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ABSTRACT 

 Heart disease the leading cause of death for both men and women in the United States. 

Cardiac fibrosis, or accumulation of extracellular matrix proteins in the heart, can occur after a 

heart attack and increase the risk for further complications. Current treatments for heart disease 

do not include extracellular matrix regulators, partly due to the complicated signaling network 

responsible for the production of these proteins. By using a computational model of the signaling 

network in cardia fibroblasts, the relationship between particular molecules and downstream 

extracellular matrix production can be examined. 

 Biological sex is an important factor for cardiac health and for drug development. In this 

study, progesterone signaling was added to a previously published signaling network model for 

cardiac fibroblasts. Progesterone was found to decrease the overall production of extracellular 

matrix proteins. Additional trials examined the effect of each of three estrogen receptors in the 

model, finding that estrogen receptor beta largely activates proteases, decreasing overall 

extracellular matrix production. Finally, a sex-specific drug screen was performed on six drugs 

that interact with molecules downstream of progesterone, finding that the addition of 

progesterone to the model slightly changed the predicted effect of the drugs on the extracellular 

matrix.  

 

BACKGROUND 

The leading cause of death in the United States is heart disease, connected to one out of 

every five deaths in 20211. Heart disease is a blanket term that can be used to describe a number 

of heart conditions, notably coronary artery disease, which is characterized by deposits of 

cholesterol and other substances in the artery, causing atherosclerosis and partially or totally 

blocking the flow of flood2. If left untreated, this process can cause a heart attack, or myocardial 

infarction, in which part of the heart does not receive enough blood and cells begin to die.  

After a heart attack, the infarct region is vulnerable to further complications as it heals. 

Cardiac fibrosis, the production and accumulation of extracellular matrix (ECM) proteins, such 

as collagen, is necessary for initial survival and recovery from a myocardial infarction3. These 

proteins are responsible for forming the scar tissue that provides structural support to the infarct 

region during the healing process3. However, if cardiac fibrosis is uncontrolled, either by 

overproducing ECM proteins or by depositing proteins in regions of the heart that do not need 

scar tissue, it can increase the risk of arrhythmia by disrupting the electrical stimuli produced by 

nodes in the heart4.  

The current regimes for treatment for heart failure focus on reducing blood pressure or 

slowing the heart rate of patients, which can be accomplished with angiotensin-converting 

enzyme inhibitors and beta-blockers5. This strategy aims to reduce the stress on the heart and 

slow the progression of heart failure, but it does not address the biochemical changes that occur 

in the heart after a myocardial infarction, such as cardiac fibrosis. No current FDA-approved 

treatments for heart failure direct target cardiac fibrosis5. Current research in this area focuses on 

creating a drug that is capable of inhibiting cardiac fibrosis or reversing the process, even though 



controlled ECM protein deposits can be beneficial and support the healing infarct region. The 

relationship between environmental conditions and various cell signaling molecules and eventual 

downstream ECM production is complex, which makes it difficult to design in vitro studies that 

target specific pathways in the signaling network; this lack of knowledge about individual 

pathways hinders understanding about cardiac fibrosis and the development of an effective 

treatment regime that can promote cardiac fibrosis only in the areas where it is needed. Until 

pathways with the potential to control cardiac fibrosis have been identified, treatments will not 

be able to selectively promote or inhibit cardiac fibrosis. 

In cases like this, computational models that can conduct in silico simulations of the 

complex molecular pathways can be a useful tool to help researchers identify potential new drug 

combinations that can be applied in focused in vitro and clinical studies. At the moment, these 

models have a somewhat limited scope and are primarily used to narrow down potential drug 

candidates for clinical studies based on a variety of risk factors. As researchers learn more about 

the biochemical processes and mechanisms that are manipulated by drugs and computational 

power improves, this field will grow both more precise and more accurate, and therefore become 

better predictors of how a candidate will perform in a pharmaceutical study. However, in 

addition to a stronger understanding of molecular pathways and computing power, the accuracy 

and predictive power of computational models also relies on data that is representative of the 

diverse population the model is intended to help. Data that is robust across different 

demographics and conditions must be used to create the models so that they can be accurate for a 

wider range of patients. Even for a simulation of just one cell, like a cardiac fibroblast, the 

concentrations of various hormones and signaling molecules, past or current health conditions, 

age, sex, and other different factors could have a significant difference in the way the cell will 

respond to new inputs. In order to justify using computational models to choose treatment 

regimen for patients, the models must be valid across a broad range of conditions and cellular 

environments. 

Historically, experimental studies and clinical trials have primarily used data from males. 

Until the 1990s, women of childbearing age were banned from participating in clinical trials, 

even if they were not pregnant or planning to become pregnant, meaning that they were allowed 

to take drugs that had not been tested on their demographic6. It can be dangerous to 

overgeneralize results– just because a drug is effective for some people does not mean it will be 

effective for everyone. For drugs that target very specific pathways, the effectiveness of the 

treatment would be extremely reduced if that pathway was not very active in the first place. 

Although the ban against female participation in clinical studies was lifted in the early 1990s, the 

National Institutes of Health did not require both male and female animals in clinical trials until 

2016. This has resulted in a backlog of many FDA-approved drugs that were not tested on 

female participants and have twice the adverse response rate in women as they do in men7. 

Biological sex is particularly important when considering the cardiovascular health of a 

patient. Men are 3 to 4 times more likely to have heart disease, and women are twice as likely to 

have an adverse drug response to treatment for heart disease8. Pre-menopausal women are less 

likely to suffer from myocardial infarctions than men of the same age, a difference primarily 

attributed to the cardioprotective role of the ovarian hormone estrogen, particularly estradiol, the 

most prevalent estrogen hormone during the reproductive years, excluding pregnancy8. Men also 

produce the hormone estradiol, through a pathway in the testes that converts testosterone to 

estradiol, but in much lower quantities than pre-menopausal women, more similar to the level 

produced by women after menopause. Previous research has suggested that many adverse drug 



responses occur in a sex-specific manner, further intensifying the need to understand what 

pathways are involved and how they could be manipulated to improve recovery outcomes after 

heart failure for both men and women5.  

Other steroid hormones related to biological sex include progesterone and testosterone, 

but estrogen has been the focus of more research related to sex-differences in cardiovascular 

health, despite being overshadowed by progesterone in terms of serum concentration, 

particularly during the female reproductive years and during pregnancy9. With respect to 

cardiovascular health, many of the other signaling molecules responsible for the promotion of 

ECM proteins, such as interleukin-6, exist in the blood stream at much lower concentrations than 

both progesterone and estrogen, with a difference up to 3 orders of magnitude10. Given that the 

cellular environment for female cardiac fibroblasts is relatively flooded with estrogen and 

progesterone, both of these hormones must be considered when creating a computational model 

of the molecular pathways for these cells; otherwise, the model will not be an accurate reflection 

of the conditions to which the cell is exposed. 

In this study, a previously published signaling network model of cardiac fibroblasts, 

which includes a pathway for estradiol, will be modified to include a pathway for progesterone 

as well. This model will then be used to determine the effect that progesterone has on ECM 

production at a variety of concentrations intended to represent pre-menopausal, post-menopausal, 

pregnant, and male conditions. The model will also be used to determine the effect of cycling 

progesterone and estrogen together, modeling a menstrual cycle, to see if there is a difference in 

ECM production at different points in the menstrual cycle, and if modeling the two hormones 

together has different outcomes than varying them separately. 

In addition, this model will be used to simulate sex-specific drug screening with 

consideration of both estrogen and progesterone signaling. The previously published signaling 

network model had been used to screen potential drugs for differences in response between men 

and women, but this model only included estrogen, not progesterone. Once the model is 

modified to include a pathway for progesterone, the drugs that targeted molecules related to the 

progesterone pathway will be re-screened to determine whether the concentration of 

progesterone affects the response of each treatment regimen.  

 

MATERIALS AND METHODS 

Integration of progesterone into the cardiac fibroblast signaling network 

 A previously published signaling network model of cardiac fibroblasts was modified and 

expanded to include the steroid hormone progesterone5. The original model was based on data 

obtained from a manual literature search of over 300 research papers on signaling pathways in 

cardiac fibroblasts and cardiomyocytes5. The original model included 132 nodes, which 

represent proteins, integrins, cellular receptors, and transcription factors) and 203 edges 

(reactions)5. This model included 11 biochemical inputs, which included: transforming growth 

factor beta (TGFβ), angiotensin II (AngII), endothelin 1 (ET 1), mechanical tension, (PDGF), 

norepinephrine (NE), tissue necrosis factor alpha (TNFα), interleukin-1 (IL1), interleukin-6 

(IL6), natriuretic peptide (NP), and estradiol (E2)5. These inputs were connected to many 

molecular pathways, which eventually culminated in 22 cellular outputs, which included: alpha-

smooth muscle actin (α-SMA), procallagen I & III (proCI and proCIII), several pro-matrix 

metalloproteinases, (proMMP1, proMMP 2, proMMP3, proMMP8, proMMP9, proMMP12, 

proMMP14) tissue inhibitors of metalloproteinase (TIMP1, TIMP2), lysyl oxidase (LOX), 

periostin, fibronectin, latent transforming growth factor beta (latentTGFβ), thrombospondin4, 



osteopontin, connective tissue growth factor (CTGF), plasminogen activator inhibitor 1 (PAI1), 

tenascin-c (TNC), extra domain A of fibronectin (EDAFN), and proliferation5. The majority of 

the studies used to build this model were specific to cardiac fibroblasts11. Other cell types 

referenced in studies used to build this model included other cardiac cells, such as 

cardiomyocytes, or fibroblast cells from other parts of the body, such as pulmonary fibroblasts11. 

Almost all of the papers used to update the model were performed using neonatal rat cardiac 

fibroblasts, with a combination of male and female cells, and the results were not separated 

based on the sex of the cells5. 

 In order to add progesterone to the model, signaling pathways for progesterone in cardiac 

fibroblasts first had to be identified. A manual literature search for signaling pathways involving 

estrogen returned a study performed using rat cardiomyocytes that described the metabolism of 

estrogen and progesterone12. The progesterone receptor was found to inhibit tissue necrosis 

factor alpha and interleukin-1, which were two of the inputs in the original signaling network 

model12. Two new nodes were created and added to the original model: one node for 

progesterone (PG) and one node for the progesterone receptor (PGR). Three reaction edges were 

also added: one for progesterone activating the progesterone receptor, one for the progesterone 

receptor inhibiting TNFα, and one for the progesterone receptor inhibiting IL-1 (Figure 1). The 

rest of the model was left unchanged because those reaction pathways were previously 

established and validated. 

 

 
Figure 1. Cardiac fibroblast signaling network model integrated with progesterone (PG, 

highlighted in pink) signaling (including its interactions with interleukin-1 and tissue necrosis 

factor alpha, highlighted in blue). Logical NOT (-|, indicating an inhibition reaction), AND 

(AND in a circle, indicating that at least two species are required for a reaction), and OR (occurs 

when two or more arrows point to the same species, indicates only one species is required for a 

reaction) gates were used to define signaling interactions. 



 

 The signaling network model used in this experiment uses logic-based ordinary 

differential equations, modeled as a system of Hill equations, to capture the activity level of each 

node. Logical NOT, AND, and OR gates were used to govern the signaling interactions by 

applying logical operations: finhib(x)= 1- f(x), fand(x1, x2) = f(x1)f(x2), and for(x1,x2) = f(x1)+f(x2) - 

f(x1)f(x2). The differential equations that populate the model were constructed using the open-

source software Netflux for MATLAB, which is easily accessible and can be downloaded from 

github. 

 The default parameter settings included reaction weights as normalized activity levels 

between 0 and 1, yint=0, ymax=1, and time constant (τ) = 0.1, 1, or 10 for signaling reactions, 

transcription reactions, and translation reactions, respectively. The weights for the intermediate 

reactions were held constant at w=1 throughout all simulations, but the input weights were 

modified to simulate different cellular conditions. The Hill coefficient (n) for the new signaling 

model was set at 1.05, and the half-maximum effective concentration (EC50) for each reaction 

was set to 0.65. These decisions were based on the suggested default parameters for this 

particular cardiac fibroblast signaling model.  

 

Evaluating the effect of progesterone on extracellular matrix production 

 In order to initially determine the effect of progesterone on extracellular matrix protein 

production, the weigh of the reaction representing the progesterone input was varied. This 

variance was intended to mimic the physiological differences in expression and activity levels of 

progesterone in male and female cells. Trials were simulated with the weight of the progesterone 

input node set to 0, 0.1, 0.25, 0.5, and 1.0, with all other inputs set to a weight of 0.1. Then, the 

same variation in progesterone was modeled with all other inputs set to a weight of 0.5. This was 

done to determine whether the effects on ECM protein production by differences in progesterone 

weight would still be significant if other signaling molecules were weighted more heavily than 

progesterone, i.e. if the effects of progesterone would be easily washed out if other inputs were 

heightened.  

 

Determining the impact of progesterone on sex-specific drug screens 

 In a prior study, an approach to use a cardiac fibroblast network model to simulate the 

effects of known drugs on extracellular matrix production was developed by Zeigler et al11. In 

this work, 121 drugs from DrugBank were identified as including interactions with nodes present 

in the model, which represented 36 unique interactions. These unique interactions include both 

agonists, which are molecules that activate receptors or enzymes and antagonists, which are 

molecules that inhibit activation. Some of the interactions are competitive, meaning that the 

molecules bind to the activation site of the receptor or enzyme, while others are non-competitive, 

meaning that the molecules bind to a site other than the active site, leaving the active site 

available for substrate binding, but still inhibiting or activating the receptor or enzyme. 

 This framework was used to perform a sex-specific drug screen using the previous model, 

which only included estrogen. Once progesterone was added, the same framework was used to 

analyze the drug-target interactions that would be affected by the additional signaling pathways 

incorporated into the model. Out of the 36 original drug-targets interactions that were analyzed, 6 

included interactions with molecules downstream of progesterone that did not have upstream 

molecules unrelated to progesterone. Molecules further downstream of progesterone that had 



other upstream molecules capable of controlling activation were not considered in this initial 

screening because these nodes were not as directly connected to progesterone. 

 In this study, only the following 6 interactions will be reviewed: a NKFB and TNFα 

noncompetitive antagonist, an IL-1 competitive antagonist, an IL-1 noncompetitive antagonist, 

an IL-1 receptor competitive antagonist, a TNFα noncompetitive antagonist, and a TNFα 

competitive agonist. Since progesterone is known to inhibit both IL-1 and TNFα, and, the 

question of whether the presence of progesterone will affect the outcome of these drug-target 

responses should be addressed.  

 Four experimental conditions were considered in this screening: male levels of estrogen, 

male levels of estrogen and progesterone, female levels of estrogen, and female levels of 

estrogen and progesterone. The female levels of estrogen and progesterone in these simulations 

were set to represent the average levels of females during the reproductive years9. Previous study 

with this signaling network model found that the differences in drug-target responses between 

male conditions and post-menopausal female conditions were almost nonexistent, so only male 

and female (reproductive years) conditions were used in this screening5. For the male/post-

menopausal female condition, estrogen and progesterone were both weighted at 0.1. For the 

female (reproductive years) condition, progesterone was weighted at 1 and estrogen was 

weighted at 0.5. 

 For each drug-target interaction considered, the administration of a static application of 

the drug was simulated (w=0.85) with profibrotic stimuli (all inputs except estrogen and 

progesterone set to w=0.4). In order to compare the potential changes to cardiac fibroblast 

activity, a Matrix Content Score was determined following the framework established in a 

previous study5. The Matrix Content Score was calculated as the sum of the average matrix 

activity, the average protease activity, and the average inhibitor activity: MCS = Activitymatrix - 

Activityprotease + Activityinhib, where Activitymatrix = (proCI + proCIII + fibronectin + periostin + 

osteopontin + LOXL1)/6, Activityprotease = (proMMPs 1, 2, 3, 8, 9, 12, 14)/7, and Activityinhib = 

(TIMP1 + TIMP2 + PAI1)/3.  

 The Matrix Content Score for a control case for each condition was also calculated, in 

which all inputs other than progesterone and estrogen were set to w=0.4, and progesterone and 

estrogen were set to the designated levels for each condition. The difference between the Matrix 

Content Score for the control case and the Matrix Content Score for each drug was calculated, 

enabling a comparison in the difference in matrix output caused by each drug for each condition.  

 

Examining the potency of each estrogen receptor 

 The signaling network model includes three separate receptors for estrogen: estrogen 

receptor alpha (ERX), estrogen receptor beta (ERB), and g-protein coupled receptor 30 (gpr30). 

Estrogen receptor alpha and estrogen receptor beta are nuclear receptors13, while g-protein 

coupled receptor 30 is a transmembrane receptor14. 

 In order to simulate a knockout of each receptor, the ymax for two receptors was turned 

from 1 to 0.1, while the receptor of interest for that trial retained its original ymax of 1. For these 

trials, the input weights for all molecules other than estrogen were held at 0.5 to simulate 

inflammatory conditions, but the weight for estrogen was held at 1 to ensure that its impact on 

extracellular matrix production could be analyzed.  

 

 

 



RESULTS 

Integration of progesterone into the cardiac fibroblast signaling network 

 To validate that progesterone was successfully integrated into the model, the activity 

levels for downstream molecules were monitored as progesterone weight was increased. The 

molecules that were monitored and their relationships to progesterone are highlighted in Figure 

2. All other input weights were held at w=0.1 for one trial and at w=0.5 for a second trial. The 

results of these simulations can be found below in Figures 3 and 4.  

 

 
Figure 2. Molecules downstream of progesterone, chosen to validate the integration of 

progesterone to the signaling network model. 

 

 

 
Figure 3. Select Activity Downstream of Progesterone, with Other Inputs w=0.1 
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Figure 4. Select Activity Downstream of Progesterone, with Other Inputs w=0.5 

 

 

The decrease in TNFaR and IL1RI activity levels show that the new progesterone pathway was 

incorporated correctly, as progesterone inhibits TNFa and IL-1. When other inputs were set at 

w=0.1, TNFaR and IL1R1 activity decreased by 49% as the progesterone weight was increased 

from 0 to 1 (Figure 3), but when other inputs were set at w=0.5, TNFaR and IL1R1 activity 

decreased by 40% (Figure 4). This shows that the impact of progesterone is dampened as other 

input weights are increased, meaning that progesterone has more impact on healthy cells than 

cells in a state of inflammation. 

 

 

Evaluating the effect of progesterone on extracellular matrix production  

 To determine the effect of progesterone on molecules further downstream, activity levels 

of tumor necrosis factor receptor (TRAF) and phosphoinositide 3 kinase (P13K), which are both 

downstream of TNFa, and nuclear factor, apoptosis signal-regulating kinase, and BAMBI, which 

are all downstream of IL1. A heat map of the activity levels of these molecules can be found 

below, both with other inputs set at weight 0.1 (Table 1) and with other inputs set at weight 0.5 

(Table 2). The overall activity levels are higher for the inflamed cell condition, so the changes in 

expression rather than the absolute levels are analyzed.  
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Table 1. Activity Downstream of Progesterone, with Other Inputs w=0.1 

Name PG 0 PG 0.1 PG 0.25 PG 0.5 PG 1 

PG 0 0.1 0.25 0.5 1 

PGR 0 0.053 0.1482 0.3482 0.9999 

TNFain 0.1 0.1 0.1 0.1 0.1 

TNFa 0.0989 0.0989 0.0989 0.0989 0.0989 

TNFaR 0.102 0.1007 0.0979 0.0911 0.0524 

TRAF 0.0791 0.0783 0.0768 0.0729 0.052 

P13K 0.115 0.1143 0.1128 0.1091 0.089 

IL1in 0.1 0.1 0.1 0.1 0.1 

IL1 0.0989 0.0989 0.0989 0.0989 0.0989 

IL1RI 0.102 0.1007 0.0979 0.0911 0.0524 

ASK1 0.093 0.0918 0.0895 0.0837 0.0518 

BAMBI 0.0028 0.0028 0.0027 0.0025 0.0014 

NFKB 0.153 0.1519 0.1498 0.1445 0.1156 

MCS 0.03464 0.03482 0.03443 0.03384 0.03064 

 

Table 2. Activity Downstream of Progesterone, with Other Inputs x=0.5 

Name PG 0 PG 0.1 PG 0.25 PG 0.5 PG 1 

PG 0 0.1 0.25 0.5 1 

PGR 0 0.053 0.1482 0.3482 0.9999 

TNFain 0.5 0.5 0.5 0.5 0.5 

TNFa 0.4997 0.4997 0.4997 0.4997 0.4997 

TNFaR 0.5749 0.5688 0.5563 0.5249 0.348 

TRAF 0.5392 0.5345 0.525 0.5018 0.3872 

P13K 0.6959 0.6929 0.6866 0.6714 0.5962 

IL1in 0.5 0.5 0.5 0.5 0.5 

IL1 0.4997 0.4997 0.4997 0.4997 0.4997 

IL1RI 0.5749 0.5688 0.5563 0.5249 0.348 

ASK1 0.6436 0.6372 0.6241 0.5913 0.4155 

BAMBI 0.1507 0.1485 0.1439 0.1329 0.0782 

NFKB 0.7854 0.7825 0.7764 0.7615 0.6859 

MCS 0.27168333 0.27725238 0.2755619 0.27805952 0.25454762 

  

 

 

 

 

With other inputs set at weight 0.1 (Figure 5), increasing progesterone begins to impact 

downstream molecules once progesterone weight is 5 times greater than that of other inputs. A 



greater decrease is seen for TRAF than for P13K, likely because P13K is activated by several 

other molecules and is less dependent on progesterone signaling. When other input weights are 

set at 0.5 (Figure 6), a similar trend is seen: once progesterone weight overcomes other input 

weights, TRAF and P13K activities begin to drop, with a greater decrease present for TRAF than 

P13K. 

 

 
Figure 5. Downstream of TNFa, other inputs w=0.1 

 

 

 
Figure 6. Downstream of TNFa, other inputs w=0.5 
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With other inputs set at weight 0.1 (Figure 7), increasing progesterone begins to impact 

molecules downstream of IL1 once progesterone weight is 5 times greater than that of other 

inputs. Increasing progesterone has a greater impact on ASK1 and BAMBI than NFKB. NFKB is 

activated by several other molecules and is less susceptible to inhibition by progesterone 

signaling. When other input weights are set at 0.5 (Figure 8), a similar trend is seen: once 

progesterone weight overcomes other input weights, ASK1, BAMBI, and NFKB activities 

decrease, with the greatest change occurring for ASK1 and BAMBI.  

 

 
Figure 7. Downstream of IL1, other inputs w=0.1 

 

 

 

 
Figure 8. Downstream of IL1, other inputs w=0.5 
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The effect of progesterone even further downstream can be determined by comparing the Matrix 

Content Score for different input settings. With other input weights set to 0.1, increasing 

progesterone causes a decrease in the overall MCS for the cardiac fibroblast model (Figure 9). 

With other input weights set at 0.5, high progesterone weights still cause a decrease in the overall 

MCS, but this effect is not seen until progesterone weight is 1 (Figure 10). This trend matches 

what was observed when examining the activity levels of molecules immediately downstream: 

when progesterone weight is less than the weight of other inputs, it does not greatly inhibit 

downstream molecules. 

 

 
Figure 9. Matrix Content Score, other inputs w=0.1 

 

 

 

 
Figure 10. Matrix Content Score, other inputs w=0.5 
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To further determine the effect of progesterone on the extracellular matrix, individual 

components of the Matrix Content Score metric were examined. Both with other input weights at 

0.1 (Figure 11) and at 0.5 (Figure 12), increasing progesterone weight from 0 to 1 causes a 

decrease in activity for all components except for matrix metalloprotease 12. 

 

 
Figure 11. Individual Components of Matrix Content Score, other inputs w=0.1 

 

 

 
Figure 12. Individual Components of Matrix Content Score, other inputs w=0.5 
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To better understand the effect of progesterone, the relative decreases in activity in response to 

progesterone of these molecules was calculated and graphed below in Figure 13.  

 

 
Figure 13. Percent Relative Decrease in MCS Components 

 

 

Progesterone caused the greatest relative decrease for matrix metalloproteases 1, 3, and 8 in both 

the healthy and inflamed cell conditions, and matrix metalloprotease 12 was not affected by 

progesterone in either condition. This explains how progesterone decreased the Matrix Content 

Score: by decreasing the production of matrix proteins and protease inhibitors but leaving a 

protease fully active, the overall effect on the extracellular matrix decreased growth. 

 

Determining the impact of progesterone on sex-specific drug screens 

Each drug-target interaction was modeled separately, and the Matrix Content Score for each 

simulation was calculated. The differences between the MCS for the drug trials and the MCS for 

each condition, without any drug interactions, can be found below in Table 3. These values 

represent the effect on the extracellular matrix caused by the addition of drug-target interactions. 

 

Table 3. Matrix Content 

NKFB + TNFa antagonist -0.01581 -0.01087 -0.01811 -0.01107 

IL1competitive antagonist 0.01266 0.01598 0.01071 0.01596 

IL1 noncompetitive antagonist 0.01266 0.01598 0.01071 0.01596 

IL1R competitive antagonist 0.03962 0.02676 0.03398 0.02647 

TNFa noncompetitive antagonist -0.00035 -0.00206 -0.00204 -0.00220 

TNFA competitive agonist 0.12184 0.13476 0.12340 0.13491 

  F, no PG M, no PG F, PG M, PG 
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For all drugs in this study, there were differences between the female and conditions. Although 

for many drugs these differences were very small, even a slight difference could impact the 

outcome of a treatment regimen. Slight differences were also noted when progesterone signaling 

was incorporated, with a greater effect seen for the female conditions as progesterone signaling 

is more prevalent for females then for males. 

 

Examining the potency of each estrogen receptor 

The Matrix Content Score for each knockout trial was calculated, showing that estrogen receptor 

alpha increases matrix production the most, and estrogen receptor beta decreases matrix 

production the least (Figure 14). 

 

 
Figure 14. Matrix Content Score for E2 Receptor Knockdown 

 

The matrix index, protease index, and inhibitor index values for each knockout trial are reported 

below in Figure 15. While estrogen receptor alpha and g-protein coupled receptor 30 primarily 

activate matrix production and protease inhibitors, estrogen receptor beta primarily activates 

proteases.  

 
Figure 15. Matrix, Protease, and Inhibitor Indices for E2 Receptor Knockdown 
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DISCUSSION 

 The development of drugs that are capable of selectively impacting cardiac fibrosis has 

been a slow process due to the complicated nature of the signaling mechanisms in cardiac 

fibroblasts. These signaling networks can be influenced by a variety of factors, including 

biochemical interactions, mechanical forces, and biological sex. In this study, a previously 

published sex-specific signaling network model for cardiac fibroblasts was further developed by 

integrating progesterone signaling. This model was then used to understand the relationship 

between progesterone and extracellular matrix production. Additionally, the impact of each of 

three estrogen receptors on extracellular matrix production was analyzed, and a sex-specific drug 

screen determined the effect of progesterone and estrogen signaling on predicted drug outcomes 

on extracellular matrix production. 

 Progesterone was shown to decrease extracellular matrix production by inhibiting matrix 

production and protease inhibitors while maintaining the activity of matrix metalloprotease 12. 

Estrogen receptor beta was found to have a smaller promotional effect on extracellular matrix 

production than estrogen receptor alpha and g-protein coupled receptor 30. Estrogen receptor 

beta promotes protease activity at greater levels than the other two estrogen receptors in this 

model, decreasing overall extracellular matrix production.  

 The sex-specific drug screen confirmed previously published differences between drug 

outcomes for male and female cells. These differences were maintained when progesterone 

signaling was added. A greater difference was seen between male and female conditions than 

presence and absence of progesterone conditions, suggesting that estrogen signaling plays a 

greater affect in regulating extracellular matrix production than progesterone.  

 The original cardiac fibroblast signaling network model was previously validated against 

47 independent research papers that directly measured intermediate and outputs nodes in the 

model5. The model was found to be 81.8% accurate in predicting experimental activity levels of 

outputs as certain inputs were changed and of intermediates as certain inputs were changed5. 

Then, additional papers were added to the bank of data in order to validate the response of the 

model to estrogen. The female-specific data that was incorporated to the validation set measured 

either the direct output secretion or an intermediate signaling response to a single input stimulus 

in fibroblasts. The completed validation set included 185 perturbation experiments, the results of 

which were based on cells that were 39% male, 36% pooled male and female, 17% unreported, 

and 8% female5. The model was found to be 77% accurate in predicting model changes once 

estrogen was added5. The model was specifically found to be 59% accurate in predicting the 

outcomes of estrogen treatment5. This lower accuracy is likely due to the smaller number of 

papers that reported female-specific data for cardiac fibroblasts. 

 Since progesterone has not been the center of many specific research studies focused on 

cardiac fibroblast signaling, no validation was performed for the changes implemented in this 

study. However, since the majority of the interactions in the signaling network model that 

involve progesterone were previously validated either with general studies or with sex-specific 

studies, further validation was not deemed necessary for this study. Before this model is used in a 

setting other than the academic world, further investigation should determine its accuracy in 

predicting outcomes for conditions that include varying levels of progesterone. 
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