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Abstract

The optimal operation of chemical processes provides the foundation
for optimization problems to determine the most effective way to operate
or design a given process. Chemical processes can be represented as non-
linear systems of equations with decision variables, resulting in a problem
that can be solved through nonlinear solvers. The downfalls of nonlinear
solvers create the need for improved methods of finding globally optimal
solutions to the design or operation of a chemical process. The project
will seek to evaluate the use of artificial neural networks to approximate
nonlinear systems of equations for the purpose of optimizing chemical pro-
cesses. The super critical carbon dioxide (sCO2) Brayton recompression
cycle was selected as a surrogate chemical process. The process was ap-
proximated by a neural network with a rectifying linear activation unit
(ReLU). The sCO2 power generation cycle involves discrete decisions and
is nonlinear, however the mixed integer nonlinear programming problem
can be approximated as a mixed integer linear programming (MILP) form
because of the ReLU formulation of the neural network. The MILP for-
mulation for the optimization of the ReLU approximation successfully
modeled the locally optimal solution of the original nonlinear model, sup-
porting the use of neural network approximations for complex chemical
processes as well as the MILP approximation of the mixed integer nonlin-
ear problem.

1 Introduction

Numerical optimization has proven to be an important tool for improving the de-
sign and operation of chemical processes. Focusing on steady-state optimization,
chemical processes can often be represented by nonlinear systems of equations
with design and operations decision variables that are continuous or discrete.
While several nonlinear optimization packages exist that can efficiently find lo-
cally optimal solutions for large nonlinear systems (e.g., [10]), it can be very
challenging to efficiently solve nonlinear problems with discrete decisions, or
even continuous problems to global optimality. In this research project, the use
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of neural network approximations are investigated in the context of optimiza-
tion of chemical processes. The use of neural network approximations brings
two key advantages in this application. First, there are very effective tools for
training the neural network surrogate (e.g., PyTorch, TensorFlow). Second, it
has recently been shown that neural networks with rectifying linear activation
units (i.e., ReLU networks) are piecewise linear functions that can be repre-
sented within mixed-integer linear programming (MILP) problems[9, 1]. Pow-
erful solvers exist that can efficiently find globally optimal solutions of MILP
problems. Furthermore, if we want to solve problems with nonlinear chemical
processes and discrete decisions, this class of mixed-integer nonlinear program-
ming problems is now also representable (approximately) as a mixed-integer
linear programming problem. In this work, the applicability of ReLU networks
as surrogates for optimization of chemical processes is investigated. Specifically,
this work seeks to model a super-critical CO2 power generation cycle, approxi-
mate that system with an appropriately sized ReLU neural network, and verify
the accuracy of an MILP formulation for optimization of the ReLU approxima-
tion against the (locally) optimal solution of the original nonlinear model.

Power generation provides a good case study for problems requiring opti-
mization for the design of novel, efficient power generation processes. Before
discussing any power generation cycles, it is important to note the differences
between direct and indirect power generation cycles. Direct-fired power gener-
ation cycles involve the combustion gases themselves being used to drive the
turbine. In contrast, indirect-fired cycle use heat from a boiler to drive a sep-
arate working fluid through the turbine cycle. The combustion gases and the
working fluid do not mix in indirect cycles. Indirect power generation cycles
can use heat from a wide variety of sources, which leads to the efficiency of the
cycles generally increasing with increased amounts of present heat [11]. Heat
that would normally be wasted as a byproduct of high thermal heat processes
can be repurposed for use in power generation cycles to reduce process costs.
As compared to similar power generation cycles, namely the Rankine cycle, effi-
ciency improvements between 2 and 6 percent are possible when using the sCO2
indirect Brayton cycles [11]. Significant improvements in efficiency can yield in-
creased process cost reductions for processes that would otherwise waste the
heat. Some additional benefits of using sCO2 as opposed to steam power gen-
eration cycles are, “the potential for higher efficiency, high-power density (more
compact) equipment, reduced capital costs, and emissions reductions compared
to steam based power cycles” [11]. The advantages of indirect sCO2 cycles over
steam-based power cycles provide the basis for further research into the sCO2
cycles.

The indirect sCO2 Brayton cycle has already shown promise for improve-
ments in efficiency over Rankine cycles and steam-based power cycles. formu-
lation of an indirect sCO2 Brayton cycle as an optimization problem involves
the consideration of both the power generating components of the cycle along
with the input power requirements of the cycle to maximize the efficiency of the
process. The specific implications of efficiency optimization will be discussed
along with the methods used to solve the associated optimization problem.
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Modeling the indirect Brayton SCO2 cycle results in a system of nonlinear
equations that can be difficult to solve. While numerical packages exist for local
optimization of these systems, it can be difficult to find globally optimal solu-
tions or solve problems with both these nonlinear models and discrete decisions.

Recently, ReLU neural networks have been proposed as surrogates for non-
linear systems [3]. The ReLU networks can be represented in mixed-integer
linear programming (MILP) formulations, and it is possible to find globally op-
timal solutions with modern MILP solvers. The ReLU representation approach
is particularly beneficial if the computational burden of the data generation is
less than the optimization itself. An example of the computational burden of the
data generation being less than the optimization occurs if approximations can
be constructed for unit operations and applied to the combinatorial problems
of process flowsheet design. Another example occurs if multiple instances of the
approximation are needed in the optimization, as is the case for optimization
under uncertainty. A third example can be found when the offline computational
burden can outweigh the benefits of rapid, reliable online optimization.

A fundamental understanding of artifical neural networks (ANNs) is worth
discussing to provide a baseline understanding. Neural networks are composed
of layers of nodes. Input data is fed to all the first layer of nodes. The connec-
tions between the nodes are assigned weights that determine the impact of the
output of a particular node on the input to the connected nodes. All the data
fed to a particular node is summed with respect to the weight assigned to the
data, and a bias is added to the total. A nonlinear activation function is then
used to compute the output of a node, and then the output for a node becomes
the input of another node. Several forms of these activation functions exist,
including the piecewise linear ReLU activation function. Overall, the layers of
nodes take the input data and produce an output layer of data that represents
the results of the neural network. The training of a neural network involves
the network iterating to determine the appropriate weights and biases that best
represent the expected output data as defined by the studied system. After a
neural network is trained, the network with “trained” weights and biases can
be used to evaluate new input data to yield predictions of output data or be
reformulated for use as a surrogate in optimization.

The importance of neural networks lies in the ability of ANN’s to approx-
imate a wide range of nonlinear processes. Although ANN’s can be used in
applications from game design to chemical process modeling, the use of neural
networks in power generation process optimization provides the focal point of
the study. This study brings together a suite of open-source tools. The IDAES
computational framework (developed as part of the DOE funded Institute for
the Design of Advanced Energy Systems) is used to model the super-critical CO2
process. This framework is an open-source Python-based package for equation-
oriented modeling and optimization of chemical process systems. The neural
network models are trained with PyTorch, and ReLU reformulations are devel-
oped and solved within Pyomo, an open-source optimization modeling platform.

The structure of this report is as follows. Section 2 provides background
information on the super-critical CO2 power generation process and the use
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of surrogates for chemical process systems. Section 3 describes the methods
used, including the data generation with the IDAES framework, training with
PyTorch, and optimization using IDAES and the Pyomo optimization platform.
The Methods section also discussed the reformulation of the ReLU ANN as a
MILP. Section 4 presents the numerical results of the study, comparing the
optimal solutions from the ReLU approximation with the local solutions from
optimization of the nonlinear IDAES model. Section 5 closes with a summary
and conclusions.

2 Background

The background involved in the performed study can be broken into two por-
tions. The sCO2 Brayton cycle subsection will detail the initial simulations
performed to validate the IDAES model, and outline the optimization problem
solved later in the paper. The surrogate modeling subsection with detail the
use of ANNs in the modeling of chemical processes along with the connections
between optimization and ANNs.

2.1 sCO2 Brayton Recompression Cycle Flowsheet Back-
ground

The IDAES computational framework was used to generate data for training
the neural network. However, prior to use, the IDAES model was compared
with an ASPEN Plus flowsheet model for the cycle. In the ASPEN Plus model
the chemical input for the process was carbon dioxide. The property package
used for analysis was REFPROP. The process flow diagram displayed as Figure 1
shows the material streams within the sCO2 system as well as two work streams
connecting heaters.

Figure 1: SCO2 Flowsheet simulated in ASPENPlus

The power generated within the cycle is generated at the CO2 Turbine from
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the 760°C CO2 coming from the boiler. The outlet of the turbine is then used
in a high temperature recuperator (HTR) and a low temperature recuperator
(LTR). The stream of CO2 is then split into a portion that goes through a
bypass compressor and a portion that goes through a cooler. The portion that
goes through the cooler then proceeds into the main compressor. The stream
from the main compressor flows into a splitter that takes splits the stream to a
flue gas cooler and to the LTR. The streams from the LTR, the flue gas cooler,
and the bypass compressor meet in a mixer and proceed into the HTR. The flue
gas cooler contacts a stream of flue gas that comes from the combustion used
to heat the boiler. The heat coming off the flue gas is used to aid in the heating
of the sCO2. The HTR feeds directly into the boiler. The boiler is modeled by
a heater that heats the HTR stream to the inlet temperature of the turbine.
Heat streams titled HTRQ and LTRQ connect HTRBOT with HTRTOP and
LTRBOT with LTRTOP, respectively.

The basic premise of the process is that the sCO2 powers the turbine after
being heated within the oxy-fired CFB. The compressors prepare the sCO2 to
return to the boiler with an appropriate pressure, and the HTR and LTR at-
tempt to salvage heat from the sCO2 exiting the turbine to heat the pressurized
stream returning to the boiler. Within the simulation, net power was defined
as the sum of the power generated by the turbine subtracting the power used
by both compressors. Equation 1 shows the equation that represents net power
where the indicated horsepower for each of the blocks is represented by the title
of the block.

NetPower = −(CO2TURB) −MAINCOMP −BY COMP (1)

The turbine pressure ratio is the next variable considered in the optimization,
and Equation 2 represents the turbine pressure ratio as defined by the turbine
inlet and outlet pressure.

TurbinePressureRatio =
(TurbineOutletPressure)

(TurbineInletPressure)
(2)

In the optimization of this process, a constraint is defined for the net power
output, and the optimization seeks to find the turbine pressure ratio and by-
pass split fraction that minimize the required boiler duty. While other degrees
of freedom could be considered, this produced a reasonable case study for com-
parison.

2.2 Surrogate Modeling of Chemical Process Systems

The optimization portion of the study performed sought to evaluate the feasi-
bility of using a neural network with varied nodes and layers to approximate
the process system. Important considerations for the project were to know if
ANNs could accurately represent the process over the range of interest, to find
if other studies had performed optimization problems using neural networks on
process systems, and evaluating the position of this study in the field of ANNs
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and optimization for chemical engineering applications. Several studies have
been performed that confirm the validity of modeling complex thermodynamic
data with ANN’s. ANN’s have successfully modeled refrigerant thermodynamic
properties, a power cycle, an absorption process, and a hydroformylation pro-
cess that will be discussed. Some of the studies have additionally performed
optimization surrounding the associated ANN and found successful results.

The optimization of a cryogenic natural gas liquid (NGL) recovery unit was
performed using recurring neural networks (RNNs) by Zhu et al. [12]. RNNs
are a type of ANN that contains a looping constraint within the hidden layer
of the ANN. The study found that the RNN was successfully able to represent
complex thermodynamic data of the NGL despite the large amount of chemicals
involved in the process.Thus, the findings of the project support the use of
ANNs to model chemical data. The objective of the optimization performed
was to maximize the profits obtained from the recovery unit. The nature of the
optimization problem solved by Zhu et al. [12] creates additional complexities
when considering costs along with operating conditions of the system. As a
result, the NGL recovery optimization is comparably more complex than the
optimization of the sCO2 power generation cycle, which supports the feasibility
of solving the sCO2 power generation cycle with ANNs and optimization.

Three studies were performed around refrigerant thermodynamic data mod-
eling through ANNs. Studies by Sözen et al. [8], Chouai et al. [2], and Laugier
and Richon [4] found ANNs to be suitable surrogate models for thermodynamic
data. Sözen et al. [8] determined ANNs to have distinct advantages of “speed,
simplicity, and capacity to learn from examples” when “compared to classi-
cal methods” such as equations of state [8]. ANNs are uniquely advantageous
compared to equations of state because ANNs do not rely on constrictive func-
tions. ANNs instead rely on being trained on example datapoints and can then
accurately portray thermodynamic data for chemicals. The second study of re-
frigerants conducted by Chouai et al. [2] found the optimal number of nodes and
layers through trial and error. The discerning of the optimal number of nodes
and layers is especially important for optimization problems which may scale
poorly with large ANNs, but is also beneficial for determining the accuracy at
which an ANN can model chemical process data. Additionally, the study was
able to determine derived properties, such as enthalpy and entropy, from numer-
ical derivatives involving the compressibility factor, temperature, and pressure.
The ANN accurately determined derived properties from input data supports
thermodynamic data modeling through neural networks. Laugier and Richon
[4] were also able to confirm that ANNs can act as accurate surrogate models for
thermodynamic data, noting that “the herein numerical approach seems to be
a convenient tool for modelling and predicting purposes” associated with ther-
modynamic property modeling. The literature of all three confirms that ANNs
are capable of modeling thermodynamic data as a replacement for equations of
state.

Şencan et al. [13] provides a source of dispute for using equations instead of
ANNs for accurate property determination. The study focuses on absorption
systems and the related modeling through ANNs. Şencan et al. [13] argue that
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the equations derived from the data may make modeling by ANN unnecessary.
However, the large amount of equations required to determine properties creates
complexities with optimization problem feasibility. ANNs provide several bene-
fits as previously discussed, and this study will focus on the use of ANNs within
an optimization context. Although Şencan et al. [13] mentions that modeling
though ANNs may be unnecessary, the study found that ANNs were able to
accurately portray thermodynamic data.

The case study of the hydroformylation of n-dodecane performed by Nen-
twich and Engell [6] yields an example of flowsheet superstructure optimization
through surrogate ANN modeling. The study notes that classical methods of
equations of state create systems of equations in thermodynamic models that
can greatly slow down computations for process systems. The literature also
notes that “by the use of the surrogate models, the good predictive properties
of advanced thermodynamic models can be exploited in flowsheet optimization
of multicomponent multiphase processes without excessive computation times
for the optimization runs” Nentwich and Engell [6]. The goal of this study is
also flowsheet optimization. Avoiding excessive computation times is a funda-
mental part of the study. The feasibility of solving optimization problems with
large amounts of equations is further refuted. ANNs provide an exceedingly
beneficial method of modeling the thermodynamic data for use in optimization
computations.

Research performed by Schweidtmann et al. [7] provides an example of neural
networks being used to model pertinent chemical data for use in deterministic
global process optimization, or DGPO. The chemical data generated through
ANNs for the DGPO was used to optimize a simple Rankine cycle for power
generation to maximize the net power generated by the system. Three formula-
tions were used for chemical data for the optimization problem. Thermodynamic
properties were obtained through either an artificial neural network as functions
of any two intensive properties, through the Helmholtz equation of state with
additional equality constraints and optimization variables, or through artificial
neural networks with the constraint of using the same inputs, constraints, and
optimization variables as the Helmholtz equation of state. The primary differ-
ence between the research performed in the study and the research performed by
Schweidtmann et al. [7] was the variation of the number of nodes and layers to
achieve ideal MSE. While the study by Schweidtmann et al. [7] varied the num-
ber of nodes without experimentation into layers, this study sought to determine
the ideal number of nodes and layers to achieve a specified MSE. Furthermore,
while Schweidtmann et al. [7] utilized classical nonlinear activation fucntions,
this study investigates the use of ReLU networks which are MILP-representable.

3 Methods

The goal of this work is to demonstrate optimization of chemical process systems
using an artificial neural network surrogate. The case study considered is an
optimization problem for a super-critical CO2 power generation process. The
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flowsheet is discussed in the previous section. The goal of the optimization
formulation is to seek the turbine pressure ratio and bypass split fraction that
minimize the required boiler duty for a particular desired net power output.
The optimization formulation considered in the case study can be described as
follows:

min
d,r,b,p,x

d (3)

s.t. f(d, p, r, b, x) = 0 (4)

p =pspec (5)

rL ≤ r ≤ rU (6)

bL ≤ b ≤ bU (7)

xL ≤ x ≤ xU (8)

where d is the required boiler duty, p is the net power produced, r is the turbine
pressure ratio, b is the bypass split fraction, and x are the remaining state
variables in the problem. The equations f(·) represent the model of the SCO2
flowsheet.

3.1 Model Validation and Data Generation

The model used for data generation was developed as part of the IDAES project
(Institute for the Design of Advanced Energy Systems). The IDAES computa-
tional framework is an open-source, equation-oriented modeling package based
on Python and built upon the Pyomo optimization package.

Prior to data generation the IDAES SCO2 flowsheet was validated against
an ASPEN Plus flowsheet developed as part of this project, using specifications
from the NETL baseline report for SCO2 power generation [11].

To generate data, simulations were performed over a sweep of values for
the net power output, and the turbine pressure ratio. For each simulation, the
IDAES model was solved using IPOPT[10]. In addition to these input values,
for each of the simulations performed, the required boiler duty and bypass split
fraction were recorded. A total of 750 simulations was performed, varying the
net power from 600 MW to 650 MW, and the turbine pressure ratio was varied
from 0.3 to 0.65. The results of these simulations formed the training and testing
data for the ANN. Regarding the implementation, the IDAES framework is
completely based on Python, and a Python script was written to loop over all
the simulations and record the results to a csv file through the Pandas package
in Python.

3.2 Network Training

Pytorch is one of several machine learning libraries available to develop neural
networks from training data. The two main choices are PyTorch and Tensor-
Flow. PyTorch was selected primarily for the ease of use and effectiveness when
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training. Another benefit of Pytorch is the presence of large amounts of online
resources that guide the development of code. Pytorch is also a Python based
machine learning package and it was straighforward to script the training pro-
cedure and extract the network parameters for constructing the optimization
formulation.

As seen in Section 4, several network sizes were explored to obtain a reason-
able trade off between the accuracy of the approximation and the size of the
neural network (which impacts the performance of the optimization). For the
activation functions, rectifying linear units (ReLU) were selected since transfor-
mations exist to represent these networks within mixed-integer linear program-
ming problems. Effective training was found by first using the RMS method,
followed by the ADAM method for a total of 20, 000 iterations. The loss func-
tion used was the mean-squared error (MSE), and 70% of the data was used
for training with the remaining 30% used for validation. The MSE of both the
training and validation data was recorded, and at the end of the training, the
maximum absolute error and the maximum relative absolute error were com-
puted and recorded. After training, the structure, weights, and biases of the
network can be extracted for use in the optimization formulation.

3.3 Mixed-Integer Representation of the Neural Network
Surrogate

Integer programming represents a form of mathematical programming that per-
forms optimization and restricts the variables to hold discrete, integer values.
Mixed-integer programming specifically refers to problems that can contain both
discrete and continuous variables. Robust mixed-integer programming solvers
exist that allow for optimization of problems formatted as mixed-integer equa-
tions.

In the study performed, the neural networks used to represent the complex
nonlinear sCO2 system can be mathematically represented by the rectifying lin-
ear units (ReLU) format. Once the neural network is trained, we can formulate
the surrogate as a set of mixed-integer constraints that can be embedded in
another optimization problem. The original optimization formulation described
in equations (3-8) is modified to include the mixed-integer transformation of the
ReLU ANN in place of the nonlinear equations representing the SCO2 flowsheet
as follows:

min
d,r,b,p,x

d (9)

s.t. (d, b) = ANN(p, r) (10)

p =pspec (11)

rL ≤ r ≤ rU (12)

bL ≤ b ≤ bU (13)

xL ≤ x ≤ xU (14)
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The ReLU ANN can then be reformulated into a mixed-integer formulation
in similar form to the reformulations detailed by Tjeng et al. [9]. Tjeng provides
a detailed example used in the development of the coded ReLU ANN formula-
tion. The structure of the neural network in conjunction with ReLU activation
functions provides a means for the ANN to be used to create a mixed-integer
programming (MIP) representation that details the forward computation used
in the neural network. The neural network is then MIP-representable and can
be further used in optimization problems to make process decisions for the SCO2
process.

4 Results

The results of the analysis performed to optimize the sCO2 Brayton Recom-
pression Cycle are defined by both the neural network training as well as the
optimization results obtained using the trained neural network within the mixed
integer programming formulation of the associated optimization problem.

4.1 Neural Network Size Determination

It is important to determine an appropriate structure for the neural network
(i.e., the number of layers and nodes per layer). The network should be large
enough to adequately approximate the system, but if the network is too large,
then it is subject to over-fitting. Furthermore, smaller network sizes are im-
portant to reduce the computational burden of the MILP representation in the
optimization problem.

To determine an appropriate network structure, several networks were trained
on the data, and compared for size and quality of fit. As indicated above in
Section 3, PyTorch was used for all training. Table 1 shows the fit achieved
for different neural network structures. The table shows the number of nodes,
number of layers, the total nodes, and the mean squared error (MSE) of both
the training data and the validation data. The network size that was selected
to be used in the optimization was the network with 3 layers with 20 nodes per
layer as it is a relatively small network and has low MSE for both the training
and testing data.

4.2 Optimization and MIP Results

In this section, the MIP representation is compared with the original IDAES
model on an set of optimization problems. The optimization case study seeks
to minimize the boiler duty for a particular, specification of net power produced
with different bounds on the bypass split fraction. The turbine pressure ratio is
bounded to be between 0.3 and 1.0. The lower bound of the bypass split fraction
is set to 0.001, 0.01, 0.05, and 0.1 for problem A, B, C, and D respectively, while
the upper bound is set to 1.0 for all problems. A value of 642 MW was selected
as not to exactly match one of the sample boundaries used when generating
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Table 1: Contains Neural Network Training Results Data

# Layers # Nodes per layer # Nodes MSE (training) MSE (validation)

1 10 10 2.86E-01 2.89E-01
1 20 20 3.26E-02 3.22E-02
1 40 40 3.26E-02 3.22E-02
1 5 5 3.38E-02 3.38E-02
2 10 20 2.03E-02 2.30E-02
2 20 40 2.79E-04 2.54E-04
2 40 80 5.49E-05 7.90E-05
2 5 10 5.27E-03 5.97E-03
3 10 30 1.57E-02 1.67E-02
3 20 60 1.30E-04 1.39E-04
3 40 120 7.12E-06 1.21E-05
3 5 15 3.53E-04 3.94E-04
4 10 40 1.55E-02 1.66E-02
4 20 80 2.78E-05 3.86E-05
4 40 160 7.49E-06 1.37E-05
4 5 20 1.86E-02 1.82E-02

the training data. The Nonlinear Formulation uses the existing process model
in the IDAES framework, and was solved using Ipopt [10]. The Mixed-Integer
Formulation uses the MIP formulation of the neural network model with 3 layers
of 20 nodes each, and was solved using GLPK [5]. The same objective function
and constraints were used for both models. Table 2 shows a comparison of the
solutions for both models. As we can see, the MIP formulation shows excellent
agreement with the nonlinear model.

Table 2: Comparison of Optimizations with MIP and Nonlinear Formulations

MIP Formulation Nonlinear Formulation

Problem
Net

Power
(1e9 W)

Turbine
PR

Bypass
Frac

Boiler
Duty

(1e9 W)

Turbine
PR

Bypass
Frac

Boiler
Duty

(1e9 W)

A 0.642 0.5195 0.0010 0.9843 0.5159 0.0010 0.9835
B 0.642 0.4657 0.0100 1.0100 0.4661 0.0100 1.0098
C 0.642 0.3979 0.0500 1.0859 0.3989 0.0500 1.0843
D 0.642 0.3613 0.1000 1.1304 0.3615 0.1000 1.1305

However, the MIP formulation brings some advantages over the nonlinear
formulation. The MIP formulation does not require initialization, and it pro-
vides a globally optimal solution, albeit for the approximated neural network
model. The nonlinear model, on the other hand, provides a guarantee of local
optimality only. As such, it may become trapped in locally optimal solutions. To
make this point clear, the nonlinear formulations are solved again, with differ-
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ent initialization. First, each of the problems is initialized by fixing the turbine
pressure ratio to a value of 0.305 and solving the problem. Then the turbine
pressure ratio is released (unfixed), and the optimization problem is solved from
this initialization. The results in table 3 show that the nonlinear formulation
is indeed trapped in a local solution, solving to the lower bound of the turbine
pressure ratio for all 4 problems.

Table 3: Locally Optimal Solutions from Nonlinear Formulation with Poor Ini-
tialization

Problem
Net Power
(1e9 W)

Turbine
PR

Bypass
Frac

Boiler Duty
(1e9 W)

A 0.642 0.3 0.198 1.146
B 0.642 0.3 0.198 1.146
C 0.642 0.3 0.198 1.146
D 0.642 0.3 0.198 1.146

5 Conclusion

The research performed demonstrated that neural network surrogates can be
used to represent complex chemical processes in an optimization context. The
neural network surrogate obtained accurate results compared to the nonlinear
solution, and the neural network surrogate was able to overcome local solutions
in the optimization problem. The presence of locally optimal solutions in the
optimization problem was verified through the nonlinear formulation of the pro-
cess with poor initialization. The research performed provides one use of the
trained ANN to optimize the singular power generation cycle, but real benefit
would be realized if the computational effort for training was significantly out-
weighed by the burden of the optimization. For example, if neural networks were
trained for individual unit operations while the overall optimization sought to
solve a combinatorial problem like flowsheet synthesis, or if the neural network
surrogate was used within an optimization under uncertainty problem where
the model was included for each scenario.

An important consideration for future work is related to the relatively small
size used in this study with only two inputs and two outputs. The scalability of
the entire approach should be investigated on larger problems with more inputs
and outputs. However, the use of neural network surrogates shows promise for
optimization of process energy systems as demonstrated in this work focused on
optimization of the indirect super-critical CO2 power generation cycle.

12



Acknowledgements

The authors would like to thank Michael Bynum for use of the IDAES model of
the supercritical CO2 flowsheet model and his advice on selection of optimiza-
tion variables.

References

[1] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and
Juan Pablo Vielma. Strong mixed-integer programming formulations for
trained neural networks. Mathematical Programming, pages 1–37, 2020.

[2] A. Chouai, S. Laugier, and D. Richon. Modeling of thermody-
namic properties using neural networks: Application to refriger-
ants. Fluid Phase Equilibria, 199(1):53 – 62, 2002. ISSN 0378-
3812. doi: https://doi.org/10.1016/S0378-3812(01)00801-9. URL
http://www.sciencedirect.com/science/article/pii/S0378381201008019.
2nd international workshop on thermochemical, thermodynamic and trans-
port properties of halogenated hydrocarbons and mixtures.

[3] Bjarne Grimstad and Henrik Andersson. Relu networks as surrogate models
in mixed-integer linear programs. Computers & Chemical Engineering, 131:
106580, 2019.

[4] S Laugier and D Richon. Use of artificial neural networks for cal-
culating derived thermodynamic quantities from volumetric property
data. Fluid Phase Equilibria, 210(2):247 – 255, 2003. ISSN 0378-
3812. doi: https://doi.org/10.1016/S0378-3812(03)00172-9. URL
http://www.sciencedirect.com/science/article/pii/S0378381203001729.

[5] A. Makhorin. Glpk (gnu linear programming kit).
Available at http://www.gnu.org/software/glpk/glpk.html, 2009.

[6] Corina Nentwich and Sebastian Engell. Application of surrogate models for
the optimization and design of chemical processes. In 2016 International
Joint Conference on Neural Networks (IJCNN), pages 1291–1296. IEEE,
2016.

[7] Artur M. Schweidtmann, Wolfgang R. Huster, Jannik T. Lüthje,
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