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Incorporating glass transition
concepts to explain rice milling-
quality reductions during the
drying process

Derek A. Schluterman* and Terry J. Siebenmorgen†

ABSTRACT

Previous research has indicated that while drying rough rice using air temperatures above the
glass transition temperature (Tg), head rice yield (HRY) reductions are incurred if a state transi-
tion occurs when severe intra-kernel moisture content (MC) gradients are present. State transi-
tions can occur by extended drying using high-temperature air or by cooling kernels below Tg
before sufficient tempering has occurred. The objectives of this experiment were to determine
the maximum MC removal per initial drying pass and the associated tempering durations
required to prevent HRY reduction. Two long-grain cultivars, ‘Francis’ and ‘Wells’, at two harvest
moisture contents (HMC) were used. Samples were dried with air conditions of either 60°C/17%
RH or 50°C/28% RH for various durations to create a range of intra-kernel MC gradients and
were subsequently tempered in sealed bags for durations ranging from 0 to 160 min. After tem-
pering, samples were cooled to cause a state transition, and then slowly dried to 12.2% MC.
Samples were then milled to determine HRY. Control samples were dried at 21°C/60% RH.
Results showed that the amount of moisture that could be removed in the initial drying pass was
directly related to the HMC and the drying air condition. The tempering duration required to
prevent HRY reductions increased with the amount of MC removed from the kernel in a drying
pass. The HRY reduction patterns concur with a hypothesis that explains fissure formation dur-
ing the drying process based on the Tg of rice kernels.

* Derek A. Schluterman, who graduated in May 2005 with a B.S. in biological engineering, is program assistant and lab
manager for the University of Arkansas Rice Processing Program.

† Terry J. Siebenmorgen, faculty sponsor, is a professor in the Department of Food Science and coordinator of the
University of Arkansas Rice Processing Program.
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INTRODUCTION

In the United States, rough rice is typically har-
vested at moisture contents (MCs) ranging from 14% to
24%, and subsequently dried to approximately 12% for
safe long-term storage. High-temperature drying creates
temperature and MC gradients within kernels, which
induces tensile stresses at the kernel surface and com-
pressive stresses at the kernel interior (Sharma and
Kunze, 1982). These stresses can lead to fissure forma-
tion within the kernel and subsequently reduce quality
due to reduction in head rice yield (HRY). In order to
reduce these stresses, tempering is typically practiced,
during which kernels are held in a non-drying condition
in order to allow MC gradients within kernels to subside.
Intermittent drying/tempering cycles are often used to
avoid fissure formation and HRY reductions.

Rice drying and tempering have been studied exten-
sively (Chen, 1997; Chen et al., 1997; Cnossen and
Siebenmorgen, 2000; Cnossen et al., 1999; Kunze, 1979:

Mossman, 1986) toward the goal of drying rice more
quickly while maintaining high HRY. When drying
rough rice, the glass transition temperature (Tg), the
temperature at which a state transition occurs causing
the rice to change from a ‘glassy’ to a ‘rubbery’ state, plays
a significant role in the rate at which moisture can be
removed from the kernel (Cnossen and Siebenmorgen,
2002) and in the occurrence of fissure formation
(Cnossen and Siebenmorgen, 2000). Cnossen and
Siebenmorgen (2002) found that the drying rate was
greater if the rice kernel temperature was above Tg.

Figure 1 shows the inverse relationship between Tg
and the MC of rice. If the rice kernel temperature is
below Tg, the starch exists in a ‘glassy’ state with a high
viscosity and modulus of elasticity, but low specific heat,
specific volume, and expansion coefficient. If the kernel
temperature is above Tg, the starch exists in a ‘rubbery’
state with a much higher specific heat, specific volume,
and expansion coefficient (Perdon et al., 2000). Cnossen
and Siebenmorgen (2000) presented a hypothesis incor-
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porating the Tg concept to explain rice kernel fissuring
during drying and tempering. To explain this hypothe-
sis, Fig. 2 shows hypothetical temperature and MC gra-
dients created within a rice kernel during drying. When
drying using air temperatures above Tg, rice transitions
from the ‘glassy’ to the ‘rubbery’ state. This transition
dramatically changes kernel material properties. During
this high-temperature drying, the outer layer of the ker-
nel will dry much more quickly than the center of the
kernel, causing an MC gradient within the kernel. This
can cause the surface and the center to be at different
material states (Fig. 3). Extended drying causes a suffi-
cient volume of the kernel surface to transition to the
‘glassy’ state, thereby creating an imbalance in the expan-
sion rate that initiates fissure formation.

During tempering and/or cooling, depending on the
temperature to which the kernel is exposed, the outer
kernel layer may transition to the ‘glassy’ state, while the
center remains in the ‘rubbery’ state, causing portions of
the kernel to experience different magnitudes of materi-
al properties (Cnossen and Siebenmorgen, 2000). Figure
4 shows this process, which can also lead to fissure for-
mation. During tempering, if the kernels are cooled
below the Tg temperature before the MC gradient is
allowed to subside, fissures will occur due to the surface
and center conforming to different properties; this is
shown with situation ‘B’ in Fig. 4. Once the MC gradient
subsides, the rice kernels can be exposed to temperatures
below the Tg temperature without incurring fissures.

Most commercial rice dryers try to safely remove the
maximum amount of MC in as short a period as possi-
ble without incurring HRY reductions. Given the Tg
hypothesis, the objectives of this experiment were to
determine the maximum MC removal per initial drying
pass and the associated tempering durations required to
prevent HRY reduction using air temperatures that pro-
duce kernel states both above and below the Tg. This
information is intended to help optimize performance
of commercial rice driers.

MATERIALS AND METHODS

In the fall of 2003, two long-grain rice cultivars,
Francis (with HMC of 19.5 and 17.4%) and Wells (with
HMC of 21.6 and 16.1%), were obtained from the
University of Arkansas Rice Research and Extension
Center near Stuttgart, Ark. Immediately after harvest,
the rice was transported to the University of Arkansas
Rice Processing Laboratories and was cleaned with a
dockage tester (Model XT4, Carter Day Co.,
Minneapolis, Minn.) and stored at 4°C for six weeks
until drying tests were conducted.

Rice samples were dried using a temperature and rel-
ative humidity (RH) control unit (Climate Lab AA: 300
CFM, Parameter Generation & Control, Inc., Black
Mountain, N.C.). The air conditions were monitored
using a hygrometer (Hygro-M2, General Eastern,
Woburn, Mass.). Air from the temperature and RH con-
trol unit was supplied to a laboratory drying chamber,
which included 16 trays (25 cm x 14 cm x 6.5 cm) with
perforated bottoms. The 16 trays were arranged as two
eight-tray sets, which served as two repetitions.
Approximately 110 g of rough rice was added to each
tray to form a layer of two to three kernels deep. Three
different drying air conditions were tested:

Extended drying using the control conditions has been
shown to produce no reductions in HRY (Fan et al.,
2000). For each drying air condition, samples were dried
for various durations to produce a range of MC gradi-
ents within the kernels. The different magnitudes of the
MC gradients formed during drying would indicate the
maximal amounts of MC that could be removed before
fissures were formed due to differential stresses formed
within the kernels when crossing the Tg line, as depicted
in Fig. 3. After each drying duration, samples from the
two repetitions were tempered, which consisted of plac-
ing samples in an oven set at either 50°C or 60°C in
sealed bags for various durations ranging from 0 to 160
min in increments of 30 to 40 min depending on the
drying duration; the longer increments, 40 min, were
used for the extended drying durations. After temper-
ing, the samples were placed into a conditioning cham-
ber maintained at 21°C and 60% RH to cool and contin-
ue to dry to 12.2% MC. The purpose of tempering the
samples for different increments was to determine the
shortest duration needed to allow the MC gradient that
was created during drying to subside. If the tempering
duration was too short resulting in the kernel cooling
below Tg before the gradient subsided, fissures would
result. This transition is illustrated with Situation ‘B’ in
Fig. 4. After each drying duration, the MC was deter-
mined in triplicate using an oven method, which com-
prised drying 15 g of rough rice for 24 h in a convection
oven set at 130°C (Jindal and Siebenmorgen, 1987).

To determine the effect of the drying and tempering
treatments on milling quality, 150 g samples of rough
rice were dehulled using a laboratory huller (THU,
Satake, Tokyo, Japan), and the resultant brown rice was
milled in a laboratory mill (McGill #2, RAPSCO,
Brookshire, Texas). During milling, a 1.5 kg weight was
placed on the lever arm of the mill, 15 cm from the cen-
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Condition H (high temperature)     60°C, 17.0% RH Equilibrium MC 5.5%
Condition L (low temperature)        50°C, 28% RH EMC7.2%
Condition C (control) 21°C, 60% RH EMC 12.2%



terline of the mill chamber. The samples were milled for
30 s. The amount of head rice, milled kernels that are at
least three-fourths of the original kernel length (USDA
1997), in each milled rice sample was determined with
an image analysis system (Graincheck 2312 Analyzer,
Foss Tecator, Höganäs, Sweden). Head rice yield was
then calculated as the mass percentage of rough rice that
remained as head rice.

For the control, five 200 g samples of rice from each
of the four cultivars/HMC lots were gently dried in the
conditioning chamber described above from the HMC
to 12.2% MC, resulting in minimal breakage and there-
fore the highest possible HRY. The five HRYs from each
variety/HMC lot were averaged to represent the control
HRY of each lot. The HRYs of the different drying/tem-
pering treatments were compared to the respective con-
trol HRYs to determine the amount of HRY reduction
caused by drying and/or tempering.

RESULTS AND DISCUSSION

Figure 5 shows the HRY data of ‘Wells’ (HMC of
21.6%) versus tempering duration for various drying
durations ranging from 10 to 55 min using drying air at
60°C/17% RH. When drying for 10, 20, and 31 min and
tempering for at least 90 min, no HRY reductions were
measured compared to the control HRY. Thus, as much
as 6.4 percentage points of MC (PPMC) were removed
without appreciable damage, given sufficient tempering
before cooling. However, when drying for 43 min and
removing 7.7 PPMC, a reduction of 5 percentage points
of head rice yield (PPHRY) resulted compared to the
control HRY, even after extended tempering durations.
A reduction of 18 PPHRY resulted after drying for 55
min, removing 8.8 PPMC, and tempering for over 2 h.
Therefore, the maximum amount of MC that could be
safely removed in a single pass with air at 60°C/17% RH
from ‘Wells’ at 21.6% HMC was 6.4 PP. It is speculated
that beyond this amount of MC removal, MC gradients
and resultant transitioning of sufficient portions of the
kernel surface to the ‘glassy’ state created stresses within
the kernel during extended drying that were too great to
overcome during tempering, resulting in permanent
HRY reductions.

A Tg diagram is shown in Fig. 6 for ‘Wells’ (HMC
21.6%) dried using air at 60°C/17% RH for the various
durations indicated in Fig. 5. The points in fig. 6 indi-
cate the rice temperature (60°C), the corresponding
PPMC removed for each drying duration, and the asso-
ciated HRY reductions (after tempering for 90 min), in
relation to the Tg line. As indicated above, drying for 10,
20, and 31 min, removing 3.1, 4.7, and 6.4 PPMC,
respectively, and tempering for at least 90 min resulted

in no HRY reductions compared to the control HRY. For
these drying durations, the average MC after drying
caused most of the kernel to be in the rubbery state,
which would also indicate that a significant portion of
the kernel surface had not transitioned from the ‘rub-
bery’ to the ‘glassy’ state (Fig.6). However, drying for 43
min and removing 7.7 PPMC resulted in HRY reduc-
tions compared to the control HRY, even after extended
tempering durations. For this situation, the average ker-
nel MC and temperature after drying positioned the ker-
nel material state very near the Tg line, which would
indicate that a large portion of the kernel periphery had
transitioned into the ‘glassy’ region while the kernel cen-
ter remained in the ‘rubbery’ region (Fig. 6). As report-
ed by Cnossen and Siebenmorgen (2000), this condition
results in kernel fissuring and reduced HRYs.
Proportionately greater HRY reductions occurred (17.1
PP) as greater MC gradients were produced, caused by
removing 8.8 PPMC (Fig. 6).

The HRY data for ‘Francis’ (HMC of 17.4%) at vari-
ous tempering durations and drying durations ranging
from 23 to 88 min using drying air at 50°C/28% RH are
shown in Fig. 7. Even drying for 88 min, removing 5.6
PPMC at this condition, and tempering for at least 120
min resulted in little to no HRY reduction compared to
the control HRY. Therefore the amount of MC removal
required to reach a safe storage level of less than 12%
MC was removed in a single pass given the required tem-
pering duration of 120 min. This can be explained
because the low HMC of 17.4% and mild drying condi-
tion placed the kernel state near the Tg line at the start of
drying. This resulted in insufficient MC gradients when
the kernel transitioned from the ‘rubbery’ to the ‘glassy’
state, which occurred during drying, resulting in high
HRYs compared to the control HRY with sufficient
tempering.

A Tg diagram is shown in Fig. 8 along with the dry-
ing and tempering data of Fig. 7 for Francis. The points
in Fig. 8 indicate the rice temperature (50°C), the corre-
sponding PPMC removed for each drying duration, and
the associated HRY reductions (after tempering for 120
min), in relation to the Tg line. Because of the low HMC
and the mild drying condition placing the kernel state
near the Tg line at the start of drying, the amount of MC
removed had little effect on HRYs, given sufficient tem-
pering before cooling. Drying up to 68 min and remov-
ing 4.5 PPMC resulted in no HRY reductions; less than 1
PPHRY reduction was measured for 88 min of drying
compared to the control HRY. Thus, drying low-HMC
rice with air conditions starting at the transition line
resulted in little to no HRY reduction. This is due to the
fact that while MC gradients were created inside kernels,
the kernel had not initially transitioned into the ‘rub-
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bery’ state so as to create the fissure formation scenario
described above.

Figures 6 and 8 illustrate that the HMC has a large
role in affecting fissure formation according to the Tg
hypothesis. To summarize this role, the HRY reductions
for ‘Wells’ with HMCs of 21.6 and 16.1% and for
‘Francis’ with HMCs of 19.5 and 17.4% versus MC
removed using air at 60°C/17% RH are illustrated (Fig.
9); the data represent samples that were tempered for 90
min at 60°C immediately after drying and before cooling
and subsequent drying. As a clarification of how Fig. 9
was developed, the HRY reductions and the PPMC
removed for ‘Wells’ (HMC 21.6%) in Fig. 9 were
obtained from Fig. 6. HRY reduction began after 2.3,
4.2, 4.8, and 6.4 PPMC were removed for ‘Wells’ (16.1%
HMC), ‘Francis’ (17.4% HMC), ‘Francis’ (19.5% HMC),
and ‘Wells’ (21.6% HMC), respectively. During drying
with high HMC rice, even though a severe MC gradient
formed within the kernel, fissuring did not occur until a
sufficient amount of the kernel surface transitioned into
the ‘glassy’ state. Thus, as the MC at which drying began
increased, more moisture could be removed per drying
pass without incurring HRY reductions given sufficient
tempering immediately after drying. Thus for this air
condition, or any given drying air condition, the amount
of MC that could be removed without HRY reduction
was directly related to the HMC of the rice.

The following conclusions were drawn from this
study:

• Drying with air temperatures below the Tg of rice,
with sufficient tempering, produced little to no HRY
reduction, due to the lack of an MC gradient within the
kernel during the state transition. This is because the
center and surface of the kernel remains in the ‘glassy’
region as opposed to drying above Tg, where the center
and surface of the kernel could be in different regions
resulting in an MC gradient and a difference in material
properties, which could lead to fissure formations and
HRY reductions without sufficient tempering.

• Tempering rice for at least 90 min at the drying air
temperature immediately after high-temperature drying
was sufficient to cause intra-kernel MC gradients to sub-
side and thus prevent HRY reduction upon cooling and
further drying.

• The amount of MC that could be removed in the
initial pass with sufficient tempering was directly related
to the HMC. This is illustrated by Figs. 5 through 9 and
concurs with the Tg hypothesis developed by Cnossen
and Siebenmorgen (2000).

• These results confirm the importance of monitoring
both the rice and drying conditions in order to obtain
the greatest HRY possible.
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Fig. 1. Glass transition temperature relationship for brown rice, indicating the
glassy and rubbery regions, as well as the general property trends associated with 

each region (Siebenmorgen et al., 2004).

Fig. 2.  Hypothetical temperature (T) and moisture content (MC)
distribution within a rice kernel during the drying process.  Points
(C), (M), and (S) correspond to the center, mid-point, and surface

locations of the rice kernel, respectively.    
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Fig. 3.  Hypothetical temperature and moisture content gradients within a rice
kernel at the locations depicted in Fig. 2, after extended high-temperature drying.

Fig. 4.  Hypothetical tempering situations above and below the glass transition
temperature (Tg) for a rice kernel that had been dried using air temperatures above 

Tg.  Surface, middle, and center correspond to the kernel locations depicted in Fig. 2.

Fig. 5.  Head rice yield versus tempering duration for cultivar Wells, with a 
harvest moisture content of 21.6%.  Samples were dried using air at 60°C/17% RH

for 10, 20, 31, 43, and 55 min, removing 3.1, 4.7, 6.4, 7.7, and 8.8 percentage points
of moisture content (PPMCR), respectively, tempered at 60°C, and then cooled to 21°C.  

Each data point represents the average of two replicate sample HRYs.
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Fig. 6.  Head rice yield reductions corresponding to the indicated percentage points
moisture content removed plotted onto a Tg diagram of temperature versus moisture

content.  Samples of cultivar Wells with a harvest moisture content of 21.6% were dried
using air at 60°C/17% RH.  All samples were tempered for 90 min at 60°C immediately
after drying and before cooling and subsequent drying.  Each data point represents the 

average of two replicate sample HRYs.

Fig. 7.  Head rice yield versus tempering duration for cultivar Francis, with a 
harvest moisture content of 17.4%.  Samples were dried using air at 50°C/28% RH

for 23, 46, 68, and 88 min, removing 3.1, 4.2, 4.5, and 5.6 percentage points of 
moisture content (PPMCR), respectively, tempered at 50°C, and then cooled to 21°C.

Each data point represents the average of two replicate sample HRYs.

Fig. 8. Head rice yield reductions corresponding to the indicated percentage points
moisture content removed plotted onto a Tg diagram of temperature versus moisture
content.  Samples of cultivar Francis with a harvest moisture content of 17.4% were

dried using drying air at 50°C/28% RH. All samples were tempered for 90 min at 
50°C immediately after drying and before cooling and subsequent drying. Each data 

point represents the average of two replicate sample HRYs.
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Fig. 9. Head rice yield reduction versus percentage points moisture content
removed for cultivars Wells and Francis at the indicated harvest moisture contents
(HMCs) using drying air at 60°C/17% RH.  Each data point represents the average

of two replicate sample HRYs.  All samples were tempered for 90 min at 60°C
immediately after drying and before cooling and subsequent drying.
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