




(a) J = 60 3rd surface has C4

and C3 local symmetry.
(b) J = 60 4th surface has C4 local
symmetry.

(c) J = 60 5th surface has C4 and
C3 local symmetry.

(d) J = 60 6th surface has C3 and
C2 local symmetry.

Figure 6.5: CF4 ν3/2ν4 REES plots. Surfaces are labeled starting from the center going
out. Looking at surfaces one by one shows their individual geometry and indicates
how the level clusters (contours) must arrange themselves. We include only 4 surfaces
as examples, but many are examined in the analysis.
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vibration coupling which also requires many REES.
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Appendix 6.A Multiple Rotors and Rotor-2D Vibration Hamiltonians
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Fluxional rotor molecular systems as well as polyad states are areas of considerable

spectroscopic interest. Molecules demonstrating this behavior are known to be green-

house gasses and many exist astronomically. This appendix demonstrates the simplest

possible Rotational Energy Surfaces for such states. A more detailed explanation is

found in ref [1].

6.A.1 Constrained Molecular Double Rotators

Common composite rotors are molecules which are a rigid rotor, but with an attached

methyl (CH3) pinwheel. Both the main rotor angular momentum,R, and methyl rotor

angular momentum,S, must be considered in this case. Moreover, R and S will add

to make total angular momentum ~J = ~R + ~S.

When treated numerically, these rotor-rotor interaction are treated with a torsional

potential as in Eq (6.7). In the simplified case here, the secondary rotor or gyro, S is

constrained to exist in a fixed body-frame axis.

HR+S = Hrotor,R +Hgyro,S + VRS (6.7)

Given that S is constrained, it does no work and need not contribute to the Hamil-

tonian. This should be rewritten to incorporate the fact that vecR = ~J − ~S. For a

main rotor that is an asymmetric top, the Eq(6.7) can be written as Eq (6.8).

HR+S,fixed = A (Jx − Sx)
2 +B (Jy − Sy)

2 + C (Jz − Sz)
2 +Hgyro,S (6.8)

= AJ2
x +BJ2

y + CJ2
z − 2AJxSx − 2BJySy − 2CJzSz +Hgyro,S

For a spherical top, Eq(6.8) condenses into (6.9).

H = BJ2 − 2S · J +Hgyro,S (6.9)
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If S is treated as classical and constant, then Eq (6.9) simplifies, forcingHgyro,S=const.

which may be removed from the total Hamiltonian, as in (6.10).

HR+S,fixed = AJ2
x +BJ2

y + CJ2
z − 2ASxJx − 2BSyJy − 2CSzJz (6.10)

By converting components Jx, Jy and Jz into T kq form, as described in chapter 1, the

Hamiltonian Eq (6.10) may be plotted as an RES. Fig 6.6 shows RES plots for various

values of rotor A,B, and C coefficients. Fig 6.6(a) is formed from a spherical top with

a gyro S vector pointing along the body-frame x axis. This create a cardioid-like

surface that has been pushed away from the origin by the S vector.

Figs 6.6(b) and 6.6(c) are similarly formed, but from prolate and oblate tops

respectively. Both prolate and oblate versions contain a separatrix while Fig 6.6(a)

did not.

6.A.2 2D Oscillation - 3D Rotation Analogy

RES plots identical to those in Fig 6.6(c) may also be created for an analogous system:

one with a rotor fixed to a vibrational angular momentum[1]. In the same way 2D

electric field polarization may be plotted as a vector in a three dimensional Stokes-

space, any 2D vibration (or two 1D oscillations) may be plotted as such a 3D vector

using either Pauli spinors or Hamilton quaternions[2, 3]. The Hamiltonian will have
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(a) Spherical-top with gyro

(b) Prolate rotor with gyro on the body-x axis

(c) Oblate rotor with gyro on the body-x axis

Figure 6.6: Multi-rotor RES formed from different types of rotors will make RES with
varying topographies. Unlike other RES, the contours here do not indicate quantum
energies. They exist only to show changes in topography.
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the form of Eq (6.11).

H =




A B − iC

B + iC D


 (6.11)

=
A+D

2
σ0 +

A−D
2

σA +BσB + CσC

where

σ0 =




1 0

0 1


 σA =




1 0

0 −1




σB =




0 1

1 0


 σC =




0 −i

i 0




The constants A,B,C and D should not be confused for the rotational constants

or inverse moments of inertia. The labels A−D
2

(asymmetric diagonal), B (bilateral)

and C (Coriolis or circular) are mnemonics for the Pauli spinors. In this way, the

rovibrational Hamiltonian is converted to Eq (6.12).

H = S0J0 + S · J (6.12)

where

J0 = σ0, JA =
σA
2
, JB =

σB
2
, JC =

σC
2

and

S0 =
A+D

2
, SA = (A−D), SB = 2B, SC = 2C

In this Stokes analogy, what was an RES is now a deformed Stokes sphere. The

directions x, y and z correspond to linear x, y and circular polarization of the 2D

oscillator. The radius of the surface now indicates the amplitude of oscillation. Given

the total angular momentum is constant, neither the vibrational angular momentum

nor the rotor angular momentum need be, so long as the sum is.
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B-type Hamiltonians HB, built of σB operators, angular momentum J must pre-

cess about the x axis symmetrically as in Figs 6.6(a) and 6.6(b). Eigenvectors of

these Hamiltonians are linearly polarized oscillators. The difference between the two

figures is in the contribution of a rotational T 2
0 operator, but not in σα contributions.

Fig 6.6(c) includes a B-type and also an A-type term to the rovibrational Hamilto-

nian, forming eigenvectors at two points that are still in the linear x,y plane, but not

along either an x (B) or y (A) axis.

6.A.3 Rovibrational Multi-surface RES Plots

Rovibrational Hamiltonians may also be plotted a second way. This involves treating

the single-rotor rotation classically (though of fixed magnitude) and the vibration

quantum mechanically. This is the method used in chapter 6 to analyze the ν3/2ν4

dyad band of CF4. The simplest possible example of this is to include the RES of a

classical rotation coupled to a quantum mechanical spin. For this rotor-spin example,

the 2× 2 Hamiltonian must be diagonalized, creating two surfaces[4].

Converting Eq (6.8) to quantize spin S creates Eq (6.13).

H = M0J
2 +QxxJ

2
x +QyyJ

2 +QzzJ
2
z

+Dx|S|σxJx +Dy|S|σyJy +Dz|S|σzJz (6.13)

=




h(J) +Dz|S|Jz |S|(DxJx − iDyJy)

|S|(DxJx + iDyJy) h(J)−Dz|S|Jz




where

h(J) = M0J
2 +QxxJ

2
x +QyyJ

2
y +QzzJ

2
z

and

dα = Dα|S||J | M0 = A+B + C

Dα = −2ASα Qzz =
2C − A−B

6
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(a) Classical plot creates intersecting surfaces (b) Quantum plot creates nested surfaces that
avoid each other.

Figure 6.7: Classical and quantum spin treatment will result in different RES. Con-
tours show topography and do not indicate quantum energy. Surfaces are sliced open
to show the surface inside.

If treated quantum mechanically, this matrix must be diagonalized, giving the double

surface Rotational Energy Eigenvalue Surface (REES) plot shown in Fig 6.7(b). To

compare to classical behavior, Fig 6.7(a) plots the same, but with the off diagonal

terms ignored. This classical case still contains two surfaces, but they may intersect

while the quantum surfaces are forced to avoid each other. Behavior at the top and

bottom (away from the intersection) is nearly identical for both plots in Fig 6.7,

mirroring much of the classical-quantum agreement shown in chapter 2.
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Chapter 7

Conclusions

Despite a history nearly as long as quantum mechanics itself, quantum molecular

spectroscopy remains a dynamic field. Computational and experimental tools have

transformed the study, but new theoretical work is still needed to interpret these

results. Spectroscopists have proven themselves invaluable to analytical chemists, as-

tronomers, atmospheric scientists and remote sensing experts. Current advancements

in molecular theory are exploring the boundaries of physics, even exploring supersym-

metric string theory[1].

This work is an attempt to add to the qualitative toolset of molecular theorists.

We have introduced tools of quantitative approximations, but the goal is to allow

theorists to better explain the sea of experimental and computational data now being

created.

To that end, this dissertation demonstrates several tools. Chapter 2 describes

approximation methods for symmetric and asymmetric-top molecules. This is done

by using the connection between unitary multipole operators and Legendre functions

to make a semiclassical approximation, also demonstrating the breakdown of this ap-

proximation with increasing rank of the Hamiltonian parameter (multipole operator).

This work is continued in chapter 3 to increase the parameter space for which

octahedral spherical-top molecules have been explored by RES analysis. These regions

of the parameter space show a new type of rotational level clustering consistent with

the symmetry subduction from O to C1.

The enormous degeneracy of both the rotational level cluster and the local-symmetry

axes require a different type of analysis to explain the tunneling splitting of the clus-

ters. This is the motivation for the work of chapters 4 and 5. Chapter 4 describes
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how Hamiltonians may be written in terms of lab-frame and body-frame operators to

better parametrize tunneling. This technique was carried out in chapter 5 using C2

rotational clusters in octahedral molecules as an example.

While previous cases of RES analysis shown here were for vibrational singlets

or ground states, chapter 6 expands this work to a vibrational polyad involving the

nine interacting vibrational modes in the ν3/2nu4 dyad of CF4. This required nine

interacting, nested REES plots. Similar work has been done with triplet states as well

as fully classical analysis. Shown here is the connection between rotational energy

clustering and polyad REES plots. These are predictive of the synthetic spectra for

most cases. Errors between our analysis and the computed spectra are likely a result

of our semiclassical approximations as discussed in chapter 6.
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