
Euclidean space. Take as an example a basketball and suppose 
that a recent technological breakthrough has provided us with 
a shrink ray. It would be possible for us to reduceour size to such 
a point that, regardless of where we were to stand on the ball, its 
curvature would be imperceptible to us and so it would appear 
f!at (much as the earth appears flat to us, though-we now kn~w 
,zt to be a globe). Thus, on the small, local scale the ball 
resembles two-dimensional Euclidean space at every point 
making it a two-dimensional manifold, despite the fact that on 
the large, global scale it is a three-dimensional object. , 

This local resemblance to Euclidean space allows us to 
extend fairly easily many of the concepts formerly applied to 
Euclidean space, such as the idea of a boundary point. Consider 

a square cut from the plane, taken to include its edges. There is 
an intuitively clear difference between a point that is on the edge 
of the square and a point that is not. To formalize this intuitive 
difference, we observe that the interior of an arbitrarily small 
circle centered around a non-edge point resembles all of 
Euclidean space. The same cannot be said of points on the edge 
of the square. The interiors of arbitrarily small circles centered 
about edge points resemble Euclidean "half-space", that is 
Euclidean space that extends infinitely in all dimensions but one, 
where it is cropped. Since this observation involves only local 
properties, it may be applied to manifolds. We can in essence say 
that a point of a manifold is an edge point if locally it resembles 
Euclidean half-space, and a non-edge point iflocally it resembles 
whole Euclidean space. 

Let us apply this definition to a soup can. If we take any 
point on the side it should be apparent that, much as with the 
basketball, we can enclose it in a circle stif.ficiently small as to 
make the curvature of the can imperceptible within it. Thus the 
side of the can be made to resemble the plane. A point taken from 
the top is only different in that the circle enclosing it can be 
larger, since the top is already flat. If we take a point on the circle 
dividing the top from the side, though, we find that this is not the 
case. Whether we start drawing our circle on the side of the top, 
we find that even a circle small enough to mask the cun•ature will 
hang off the edge of the can and thus resemble Euclidean half
space. Therefore, the can is a two-dimensional manifold with 
boundary, and the boundary consists of the two circles separating 
the top and bottom from the side. Although many manifolds have 
a much more complex structure than our examples of the square 
in the plane or the cylinder in three-space, the definition of 
boundary point sketched above continues on where our intuition 
becomes unclear. 

However, there are many interesting spaces that are not 
manifolds, that is, they do not resemble Euclidean space at all 
locally (see fig. 2). In many of these examples, we have no 
intuitive basis for labeling a point boundary or interior, and so 
must devise formal definitions that both capture and extend our 
intuitive notions. My thesis explores three proposed solutions 
for this problem of generalizing the idea of boundary point. 
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Introduction: 

Given a topological space, it seems imuitively clear that 
there is a fundamental difference between boundary poims and 
interior points, bur what propeltles ditferemiate these two? In 
the theory of manifolds there is a well-defined notion of which 
points are boundary poims and which are not. We can, in 
essence, say that a point of an n-dimensional manifold is a 
boundary point if it resembles half Euclidean n-space locally, 
and a poim is not on the boundary if it resembles all of Euclidean 
n-space locally. This definition is somewhat restrictive because 
it requires the space under consideration to be locally like 
Euclidean space and so does not deal with intrinsic properties of 
a given point. Furthem10re, there are many spaces of interest that 
do not resemble Euclidean space locally, and so are not subject 
to the previous definition. 

Homotopy affords us a generalization from manifolds to 
spaces that are locally arcwise connected. ln the early nineteen 
thirties Hopf and Pannwitz advanced the idea of stabil and labil 
points, here referred to as homotopically stabil and homotopically 
labil [Hopf]. Roughly speaking, a point is homotopically labil if 
one can cominuously deform the neighborhoods containing the 
point, while leaving the rest of the space undisturbed, in such a 
way that the resulting images of the neighborhoods no longer 
contain the point. This definition replaces the requitement of 
Euclidean neighborhoods with the reqUirement of arcwise 
connected neighborhoods, which is less stringent, and so is in 
fact an improvement in generality over the manifold definition. 

In considering the work ofHopf and Pannwitz, Borsuk and 
Jaworowski developed a definition of boundaty point in the 
middle of the twentieth century that further relaxed the 
requirements on the space [Borsuk]. Again speaking roughly, a 
point is labil if one can find continuous images of the entire space 
containing the point so that the images do not contain the point 
and every point of the space is moved "very little." This 
definition only requires a notion of distance, and so is applicable 
to any metric space regardless of its connectedness. 

In this paper, we first present a brief ove1 view ot topology 
and homotopy to familiarize the reader with the subjects. Next 
we introduce some preliminary definitions ana results in topology 
to set the stage for a more formal discussion of the boundary 
definitions. Thirdly, we p1esem the boundary definitions in full 
formalny, and argue that they are indeed successively more 
general. This is followed by a seiies of examples further 
illustrating the interplay between the definitions. Finally, we 
explore what sorts of processes preserve the ptoperties of 
homotopic lability and lability, and discuss briefly a 
cohornological definition of boundary and interior that reflects 
more recent progress in generality. 

The Uefinitions: 

Let us begin with our definition of what it is to be on the 
boundary of such a manifold. In the following definition the set 

Hk = {x E R"l Xk ~ 0 and Xk+ 1 = ... = Xn = 0 l· 
Definition Bl: Given a k-dirnensional manifold M, the 

boundary of M is the set of all points x for which there exists an 
open set U contammg x, an open set .rc:R", and a homeomorphism 
h: u----- v such tha h(UnM) = Vn(Hk X {0}) = {x E VI Xk ~ 0 

andxk+i= ... =x" = 0} and h(x) = (x1, x2, ... , xk-t' 0). A manifold 
for which the boundary is nonempty is called a manifold with 
boundary [Spivak 113]. 

That is, a point of a k-manifold is on the boundaty if it has 
a neighborhood homeomorphic to half Euclidean k-space, and 
the homeommphism maps it onto a point on the boundaty of the 
half space. Again we observe that this definition is somewhat 
unsatisfactory in its indirectness and limited applicability. Next 
we move on to our homotopic definition first given by Hopf and 
Pannwitz [Hopf]. 

Definition B2: A point a of a spaceS is hornotopically labil 
whenever for every neighborhood U of a there exists a function 
F: S xI --?: S (where I is the unit intervallO,l]) which is 
continuous and satisfies the following conditions: 

1. F(x,O)=x tbrevecyxeS 

2. F(x,t) ""x for every (x,t)E (S\U) x l 

3. F(x,t)E U for every (x,t)E U xI 

4. F(x, I)+= a tor evety xeS. 

A point that is not hornotopically labir is homotopically 
stabil. Note that hornotopicallability is a local property, in that 
if a is a hornotopically labil point of a spaceS and b is a point of 
a space· T and there exists a homeomorphism h that takes a 
neighborhood 0

0 
of a onto a neighborhood V

0 
of b such that h(a) 

= b, then b is homotopically labil in T. 

Our final defiititiori was rnoti vated by the observation ihat, 
for a metric space, conditiOns equivalent to 1-4 may be given in 
tenns of the space'srnetric as follows: .· ) 

··Definition B2': ·A point a of a metric space M is 
homo topically labil if for every e>O, there exists a mapping g: 
(M xI)--. :M (where again lis the unit interval) satisfying the 
followmg conditions: 

1'. g(x,O)=x fortlwryxEM 

2'. 6(x, g(x,t))<s tor every (x,t)E(M x f) 

3'. g(x,l):;t:a foreveryxeM. 

It should be clear that a pointaEM.tthat is homotopically 
labil by B2 is also homotopically labil by B2', but the skeptical 
reader will reqmre some support tor the chtim that the converse 
is true. Suppose then that under B2' a is h~rn~topically iabil, 

g(x,t) is a mappmg satisfying 1'-3' for some&>o, and that U is 
a neighborhood of a such that o(.r,a)<3e implies xe U. · J Define F: 
(M xi)--:--+ :M thus: • · .. · · 
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{

g(x,t) for C5(x,a)$ &, 0 $ t $ I 

F(x,t) = g(x, 1(2- (O(x,a)/ e))J for & :;; C5(x,a):;; 2&, 0:;; t::; 1 

. for o(x,a) ~ 2&, 0 :;; t ::; I [Borsuk}. 

Having made this realization, Borsuk and Jaworowski saw 
a way to further generalize this concept of homotopic lability by 

divorcing it from homotopy. In their paper they introduce the 
notion of lability, and define it thus: · 

Definition H3: A point p of a metric space S is labil 
whenever there exists for every e>O, a mapping g: S _.. S 
such that 

la. O(x,g(x))<£ for every X S 

2a. g(x) J p for every x S. 
A point that is not labil is stabil [Borsuk]. 

We note here that in contrast to homotopic lability, · 
lability is not a local propeny. Consider the following sets in 
the Euclidean plane. . . 

So= { (x,y)! x2 + y2 = 1} 

s,;"" {(XJ')I X= (1- 1/n)cos S,y =(I- 1/n)sin 8; 191 s,(1t- 1/n)} fbr nEN 

: S = Vn>{) 
00 

Sn T= Sn{(xJ')ix ~ 0} (see Fig. l)[Borsuk]. 
' ~ ~: 

Fig I 

(1,0) 

. Obviously, SandT are identical about the point (l,Q), yet 
this point is stabil inS and labil in T. 

Equivalences and Divergences: 

We can show without much work that our manifold 
definition implies our homotopic definition, which in tum implies 
our metric definition. For the first implicati~n,assurne that ann
dimensional manifold M is locally homeom6{phic to hiilf of 
Euclidean n-space about the point p. Given some e >0 let 

Uo""' 0, Ur = { (x,y)l C5(x,p) ~ st}, and U = '--:re[O,II Ur. · · 

. For each t, define r(x,t)::: r,(x) as the rel;acti~n rn~pping r,: 
M--. {M\U,). It should be clear that r(x,t) satisfies conditions 
1-4 for the neighborhood U ofthe point pin the space M, and thus 
P is hornotopically Iabil. To see that our homotopic definition 
implies our metric definition, simply observe that if g ·is a 
mapping satisfying conditions 1¢-3¢ for a point a of a metric 
space L, then setting j(x) = g(x,l) gives a mapping satisfying 
conditions la and 2a for aEL. 

Obviously· the converse is not true· in general· for the 
manifold and homotopic definitions,· since a point labil in our 
homotopic sense may not have a single 'neighborhood 
homeomorphic to half~ or whole Euclidean space.· ·our next 
example shows that the converse is also false in general for our 
homotopic and metric definitions .. For the following of example, 
consider the set given as a subset of the Euclideanplaite with the 
induced topology. ,_' .. .. · ., ·· ' 

Fig. 2 

L~tN = {lin i ~e~f.i= [-l,lJ, S =NxJ\
0 

=S\{N xJ) and 
Lk = { 1/k} x 1 (seeFig 2)>;,First observe that any point ·of L

0 
fails 

to have connected neighborhoods, and so by theorem 4 cannot 
be homeomorphic to · E~6lidean space. Thus our manifold 
definition is of no service'tous: We claim that any'non-endpoint 
p of L

0 
.is homotopically stabil, but labil. To see that p is 

homotopically stabil, •aSS!Jine that there. exists a function f 
satisfying conditions 1-4 for'p imd some neighborhood Uof p, 
and consider the images.ofL

0 
underf lfwe assume thai/does 

not map L
0 

onto itself, thenfmaps L0 onto some Lk and ..ve have 
a situation depicted in figure 2a: Here we see that the continuous 
image ofL

0
, a conne'cr~d set, is disconnected, and thi'.s contradicts 

the fact that connectedness is a continuous invariant. Hence, it 
nmst be thatfrnaps L

0 
ontb itself. However, condition 4 requires 

thatp not be an element ofj(U, 1 ), and so wearrive aithe situation 
depiCted in figure 2b.'' Again we have L

0 
mapped.into a 

·. disconnected set, namely I·o \{p}, which is anotherco,ntradiction. 
. Thus we must conclude" that no such f exists arid thus p is 

homotopically stabiC ·' 
' ; " ~ ; .. 

Figure 2a. 

/ 
L-------.-J 

*~ 
Hgure 2b. 

~~\ 

! __,/ 
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The problem here arises from the fact that, for homotopic 
lability, the space must remain fixed outside the neighborhood 
U. For lability there is no such requirement, so we are free to use 
a restriction of a projection mapping to map onto some segment 
Lk* the segment L

0 
and all segments Lk where k> k*, as depicted 

infigure2c. More specifically, let e beanarbitrarypositivereal 
number, choose annE N such that n > I.e, and define fe: S----+ S 
as follows: 

p 

{

/k,s) fork~ n 

JJ..O,s) = (1/n,s) and JJ..llk,s) 

Iln,s) for k>n. 

This mapping demonstrates the lability of p (see fig 2c.) 

0 .... ). 

A slight modification of S indicates that our more general 
definitions sometimes defy our intuition of what a boundary 
point is. Let N* = { linin E Z}, and define L

0 
*, S *, and L/ 

analogously to L
0

, S, and Lk (see Fig. 3). Note that the points of 
L

0 
* fail to have Euclidean neighborhoods as well. An argument 

similar to that of our previous example shows that the non
endpoints of L

0 
* are homotopically stabil as might be expected, 

but a simple modification to f. shows that these points are still 
labil, despite the fact that any arc drawn from such a point to a 
simple closed curve enclosing the space intersects the space in at 
least one other point. 

Fig.3 

:: 

:: 
:: 

:: 

Before we move on to our next topic we note that for a 
rather large class of examples, the notions of homotopical 
lability and lability do coincide: when the space under 
consideration is an absolute neighborhood retract. 

Property Preserving Processes: 

A natural question to ask is 'when are our boundary points 
preserved?' In the example depicted in figure 2, we see that a 

sequence ofhomotopically labil points (i.e. the endpoints of each 
Lk) converges to a homotopically labil point (i.e. the endpoint of 
L

0
). Is the limit of a sequence of labil (or homotopically labil) 

points labil (or homotopically) labil in general? Consider in the 
plane the triangle with vertices A= (112,0), B = (1,1), and C = 
(0, 1 ), and let X be the union of the set of all points on or contained 
by the triangle and the segment of the x-axis between 0 and 1 (see 
Fig 5). 

Fig. 5 

B 

A sequence of retraction mappings almost identical to the 
one at the beginning of the previous section shows that any non
endpoint of the line segmentAB is homotopically labil (and thus 
labil), and the segment contains a sequence of points approaching 
A. However, another connectedness argument shows that A is in 
fact stabil (and thus homotopically stabil). 

Borsuk and Jaworowski prove in their paper on lability that 
the stability of a point, and also the homotopic stability, are 
invariant under Cartesian division but leave the question of 
Cartesian multiplication open. It is fairly easy to see that lability 
is invariant under this operation, and. in fact that a sufficient 
condition for a point (a,b )EA x B to be labil is for a to be labil in 
A orb to be labil in B. ·For if we have a point aEA that is labil 
in A andfis afunction satisfying conditions 1 a and 2a for a, then 
by defining g: Ax B----t;.A x B as g(x,y) = (1\x),y) we obtain a . 
function satisfying 1a and 2a for any point in A X B of the form 
(a,y). Simihrrly, we can argue that if bEB is labil in B, then any 
point in A x B of the form (x,b) is labil. 

Soon after the paper of Borsuk and Jaworowski appeared, 
Noguchi supplied an answer to the question of the in variance of 
homotopic stability under Cartesian multiplication in two papers 
published in 1954 and 1955. In the first paper, Noguchi supplied 
the following homological characterizations of homotopically 
labil and stabil points. 

Theorem Nl: Let A be a complex. A point a of 
A is hornotopically labil if and only. if there exists 
a contractible neighborhood 'complex ofa 
[Noguchi 1954]. · · 

Theorerit N2: Let Abe a~omplex. A point a of 
A is hornotopically stabil if and only if there 
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exists a neighborhood complex of a which is not 
contractible [Noguchi 1954]. 

In his paper of 1955, Noguchi used these characterizations 
along with the homological properties of joins to show that in 
fact homotopic stability is not invariant under Cartesian 
multiplication, except in the special case of homogeneous 
complexes [Noguchi 1955]. 

A Final Generalization: 

Before we conclude we discuss one further generalization 
of the boundary point concept due to J. Lawson and B. Madison, 
who published a paper on the subject in 1970. Our homotopic 
definition replaced the requirement of Euclidean neighborhoods 
with that of arcwise connected neighborhoods; our metric 
definition freed us from that restriction by using only a notion of 
distance; our final definition lacks even that requirement making 
it the most general to date. Lawson and Madison gave and 
investigated two definitions in terms of cohomology, which they 
call peripheral and marginal. 

Conclusion: 

We have now presented three successively more general 
notions of a boundary point. In manifolds, we have identified 
boundary points as those points having neighborhoods 
homeomorphic to half-Euclidean space. In locally arcwise 
connected spaces we have that a point is homotopically labil if 
we can deform the neighborhoods of the point in the space 
continuously in such a way that the result does not contain the 
point, but the complements of the neighborhoods remain 
unmoved. For any metric space we say that a point is labil if there 
exist continuous images of the space containing the point that do 
not contain the point and t~at do not move any point far. 

We then argued that each of these definitions generalizes 
the one before it. A pair 'of examples showed that these 
definitions are not equivalent, and that in at least one instance the 
more general definitions can have rather counterintuitive 
consequences. After an investigation into various operations 
applied to labil and stabil points we learned that Cartesian 
division preserves both homotopic lability and lability, that 
Cartesian multiplication preserves lability but not homotopic 
lability, and that the limit process preserves neither lability nor 
homotopicallability. Finally, we directed the interested reader 
to more work in improving the generality of the boundary 
concept. We hope that our discussion will be as illuminating for 
others as it has been for us. 
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Faculty comment: 

Dr. Bernard Madison made the following remarks about 
Mr. Thompson's work: 

Jonathan's research is in an area that overlaps into 
point-set topology and algebraic topology. Basically, 
the goal of work in this area is to determine structures 
and properties of spaces, e.g. subsets of Euclidean 
space, using algebraic constructs. The particular 
problem that Jonathan studied was distinguishing 
boundary points from interior points in spaces that 
are different from spaces that are like Euclidean spaces 
locally. Locally Euclidean spaces such as a circular 
disk are called manifolds and the notions of boundary 
and interior are well known and reasonably obvious. 
This interior versus boundary problem was studied 
in the 1930's and 1950's by several European 
mathematicians and resurfaced in the 1960's and 
1970's because of relevance to work in topological 
algebra. 

We have no undergraduate course work here in any 
areaoftopologysoJonathanhadtoleamaconsiderable 
body of material as background. Jonathan's work 
centers on two different concepts of boundary points, 
one defined in terms of metrics and one defined in 
terms of homotopies. These notions were introduced 
by H. Hopf and E. PannwiLz (1933) and K. Borsuk and 
J. Jaworowski (1952). Later, A. D. Wallace, K. H. 
Hofinann, P. S. Mostert, J. D. Lawson and I expanded 
these definitions using cohomology structures and 
applied the results to topological algebra structures. 
Jonathan's major creative contribution was to describe 
and analyze several fairly complex subspaces of the 
plane that provide examples that refine and 
distinguish between the metric and homotopy 
definitions of boundary. His apparent understanding 
of these examples is impressive for an undergraduate, 
and his exposition of his understanding is 
extraordinary. Jonathan's introduction to his paper is 
an excellent effort to convey understanding of his 
work to non-experts. 
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