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Scale-up of Polyaniline Cellulose Membranes 

Abstract 

 Polyaniline coated cellulose membranes show impressive conductive properties that may 

be used to innovate traditional charged separation techniques, such as electrodeionization. 

However, these membranes are not sold to consumers, so they cannot be easily integrated into 

such systems. This research focuses on the scale-up and development of positively charged anion 

exchange membranes to be used in EDI cells. Novel cellulose membranes were made using lab-

specific cellulose. These membranes were then coated using a polyaniline technique adopted 

from a paper titled, “Flexible Electrically Conductive Nanocomposite Membrane Based on 

Bacterial Cellulose and Polyaniline” [1]. This paper details the methods used to add the 

polyaniline coating to lab-scale cellulose membranes. Fourier transfer infrared spectrometry 

(FTIR) was used to determine that the chemical composition of the material was altered. The 

carboxyl functional groups were most likely altered to imine groups judging by the shifted FTIR 

peaks. The theoretical chemical analysis performed before the experiment supports this 

conclusion. More work needs to be done to compile important data on the novel material, but the 

proof of concept has been shown within this research. 

  



Introduction 

Separation technologies have become heavily researched over the last few decades. 

Methods such as reverse osmosis, electrodeionization, and electrodialysis are still finding new 

applications throughout a variety of fields. Electrodeionization (EDI) has proven to be 

particularly interesting. It is a recyclable, continuous separation technique that utilizes ion-

exchange resin (often made into wafers) and charged membranes [2]. Electrodeionization is a 

process primarily used for the ultra-purification of distilled water, mostly used in the fields of 

microelectronics, pharmaceuticals, and biology [3]. Figure 1 provides a basic illustration of ion 

separation occurring within an electrodeionization cell. 

This project’s origin stems from the idea that organic acids may be effectively separated 

from batch solutions using EDI [4]. Traditionally, organic acids are acquired through sensitive 

fermentation processes that can be difficult to uphold. The bacteria used to produce organic acids 

often die from the acidity of such a process, and purifying the organic acids is not energy 

efficient [5]. However, if the sugar molecules were broken down into organic acids without 

having to use bacterial enzymes, the process would become much more reliable and expedited. It 

Figure 1 - Visual diagram of electrodeionization process separating sodium and chloride from 

water. Adopted from Tongwen Xu [6]. 



has been hypothesized that by using bi-metallic nanocatalysts as enzymes, these sugar molecules 

may be negated to more valuable organic acids. If this process were undergone with an EDI cell, 

the organic acids would be continually formed and separated from the bulk solution. The 

potential profitability of such an innovative leap is massive.  

A few significant roadblocks had to be addressed. First, the bi-metallic nanocatalysts 

must operate like enzymes within a certain energy threshold. A graduate student is currently 

investigating this. Second, an EDI cell must be able to supply the necessary energy for these 

catalysts to operate. This energy can be transmitted using an electrical current; However, EDI is 

notorious for its reduced utilization of electrical current [6]. Therefore, the motivating factor of 

this research is to develop an EDI cell that proficiently conducts electricity. The three major 

components that inhibit this conductivity are the ion-exchange resin, charged membranes, and 

solution within the cell. The resin should be as conductive as the solution it resides, as it is very 

porous. If a high salinity solution is used, then moderate levels of electrical conductivity can be 

achieved. Therefore, the charged membranes are of the most significant concern. Electrically 

conductive membranes have been developed but are only retailed commercially or for specific 

applications at a high cost. This research focuses on synthesizing electrically conductive, 

positively charged membranes to address this discrepancy. 

Theory 

Polyaniline is an electrically conductive polymer with interesting mechanical properties. 

By crosslinking the polymer on cellulose membranes to form a nanocomposite, the electrical 

conductivity of these membranes can be increased by multiple orders of magnitude [3]. 

However, these membranes have only be synthesized and examined on small, pilot scales. The 

goal of this research is to create large scale membranes that may be further investigated. One 



ideal use of these membranes, as mentioned earlier, is the simultaneous catalysis and selective 

separation using electrodeionization.  

Ammonium persulfate is used as an oxidant in the oxidative polymerization of aniline, 

while a cellulose membrane is used as the template [1]. The extent of reaction limits the density 

of the polymeric layer. This affects the electrical conductivity. According to Weili Hu, optimal 

conductivity is achieved with a reaction time between 60 and 90 minutes [1].  

Aniline infiltrates the carboxyl functional groups of the cellulose to form nitrogen-based 

groups, such as imine or nitro groups [7]. The extent of reaction likely determines the quantity of 

such nitrogen-based functional groups. Due to the unusual nature of the novel cellulose 

membranes, the formation of certain groups might be inconsistent. It is possible that aniline does 

not remove the carboxyl group but instead forms a link between the oxygen atoms. The 

repercussions of such chemistry on the conductivity have yet to be determined. Also, a thorough 

analysis of the mechanical properties and surface charge of the membrane would likely form a 

valuable understanding of the material’s surface composition. 

It must be noted that most of the data pertaining to this research was cut short due to the 

coronavirus pandemic, resultingly shutting down the research lab. Most of the project was spent 

developing in-situ cellulose membranes and a safe procedure to perform polyanilization. FTIR 

data was compiled for the polyaniline membranes to determine that the chemistry had been 

altered. Further characteristics that were meant to be investigated are electrical conductivity, 

weight percent polyaniline, tensile strength, and ion conductivity.  

 

 



Synthesis of Novel Cellulose Membranes 

Some details about the membrane synthesis process will be withheld due to a potential 

patent1. The membranes were formed using lab-specific tempo oxidized cellulose. A cellulose 

solution was developed that can synthesize membranes using phase inversion. Phase inversion 

utilizes a cold water bath to separate the membrane’s carbon-based backbone (cellulose) from 

the solvent [8]. Performing this synthesis requires the solution to be drawn across a glass plate, 

then flattened to a predetermined, measured thickness. The glass plate is dipped in a water bath, 

and phase inversion occurs. After the glass plate is removed from the bath, most of the solvent is 

pulled from the membrane. The membrane is left to dry, then washed again to ensure any 

remaining solvent has been removed. Figure 2 provides an image of the novel cellulose 

membranes directly after phase inversion. 

 
1 A U.S. patent has been submitted on the OTO-CNM Form I and Form II with a potential royalty stream to the inventors. International 

Publication Number WO 2019/023702 A1. International Publication Date: 31 January 2019 
An Invention disclosure was submitted in regard to the technology presented in this report under Invention ID: C2020-40 

 

Figure 2 - Photo of a novel cellulose membrane with a thickness of 750 microns. 



Standard cellulose membranes are usually not clear, so the novelization of this particular 

membrane synthesis procedure should be noted. Figure 3 below shows the similarity between 

these novel cellulose membranes compared to traditional cellulose. Hypothetically, both 

membranes should share similar power densities since their compositions are analogous. 

Unfortunately, there was not enough time available to examine the power density of the 

polyaniline coated cellulose membranes. The power density would likely increase due to better 

electrical conductivity but must be further investigated. 

 

Figure 3 - Illustrates the power density of the novel cellulose membranes versus batch cellulose 

membranes (in this case paper). 

Safety Considerations 

Aniline, ammonium persulfate, and hydrochloric acid are all hazardous compounds. 

Aniline and ammonium persulfate result in a highly exothermic reaction. Also, aniline is notable 

for its acute toxicity. The environmental health and safety committee had to approve the use of 

these hazardous substances before proceeding towards experimentation. Dr. Tammy Lutz-
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Rechtin, the Chemical Engineering Safety Coordinator, significantly helped prepare an 

appropriate standard of procedures.  

The oxidative polymerization of aniline was performed under a fume hood, with three 

layers of containment. No metal was used within the setup to avoid a spontaneous reaction with 

aniline. All the handling tools used were composed of glass and plastic. Waste from the process 

was stored within the fume hood in an appropriately labeled container. Three layers of 

containment were utilized for the storage of aniline to alleviate its strong odor and avoid 

potential spills. An ice bath was used to cool the previously mentioned exothermic reaction 

during experimentation. The temperature of the solution had to be consistently monitored 

throughout the experiment. 

Select personal protective equipment (PPE) was used for the polyaniline addition step. As 

always, the primary research lab PPE standards were met (pants, close-toed shoes, safety 

goggles). Also, a splash shield was worn to protect the eyes and face. Silver-shield gloves and a 

lab coat were also used to protect against the risks of aniline. Plans to address spills in and 

outside of the fume hood were developed in the case of an emergency. The Environmental 

Health and Safety committee commended the thorough risk and safety analysis. No incidents 

occurred throughout the length of the project, due to the necessary precautions being taken. 

  



Polyanilization Procedure 

As mentioned earlier, this experimental procedure was adapted from Weili Hu [1]. First, 

the experimental setup consisted of a two-neck flask with a stir bar, a rocker with three layers of 

containment, and a variable speed motor to control the rocker. Beakers, a waste container, plastic 

tweezers, and glass/plastic syringes were also vital components used. A picture of the 

experimental setup is provided below in figure 4. 

First, the cellulose membranes were washed to avoid possible contamination. Initially, 

the membranes were dried to constant weight under vacuum, but it was later determined that this 

step was unnecessary since the weight was not of significant concern. 6.66 mL of water was 

added to the two-neck flask, followed by 3.33 mL of 6M hydrochloric acid. This first step dilutes 

the hydrochloric acid to 2M. The temperature was allowed to plateau before moving forward. 

Next, 0.76 mL of pure aniline monomers was added dropwise using a plastic syringe. The 

solution was then transferred to the glass plate attached to the mechanical rocker. The membrane 

Figure 4 - Picture of experimental setup. Variable motor is glossy teal object on left, waste 

container in back left, two-neck flask with stirrer towards center left above hot plate, and 

mechanical rocker with three layers of containment on right. 



was added to the solution and stirred for one hour while monitoring the temperature. Next, ice 

was added to the container surrounding the glass plate to cool the forthcoming exothermic 

reaction. Lastly, two mL of 2M ammonium persulfate was added dropwise. At this step, the 

temperature must be closely monitored. The membrane may be allowed to stir for 30-180 

minutes. In most cases, the solution was stirred for thirty minutes. After the reaction has 

occurred, the liquid waste is drained into the waste container. The membrane is preserved and 

washed thoroughly three times using distilled water and 75% ethanol. The membrane is left to air 

dry for at least 24 hours. 

Some aspects of the process must be noted. First, unique pipettes and syringes were used 

for each compound added to avoid cross-contamination. Also, the variable motor is used to 

switch on/off the mechanical rocker since the switch on the rocker is somewhat tricky to access. 

Membranes with a thickness of 750 microns were used for every coating. This thickness was 

chosen because of its interesting ion selectivity and promising mechanical properties.  

  



Results 

 Three batches of polyaniline cellulose membranes were synthesized throughout this 

project. A membrane from each batch is pictured in figure 5. They exemplify the necessary 

scale-up of membrane size needed to experiment in a lab-scale separation cell. The final and 

largest membrane could handily fit within an EDI cell.  

 Fourier-transform infrared spectroscopy (FTIR) was used to determine if the membrane 

was coated in polyaniline. FTIR provides valuable information about the molecular composition 

of materials. Infrared radiation is shot at the material. Some of the radiation passes through the 

material, while the rest is absorbed [9]. This creates a signal that is translated into absorbance 

peaks. Peaks within specific absorbance ranges are indicative of certain atomic bonds. Using 

FTIR, it was determined that the experimental setup successfully altered the chemistry of the 

membrane. Figure 6 below shows a new peak around 1650-1700 for the polyaniline membrane. 

Figure 5 - Photos of a membrane from each batch of polyanilization. Smallest to largest membrane 

from left to right. 



This means that an imine group likely replaced the double-bonded oxygen of the carboxyl groups 

[10]. This is a promising sign that the aniline properly bonded to the functionalized cellulose. It 

also depicts the removal of a peak around 1600 that is present in the raw cellulose and cellulose 

membrane data. This peak is likely the result of a carboxylic oxygen-carbon double bond [11]. 

These carboxyl functional groups are either removed or altered by the polyaniline coating. 

 

Figure 6 – FTIR data of the cellulose powder (black), unmodified cellulose membrane (red), and 

polyaniline cellulose membrane (blue).  

The membranes proved to be rather stable under ambient conditions and presented 

relatively promising strength. Minor flexibility was examined but seemed to be mostly 

dependent on the level of moisture. The polyaniline coating should supplement a positive surface 

charge on the membrane due to polarization. This property is responsible for the improved 

electrical conductivity of the membranes [1]. 
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Conclusion 

 Overall, this project accomplished its primary objective, to synthesize a polyaniline 

cellulose membrane large enough to be integrated into lab-scale separation systems. First, a 

process to create novel cellulose membranes was used to provide a template for the polyaniline 

coating. Next, these membranes were coated with polyaniline utilizing the procedures detailed 

above. Lastly, a change in chemical composition was detected using FTIR. The shift in peaks is 

believed to be the result of imine groups forming on the carboxyl functional groups of the 

cellulose. The surface chemistry is thought to be dependent on the length of exposure to 

ammonium persulfate after polyaniline has coated the membrane. These scaled-up polyaniline 

cellulose membranes show great promise; However, due to unfortunate circumstances, a large 

amount of valuable data has yet to be obtained. These membranes should be further studied to 

determine their applicability towards an electrically conductive EDI cell. 

Recommendations for Future Work 

It is suggested that more data be acquired on the polyaniline coated membranes. First, the 

electrical conductivity should be examined to determine if the coating works effectively on 

larger membranes. The four-probe method may be used to test the electrical conductivity. Also, 

the ion conductivity and morphology of the membranes should be investigated. Lastly, 

experiments should be performed to determine the surface charge of the membrane [12]. 

 In terms of improvements to the experimental process, there are a few. First, some 

techniques should be used to ensure the membranes remain flat. From figure 5, it is evident that 

the membranes tend to roll up around the edges as they dry. This may hinder the membrane’s 

potential applications by degrading the consistency of its physical properties. Second, the 



membrane should be stirred for ninety minutes once the ammonium persulfate is added. This 

seems to be the duration that the optimal conductivity is achieved [1]. Lastly, a larger mixing 

apparatus would allow more membranes to be synthesized. If scaling up is essential for increased 

experimentation, then the mixing equipment will be the limiting factor. 
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