
Inquiry: The University of Arkansas Undergraduate Research Inquiry: The University of Arkansas Undergraduate Research

Journal Journal

Volume 5 Article 12

Fall 2004

A Comparative Evaluation of .net Remoting and JAVA RMI A Comparative Evaluation of .net Remoting and JAVA RMI

Taneem Ibrahim
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/inquiry

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Ibrahim, T. (2004). A Comparative Evaluation of .net Remoting and JAVA RMI. Inquiry: The University of
Arkansas Undergraduate Research Journal, 5(1). Retrieved from https://scholarworks.uark.edu/inquiry/
vol5/iss1/12

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Inquiry: The University of Arkansas Undergraduate Research Journal by an authorized editor of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/inquiry
https://scholarworks.uark.edu/inquiry
https://scholarworks.uark.edu/inquiry/vol5
https://scholarworks.uark.edu/inquiry/vol5/iss1/12
https://scholarworks.uark.edu/inquiry?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol5%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol5%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/inquiry/vol5/iss1/12?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol5%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/inquiry/vol5/iss1/12?utm_source=scholarworks.uark.edu%2Finquiry%2Fvol5%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

86 INQUIRY Volume 5 2004

A COMPARATIVE EVALUATION OF .NET REMOTING
ANDJAVARMI

By: Taneem Ibrahim
Department of Computer Science and Computer Engineering

Faculty Mentor: Dr. Amy Apon
Department of Computer Science and Computer Engineering

Abstract:

Distributed application technologies such as
Micrososoft.NEJ Remoting, and Java Remote Method Invocation
(RMI) have evolved over many years to keep up with the
constantly increasing requirements of the enterprise. In the
broadest sense, a distributed application is one in which the
application processing is divided among two or more machines.
Distributed middleware technologies have made significant
progress over the last decade. Although Remoting and RMI are
the two of most popular contemporary middleware technologies,
little literature exists that compares them. In this paper, we study
the issues involved in designing a distributed system using Java
RMI and Microsoft.NET Remoting. In order to perform the
comparisons, we designed a distributed distance learning
application in both technologies. In this paper, we show both
similarities and differences between these two competing
technologies. Remoting and RMI both have similar serialization
process and let objects serialization to be customized according
to the needs. They both provide support to be able to connect to
interface definition language such as Common Object Request
Broker Architecture (CORBA). They both contain distributed
garbage collection support. Our research shows that programs
coded using Remoting execute faster than programs coded using
RMI. They both have strong support for security although
implemented in different ways. In addition, RMI also has
additional security mechanisms provided via security policy
files. RMI requires a naming service to be able to locate the
server address and connection port. This is a big advantage
since the clients do not need to know the server location or port
number, RMI registry locates it automatically. On the other
hand, Remoting does not require a naming service; it requires
that the port to connect must be pre-specified and all services
must be well-known. RMI applications can be run on any
operating system whereas Remoting targets Windows as the
primary platform. We found it was easier to design the distance
learning application in Remoting than in RMI. Remoting also
provides greater flexibility in regard to configuration by providing
support for external configuration files. In conclusion, we
recommend that before deciding which application to choose
careful considerations should be given to the type of application,
platform, and resources available to program the application.

Introduction:

A distributed system is a collection of loosely coupled
processors interconnected by a communication network [8].
From tbe point view of a specific processor in a distributed
system, the rest of the processors and their respective resources
are remote, whereas its own resources are local. Generally, one
host at one site or machine, the server, has a resource that another
host at another site or machine, the client (or the user), would like
to use [8]. The purpose of the distributed system is to provide an
efficient and convenient environment for such sharing of
resources.

A distributed application is one in which the application
processing is divided among two or more machines [8]. This
division of processing also implies that the data involved is also
distributed. Distributed application technologies such as
Micrsosoft.NET Remoting, Distributed Component Object
Model (DCOM), Java Remote Method Invocation (RMI), and
Common Object Request Broker Architecture (CORBA) have
evolvedovermanyyearstokeepupwitbtheconstantlyincreasing
requirements of the enterprise. They all are based on objects that
have identity and they either have or can have state [1]. Developers
can use remote objects witb virtually the same semantics as local
objects. This simplifies distributed programming by providing a
single, unified programming model. They are also associated
with a component model. A component is a separate, binary
deployable unit of functionality [3]. Using components in a
distributed application increases its deployment flexibility.

.In this paper, we focus on Microsoft.NET Remoting and
Java RMI. These two are by far the most popular distributed
technology at present. Java RMI, acronym for Remote Method
Invocation, is designed by Sun Microsystems which targets
working on distributed objects on Java virtual machines [2].
RMI allows Java developers to make calls to objects in different
Java Virtual Machines, whether they are in different processes or
on different hosts. .NET Remoting is designed by l\ficrosoft
Corporation as a successor to DCOM .. NET Remoting is the
manner in which .NET makes objects callable over a network. In
contrast to RMI's emphasis on Java-only development, .NET
Remoting supports multi-language interoperability. Both of
these technologies share similarities and differences. For

1

Ibrahim: A Comparative Evaluation of .net Remoting and JAVA RMI

Published by ScholarWorks@UARK, 2004

COMPUTER SCIENCE AND COMPUTER ENGINEERING: Taneem Ibrahim .. NET Remoting and Java RMI 87

developing distributed application, a lot of times developers are
confronted with the question of which technology to choose.
This is often a daunting task. This paper attempts to make a
comparative evaluation between these two very popular
distributed technologies in various aspects of designing a
distributed application.

In order to perform these comparisons, we have designed
a simple distance learning application in both technologies. In
the rest of the paper, we give an architectural background of
Remoting and RMI, describe the distributed distance learning
application, and present the experimental results of the evaluation.
In conclusion, we show our observations in regard to which
application to choose, and recommend any future research work
that can be done in this area.

Overview of Architectures:
Microsoft. NET Remoting Architecture

.NET Remoting enables client programs to call
methods of remote objects. When the client creates a connection
to the server object, the .NET Framework creates a proxy object
on the client [3]. The proxy object provides the client with the
same view of the server object that it would have if the server
objects were in its application space. It can call the server
object's methods through the proxy object. Figure 1 depictsthis
process. The figure shows a client method that calls a method on
the remote object through the proxy object created at run time.
Any data passed by the client method to the proxy is packaged by
a formatter so that it can be sent across the network. The process
of packaging the data for transaction is called marshalling [3].

Client Process Server Process
I CientMethocl I !

! I ll Jz
Channel

II

II \I

Formatter Formatter

i I 'lr II

~z [1
II "{','>

i I

II
Channel

I :>I Channel

Figure 1: How Remoting Works

After the data is marshaled by the formatter, the data is sent
through the channel, out across the network to the server. A
formatter on the server unmarshals the data and calls the
appropriate method on the server. It passes the data to the

method. When the server object's method finishes its processing,
it send any data it might need to return back to the formatter, and
the entire process is reversed.

Java RMI Architecture

The Java RMI architecture is based on the broker pattern
[4]. The broker pattern is a broker with indirect communication
between proxies. The Java RMI architecture consists of three
layers: the stub/skeleton layer, the remote reference layer and the
transport layer [4].

RMI is a layer on top of the Java Virtual Machine which
leverages the Java system's built-in garbage collection, security
and class- loading mechanisms [6]. The application layer sits on
top of the RMI system. A Remote Method Invocation from a
client to a remote server object travels down through the layers
of the RMI system to the client-side transport [8]. Next, the
invocation is sent- potentially via network communication - to
the server-side transport, where it then travels up through the
transport to the server.

Java Client

Invoke ~A on~
B

Stub~B

Distributed Computing
Services

u

Java Server

(~B~A J

Skelelon~B

L
---RMI Protocol.--

Figure 2: How Java RMI works

A client invoking a method on a remote server object
actually uses a stub or proxy as a conduit to the remote object [6].
A client -held reference to a remote object is a reference to a local
stub which is an implementation of the remote interfaces of the
obje::t and which forwards invocation requests to it via the

remote reference layer.

Distance Learning Application:

The distributed application we have designed is a simple
distance learning application. The remote methods in the
application includes:- adding a course, deleting a_course, view
schedule, view a class description, view and subffilt homework/

2

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 5 [2004], Art. 12

https://scholarworks.uark.edu/inquiry/vol5/iss1/12

88 INQUIRY Volume 5 2004

quizzes/handouts. These remote methods are defined in the
remote server implementation class. The client makes a call to
these remote methods with an object initiated during the
connection to the server. We use TCP as the communication
protocol. For storing information regarding courses, schedule, or
course assignments we used simple text files. The reason for
choosing text files as storage location is due to the fact if we use
database such as Microsoft Access or MySQL and used Open
Database Connectivity (ODBC) or Java Database Connectivity
(JDBC) as the application programming interface, the comparison
between RMI and Remoting will not be fair since database
transactions will significantly affect the performance. We wanted
to use the same storage facility for both applications and focused
our measurements on the distributed programming aspects only.
While designing the application we tried to keep very similar
programming techniques and algorithms.

RMI

Inheritance Single Class, Multiple
interface inheritance

Communication Socket

Naming Service RMI Registry, mapping from
named server object to URL

Configuration System Property

Remotable Remote interface

Protocol JRMP,IIOP

Activation Can be activated

Format Serialization

Distributed Garbage Collector Yes

Error Remote Exception

Skeletons Integrated within the
framework

object in this case is the attempt the client makes to ask for a
service from the server. A student can also submit his or her
assignments, participate in quizzes, and view handouts for a
particular class. The student also receives immediate feedback
on his or her quiz grades online. We are currently adding support
for instructors so that they can login as a course administrator and
update homework, handouts, quizzes and lecture material online.

Comparative Evaluation:

In this section we list some of the similarities and differences
between Java RMI and .NET Remoting .. NET Remoting and
Java Remote Method (RMI) are functionally equivalent. Both
systems allow applications to communicate betweeen processes
and machines, enabling objects in one application to manipulate
objects in another. Some of the key similarities and differences
are listed in the table below:-

Remoting

Single Class, multiple
interface inheritance

Channel

Hash table of object
references

XMLfile

MarshallByRef

HTTP, TCP, SOAP

Singlecall, Singleton, CAO

SOAP or Binary Formatter

Yes

Remote Exception

Integrated within the
framework

Figure 3: Key Differences between RMI and Remoting [2]

When a client (student) connects to the server (the host
university/college), he or she has to verify his login name first.
After that a menu prompts with options to add or delete classes,
view the student's current schedule of classes, homework, quizzes
or handouts. After a student selects an option a remote call to the
method is made with appropriate parameters and after processing
the request the result is printed back to the client. The remote

Similarities:

Although Microsoft.NET Remoting and Java Remote
Method Invocation (RMI) are implemented quite differently and
are based on different business philosophies, they are remarkably
similar in many ways. These similarities include:

3

Ibrahim: A Comparative Evaluation of .net Remoting and JAVA RMI

Published by ScholarWorks@UARK, 2004

COMPUTER SCIENCE AND COMPUTER ENGINEERING: Taneem Ibrahim .. NET Remoting and Java RMI 89

i) Copies and References:

In common with RMI, Remoting provides the distinction
between classes that will be referenced remotely and class that
will be copied across the network via serialization [5]. Serialization
is the process of converting a set of object instances that contain
references to each other into a linear stream of bytes, which can
then be sent through a socket, stored to a file, or simply manipulated
as a stream of data [3]. Serialization is the mechanism used by
RMI to pass objects between Java Virtual Machines (JVMs),
either as arguments in a method invocation from a client to a
server or as return values from a method invocation. Similarly,
all of the .NET primitive types are annotated with the Serializable
attribute. Following is an example of how to make a class
serializable in .NET Remoting:

Using System;

[Serializable]

public class View_Grades{

//do something

In Java RMI:-

import java.io.*;

public access class View_ Grades extends Abstractlist
implements List,cloneable,java.io.Serializable {

I I do something

I
ii) Customizing Object Serialization:

The .NET framework allows a type attributed with the
SerializableAttribute custom attribute to handle its own
serialization by implementing the ISerializable interface [5].
This interface defines one method, GetObjectData:

void GetObjectData(Serialization info,
StrearningContext context);

The Java RMI provides a similar functionality
java.io.Externizable, which allows programmer to take
responsibility of the serialization process. Whereas in Remoting
the !Serializable interface contains only one method
GetObjectData, in RMI Extemizable contains two methods [3]:

public void readExternal (Objectinput
in);

public void writeExternal (ObjectOutput
out);

iii) Object-Oriented Remote Procedure Call (RPC):

Remote Procedure Calls (PRC) is a traditional mechanism
that allows applications to call procedures that exist on other
computers [2]. RPC makes use of proxy methods that have the
same signature as the remote method but also has code Remote
Procedure Calls (RPC) is a traditional mechanism that allows
applications to call procedures that exist on otherfor transferring
data between the client and the server [2]. Parameters are
bundled and sent to the server where they are unbundled and
passed into the requested method. The return values are treated
in the same way.

Both Java RMI and .NET Remoting implement an object
oriented approach in remote method calls built on top of existing
RPC mechanism. While RPC allows the program to call
procedures over the network, RMI and .Net Remoting permits to
call an object's methods over the network [2]. In order to make
a remote method call over the network, the program needs to call
the method through the server object that was initiated during the
connection.

The following code snippet shows how to make remote
method calls in .NET Remoting:-

MySearchintf MyObject
MySearchintf)Activator.GetObject

typeof (MySearchintf), •tcp: I I
localhost:8085/MySearch");

MyObject.Add_Course(course);

Here we have activated a server object called MyObject and
invoked a remote method named Add_Course on that object.

The following code snippet shows how to make remote
method calls in Java RMI:-

SimpleRMIInterface myServerObject
(SimpleRMIInterface) Narning.lookup(-//
• + serverName + • I
SimpleRMIImpl");

myServerObject.Add_Course(ternp);

Here we bind the server object myServerObject to the
object in the client and then invoke a remote methodAdd_Course
on that object.
iv) Interface Definition Language (IDL):

COREA the acronym for Common Object Request Broker
Architecture, i~a widely used communications model for building
distributed (multi-tier) applications that connect both cross
platform and cross-language clients to server-based services.
Neither RMI nor .Net Remoting require a secondary language
for defining the remote interfaces, such as COR~A IDL [2].
However both .NET Remoting and Java RMI provides support
for building COREA Server. Making that connection requires a
way to describe .NET objects as COREA objects so that J2EE

4

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 5 [2004], Art. 12

https://scholarworks.uark.edu/inquiry/vol5/iss1/12

90 INQUIRY Volume 5 2004

.NET objects, so that managed .NET code can interact with them
[ll]. In other words, you need some m~diating code that can
translate objects and method calls from CORBA' s representation
to the .NET framework's representation [10].

v) Remote Object Lifetime:

Java RMI provides support for Distributed Garbage
Collection. Server tracks clients who have its stub and keeps a
count of such clients [2]. Count is decremented when client
explicitly relinquishes reference. If the reference count reaches
zero, the object is garbage collected. An objects lease is essentially
a counter that specifies its lifetime [3]. RMI also lets distributed
references to be leased. Clients automatically try to renew leases
as long as a stub has not been garbage collected [4]. .NET
Remoting employs similar concept of object leasing. Leases are
controlled by the server's lease manager object, which is created
in the server's application domain. By default, .NET Remoting
gives client activated and singleton objects a lease of five
minutes [3]. It decrements the lease at certain intervals. Each
time a client accesses the object, the lease manager increases the
lease by two minutes [3].

Differences:
i) Naming Service:

In order to create a socket connection, it is necessary to
have a machine address and a port. However, you also want to
avoid hard coding the server locations into a client application.
In order to solve this problem, RMI makes the client "ask" a
dedicated server which machine and port they can use to
communicate with a particular server [3]. This dedicated server
is often known as a naming service [3]. In RMI, the default
naming service that ships with Sun Microsystem' s version of the
JDK is called the RMI registry. Messages sent to the registry via
static methods that are defined in thejava.rmi.Naming class [3].
RMI registry is usually started as a standalone server.
Unfortunately there is not a reliable way to be backwards
compatible with the RMI registry in terms of being backward
compatibles with already existing naming services and with
future versions of the naming services. One advantage to having
a naming server is that you do not need to know the server address
or the port number.

NET does not rely on a registry to locate instances of
remote classes. Instead of using naming services, a client
communicates with the server on a pre-specified port [2]. Services
must be well-known, meaning that the client must know the
location of the remote service at run time. In Remoting on the
server side you create an instance of a TCPChannel or
HttpChannel class. and pass its constructor a port number. Thus,
the port number is the port on which the server listens for the
client Then the program needs to register the channel via the
static method RegisterChannel [6]. In this way, .NET Remoting

eliminates any need for have a separate naming services in order
to locate the remote services.

ii) Language and Platform Interoperability:

A significant difference between RMI and Remoting is that
when you develop with Java, it provides a single language
targeted at multiple operating systems, whereas, .NET provides
multiple languages (C#.NET, Visual Basic.NET, and C++.NET)
targeted primarily to a single operating system (Windows). RMI
application can be run on any operating system that has Java
Virtual Machine (JVM). Both Java RMI and Remoting are
tightly coupled with their languages which indicate that these
technologies do not intemperate with each other [2].

.NET Remoting meets the interoperability goal by
supporting open standards such as HTTP, Simple Object Access
Protocol (SOAP), Web Service Description Language (WSDL),
and Extensible Markup Language (XML) [6]. To communicate
with non .NET clients and servers, a developer can implement a
SOAP formatter.

RMIInter-ORB Protocol (RMI-IIOP) provides a convenient
way for any language that "speaks COREA" to talk to Java [2].
The CORBA HOP protocol is part of the JDK 1.3 specification.
One of the advantages of RMI-IIOP over COREA is the
developers do not need to learn the COREA Interface Definition
Language (IDL).
iii) Performanct Speed:

In order to compare the speed of Remoting and RMI, we
performed clock timing on remote method calls. We have
instantiated a date object before the method call and instantiated
another date object after the method call returned to the calling
class. After that, we took the difference in time in the process in
milliseconds. The performance depended on how fast the method
was able to retrieve data from a text file and then write that data
to another text file and add it to the student's record. We
performed this benchmarking on two remote methods, namely,
Add_ Course andDelete_Course. For adding courses we counted
from the time it took for adding up to ten courses and same for
deleting courses as well.The following two graphs show the
performance comparison of RMI and Remoting when called
withAdd_Course and Del_Course remote method:

In both of these graphs, .NET Remoting runs about twice
as fast as RMI does and the differences are greater as the number
of courses increases. We tried to perform this benchmarking as
much fair as possible. Two important things to point out here
that, we used Visual Studio.NET 2003 and Borland JBuilder 8.0
SE as editors and we ran these benchmarks on a Windows
machine. Following are the code snippets for the test methods:

5

Ibrahim: A Comparative Evaluation of .net Remoting and JAVA RMI

Published by ScholarWorks@UARK, 2004

COMPUTER SCIENCE AND COMPUTER ENGINEERING: Taneem Ibrahim .. NET Remoting and Java RMI 91

Deleting COU""Ses vs Time

300 ---

• .. ·
200+---~.-~----, •
2oot------------------~~------------------

o+---.--2-~--3-.--4---r---s-~--s---r-7-~---a--.---g---r~,~o_,

.Nunmer d Cotn~es

Figure 5: Performance Comparison of RMI and Remoting for deleting courses

In .NET Remoting:

6

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 5 [2004], Art. 12

https://scholarworks.uark.edu/inquiry/vol5/iss1/12

92 INQUIRY Volume 5 2004

DateTime s = DateTime.Now;

start = s.Millisecond;

MyObject.Add_Course(course);

DateTime f = DateTime.Now;

finish = f.Millisecond;

total= total+ (finish-start);

In Java RMI:

Dated= new Date();

sTime = d.getTime();

myServerObject.Add_Course(temp);

Date d2 =new Date();

fTime

dTime

iv) Security:

d2.getTime();

dTime + (fTime-sTime);

No aspect of distributed systems has gotten more attention
lately than security. The .NET's Common Language Runtime
(CLR) automatically provides a minimal form of checking to
ensure that none of the program's assemblies have been altered
or replaced [3]. It utilizes a technique called hashing to generate
an identifier for each assembly based on assembly's contents.
Every assembly generates a unique hash which is stored by
Visual Studio in a hash file [3]. Besides this automatic checking,
.NET also supports strong-named assemblies. This helps the
.NET framework prevent spoofing on a network .. NET also
provides a Signcode tool called S/GNCODE.EXE with Visual
Studio so that developers can assign trust levels to the assemblies
[3]. It also provides tools to authenticate signatures and validate
custom certificates issued by entities such as VeriSign. However,
the best way to implement a secure remoting system is to host the
remote server inside Internet Information Service (liS) [6]. The
best part of hosting inside liS is that you can use strong security
features without changing client's code or the server's code.

Java RMI adopts a different approach. It provides security
policy files that defines what kind of permission a program has.
There are nine basic type of permissions:- A WT, File, Network,
Socket, Property, Reflection, Runtime, Security, and Serializable
[3]. Every RMI application needs to contain asecurity.policvfile
that will indicate the type of permissions available. Javai also
comes with a simple GUI application, called po/icytool, that
helps you edit policy files. Within a running NM, permissions
are enforced by an instance of the Securityl'.fanager class [3].
Whe~ ~ progr~m attempts to do something that requires
pemusston, the mstance of SecurityManager is queried to see
whether the operation succeeds.
v) Ease of Programming:

In developing this simple distance learning application, we
found developing remote applications in .NET Remoting is
easier than Java RMI and other texts [4] also concur with similar
opinions .. NET has a rich debugging API. .NET Remoting is
quite flexible in terms ofbuilding application. You can configure
a Remoting application using a configuration file or
programmatically. Both server and client can be configured in
this way. Using configuration files allow the administrators to
configure the application's Remoting behavior without
recompiling the code [6]. Remoting also has more options in
tenns of publishing and activating remote objects. The framework
can be configured depends on the application needs [2]. For
example, an application can use either HTTP or TCP as the
communication protocol, and either SOAP formatter or binary
formatter as the object serialization. Following is an example of
a MyServer.config.exe file configured using a configuration
instead of programmatically:

<configuration>
<system.runtime.remoting>

<application name="MyServer">
<service>

<wellknown mode="Singleton"
type="MyServerLib.MyServeimpl,
MyServerLib" objectUri="JobURI" />

</service>
<channels>

<channels ref="http" port ="8085" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

vi) Publishing and Activation Object Service:

Java RMI includes a generic and reusable factory
implementation, called the Activation Framework, which handles
the details of launching servers on remote machines easily and
transparently [2]. Instead of using UnicastRemoteObject, the
remote implementation extends the Activation class.

In Remoting there are two types of activations- client
activation and server activation [4]. When a server publishes a
service, the activation type defines how and when the object will
be created, and how lifecycle of the object will be controlled.
When a client registers for an activated service, the runtime is
provided with information about how to create new proxies to
represent the remote type. There are two variants in the server
activation of objects- Singleton and SingleCal/ [4].

vii) Implementation of Remote Objects:

In Java RMI the developer has to create an Interface where
the developer declares all the remote methods with appropriate
remote exceptions. This Interface class is implemented by the
server implementation class where these remote operations are
defined. However, in Remoting you are not required use an

7

Ibrahim: A Comparative Evaluation of .net Remoting and JAVA RMI

Published by ScholarWorks@UARK, 2004

COMPUTER SCIENCE AND COMPUTER ENGINEERING: Taneem Ibrahim .. NET Remoting and Java RMI 93

Interface class. However, a client must be able to obtain the
metadata describing the remote type [6]. A solution to this
problem is to have the client add a reference to the assembly
containing remote objects implementation.

.Net remoting cannot run a non-default constructor when
connecting to well-known objects [2]. Java RMI does not have
this limitation.

Conclusion:

Although .NET Remoting and Java TMI share some
common traits mostly due to the fact that they both are object
oriented distributed technology, the basis and structure of the
.NET Remoting is different from Java RMI. .NET Remoting
service is easier to program and provides greater flexibility
features such as the configuration files. RMI was added to Java
after the original release of the platform, while the Remoting
system has always been a part of the .NET framework from the
beginning. This provides .NET Remoting a deep integration
with the under} ying platform. Both J avaRMI and .NET Remoting
preserves the security features provided by their individual run
time environment. In addition to that, Java RMI also provides
support for security policy files for stronger security. Remoting
is much faster and has excellent debugging support. .NET
Remoting does not define a standard protocol; it only has a set of
channels, formatter and message sinks, adding more flexibility
to the developer. Java RMI on the other hand is free.

To conclude, both .NET Remoting and Java RMI are great
solutions to develop distributed applications, which to choose
depends on the type of application, platform, resources and tools
available for designing the application.

References:
[1] Campione, Mary. The Java Tutorial Continued. First Edition. Addison

Wesley Press, Massachusetts, USA, 2000
[2] Chen, Li. "Java RMI vs .NET Remoting", http:/ I

students.cs.tamu.edu/jchen/ cpsc689-608/ comparison/ !Oc0607-
framework_comp_lichen.pdf, 03.12.2004

[3] Conger, David. Remoting with C# and .NET. First Edition. Wiley
Publishing, Indiana, USA 2003

[4] Grosso, William. Java RMI. First Edition. O'Reilly and Associates,
California, USA 2001

[5] Jones, Allen and Freeman, Adam. C# for Java Developers. First
Edition. Microsoft Press, Washington, USA 2003

[6] McLean, Scott. Microsoft .NET Remoting. First Edition. Microsoft
Press, Washington, USA 2003

[7] Plasil and Stal. "An Architectural View of Distributed Objects and
Components in CORBA, Java IU.II, and COM/DCOM." Software Con
cepts and Tools, Germany, 1998

[8] Sharp, John. Visual C#.NET: Step by Step. First Edition. Microsoft
Press, Washington, USA 2002

[9] Silberschatz, Abraham. Operating Systems Concepts. Sixth Edition.
John Wiley & Sons, INC, New York, USA 2002

[10] Sun Microsysterns. http: I /java.sun.corn/marketing/collateral/
rmi ds.html, 02.16.2003

[11] Swart, Bob. "Connecting CORBA to .NET", http:/ I
www.devx.com/interop/ Article/19916?trk=DXRSS_WEBDEV,
03.02.2004

Faculty Comment:

Mr.Ibrahim's faculty mentor, Professor Amy Apon, made
the following comments about her student's work:

The computer industry is a very rapidly changing
field of study. New software tools and versions of
tools from vendors such as Sun Microsystems, IBM,
The Open Software Group, and Microsoft, become
available on a regular basis. However, the personnel
and training effort required by companies that want
to use these new tools is enormous, so that very often
old tools with less capability continue to be used even
when newer, more capable tools are available. In
addition, it is difficult for college students to learn
new tools since professors also must learn how to use
these tools in order to incorporate them into their
classes. In general, there is a lack of understanding in
the industry about what may be gained by using a
new tool as compared to an existing tool or other
newer tools.

For his research, T aneem has performed an unbiased
study and comparison of two competing technologies,
Microsoft .Net, and Java-based tools for distributed
computing. The problem of comparing the entire
programming capability of .Net and Java-based tools
is too large for a single project, and Taneem has
chosen to limit his comparison to the remoting
capability of .Net and the Java RMI system. Some of
the study is quantitative. As a part of his project,
Taneem has learned each of these new tools and has
implemented a substantial test software system using
each tool. This example provided by this code in both
systems is a very nice contribution alone. He has
writtenbenchmarkingcodethatexecutesequivalently
in both systems and has compared the relative speed
of execution of the two tools. In addition to the
quantitative study, a portion of Taneem's research is
qualitative, and includes a literature .s~an:~ a~d
comparative study along several_ sp~ific cnte~a,
including inheritance, commumcatwn, nammg
service, configuration, protocol, activation, format,
distributed garbage collection, error handling, and
skeletons, and perceived ease of use.

The results ofTaneem's study show that it is possible
to perform a good comparison of Microsoft .NET and
Java R.MI as an undergraduate re~arch project. . It
also demonstrates that there is potentialforcomparues
and universities to move to new tools with a reasonable
amount of effort. T aneemfound significant differences
in the speed of execution of the two tools, with .NET
outperfonning Java RMI by ab?ut a factor of two.
T aneem found similarities and differences on several
criteria. He found .NET to be an easer programming
environment and describes in experiences in detail.
The results of this research are particularly important
because there are not many studies of this type, and a
contribution is greatly needed in this area.

8

Inquiry: The University of Arkansas Undergraduate Research Journal, Vol. 5 [2004], Art. 12

https://scholarworks.uark.edu/inquiry/vol5/iss1/12

	A Comparative Evaluation of .net Remoting and JAVA RMI
	Recommended Citation

	A Comparative Evaluation of .net Remoting and JAVA RMI

