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ABSTRACT

DEVELOPMENT OF A COMBINED QUANTITY AND QUALITY MODEL FOR 

OPTIMAL MANAGEMENT OF UNSTEADY GROUNDWATER FLOW FIELDS

P re s e n te d  a re  a l t e r n a t i v e  techn iques f o r  in c lu d in g  
co n se rva t ive  s o lu te  t ra n s p o r t  w i th in  computer models f o r  
o p t im iz in g  groundwater e x t r a c t io n  ra te s .  Unsteady two-d im ensiona l 
f lo w  and d ispersed  co n se rva t ive  s o lu te  t ra n s p o r t  are assumed. 
Comparisons are made o f  the  p r a c t i c a l i t y  o f  in c lu d in g  m od if ied  
forms o f  im p l i c i t  and e x p l i c i t  f i n i t e  d i f fe re n c e  s o lu te  t ra n s p o r t  
equations w i th in  o p t im iz a t io n  models. These equa tions  can be 
c a l ib r a te d  and subsequently  used w i th in  a MODCON procedure. The 
MODCON m ode l l ing  procedure c o n s is ts  o f  an in te g ra te d  s e r ie s  o f  
f i v e  o p t im iz a t io n  o r  s im u la t io n  modules. The procedure is  
a p p l ic a b le  f o r  e i t h e r  an e n t i r e  a q u i fe r  system o r  f o r  a subsystem 
o f  a la rg e r  system. The f i r s t  module, A, computes p h y s ic a l ly  
f e a s ib le  recharge ra tes  across the boundaries o f  the  modelled 
subsystem. Module B computes optim al e x t ra c t io n  ra te s  w i th o u t  
c o ns ide r in g  groundwater q u a l i t y .  Module C uses method o f  
c h a r a c te r is t ic s  s im u la t io n  to  compute s o lu te  t ra n s p o r t  th a t  would 
r e s u l t  from implementing the  pumping s t ra te g y  o f  model B. Module 
D uses l i n e a r  goal programming and n o n l in e a r  s o lu te  t ra n s p o r t  
equations to  c a l ib r a te  l i n e a r  c o e f f i c ie n t s .  I t  a ttempts to  
d u p l ic a te  the s o lu te  t ra n s p o r t  p red ic te d  by module C. C a l ib ra t io n  
is  performed because coa rse ly  d is c re t iz e d  i m p l i c i t  o r  e x p l i c i t  
s o lu te  t ra n s p o r t  equations may not be as accurate  as the method 
o f  c h a r a c te r is t i c s .  Module E inc ludes  a p p ro p r ia te  c a l ib ra te d  
equations o f  module D as w e ll  as the f lo w  equations o f  module B. 
I t  computes an optim al pumping (e x t r a c t io n  o r  recharge) s t ra te g y  
th a t  can s a t i s f y  fu tu re  groundwater contaminant con ce n tra t io n  
c r i t e r i a .  Tes t ing  o f  the v a l i d i t y  o f  t h is  optim al pumping 
s t ra te g y  is  subsequently accomplished using module C. I f  
necessary, one may cyc le  through modules C, D and E u n t i l  
convergence is  o b ta in e d - - u n t i l  conce n tra t io ns  r e s u l t in g  from 
implementing the  s t ra te g y  o f  E are demonstrated to  be acceptab le .

R. C. P e ra l ta ,  J .  Solaimanian, C. L. G r i f f i s

Completion Report to  the U. S. Department o f  the I n t e r i o r ,  
Reston, VA, October 1988

Keywords - -  Groundwater Management/Optimization/Groundwater 
Qual i ty /W a te r  Q u a l i ty  Management/Modeling
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INTRODUCTION

A. Purpose and Obj e c tiv e s

A ssuring  the  s u s ta in a b le  a v a i la b i l i t y  o f  groundwater fo r  

w a ter users re q u ire s  c o n s id e ra tio n  o f  both q u a n t ita t iv e  and 

q u a l i ta t iv e  issu e s . Numerous computer models have been reported  

fo r  o p t im iz in g  the  q u a n t ita t iv e  use o f  groundwater. Far fewer 

models in c lu d e  s o lu te  t ra n s p o r t .  Most o f  those are app ro p ria te  

fo r  in je c t io n  o f  contam inated w a te r, because in  th a t case the 

mass f lu x  ra te  a t in je c t io n  w e lls  can be considered as a s in g le  

v a r ia b le .  O p tim iz in g  groundwater e x tra c t io n  ra te s  i f  groundwater 

q u a l i ty  is  unknown is  le ss  fre q u e n t ly  done (except through 

g ra d ie n t-c o n tro l m ethods). T h is  re lu c ta n ce  re s u lts  from the fa c t  

th a t  s o lu te  t ra n s p o r t  equations are n o n lin e a r. The use o f 

n o n lin e a r c o n s tra in ts  in  o p t im iz a tio n  models re s u lts  in  lo c a l ly  

ra th e r  than g lo b a l ly  op tim a l s o lu t io n s . For some management 

o b je c t iv e s , lo c a l o p t im a l ity  is  accep tab le . This re p o rt d iscusses 

such a sce n a rio .

The p rim ary  purpose o f  th is  re p o r t is  to  demonstrate how a 

lin k e d  sequence o f  f iv e  o p t im iz a t io n , c a l ib r a t io n  and s im u la tio n  

models (modules) can be used to  develop optim a l groundwater 

management s tra te g ie s  th a t  a p p ro p r ia te ly  cons ide r groundwater 

q u a l i t y .  To accom plish th is  we present an enhanced ve rs ion  o f  the 

MODCON methodology presented by P e ra lta  e t al (1987). The f i r s t

1



o b je c t iv e  is  to  demonstrate the p r a c t i c a l i t y  o f  using c a l ib ra te d  

e x p l i c i t  s o lu te  t ra n s p o r t  equations w i th in  MODCON to  so lve a 

h y p o th e t ic a l problem. The second o b je c t iv e  is  to  compare e x p l i c i t  

and im p l i c i t  vers ions  o f  MODCON.

B. Related Research and A c t i v i t i e s

G o r e l i c k  (1983) p rov ides a rev iew  o f  methods f o r  

rep resen t ing  so lu te  t ra n s p o r t  w i th in  o p t im iz a t io n  models. Each 

method has l im i t a t i o n s .  Several researchers , in c lu d in g  G o re l ic k  

(1984) have used n o n l in e a r  c o n s t ra in ts  to  represen t so lu te  

t ra n s p o r t .  This is  done because both e x t ra c t io n  ra te s  and the 

conce n tra t io n  o f  the e x tra c te d  water are unknown. A weakness o f  

using n o n l in e a r  c o n s t ra in ts  is  the d i f f i c u l t y  in  assuring  g loba l 

o p t im a l i t y  o f  the computed s o lu t io n s .

A second approach to  managing groundwater co nce n tra t io ns  is  

to  use g ra d ie n t  c o n tro l  o r  v e lo c i t y  in f lu e n c e  c o e f f i c ie n ts  

(C o la ru l lo  e t  a l . ,  1984; G o re l ic k  and L e fk o f f ,  1985). This

approach may be unnecessar i ly  r e s t r i c t i v e  i f  some contaminant 

movement ( in  a d d it io n  to  th a t  caused by d is p e rs io n )  is  

accep tab le . Using predetermined l i m i t s  on acceptab le  h y d ra u l ic  

g ra d ie n ts  may a lso be somewhat im p ra c t ic a l i f  the reg ion  o f  

contam ination is  la rg e .

A t h i r d  method u t i l i z e s  in f lu e n c e  c o e f f i c ie n ts  th a t  descr ibe  

the e f fe c t  o f  a change in  p o te n t io m e tr ic  head on s te a d y -s ta te

2



c o n ce n tra c t io n s  (D a tta  and P e ra l ta ,  1986). Th is  approach is  

o v e r ly  r e s t r i c t i v e  s ince  s te a d y -s ta te  co nce n tra t io ns  do not 

u s u a l ly  occur r a p id ly .  I t  i s  a lso  cumbersome and im p ra c t ic a l i f  

c o n c e n tra t io n s  must be managed a t  m u l t ip le  lo c a t io n s .

Another in f lu e n c e  c o e f f i c ie n t  approach is  descr ibed by Louie 

e t  a l . ,  (1984). I t  does no t in c lud e  d e ta i le d  s im u la t io n  o f  

t ra n s p o r t  processes and may be im p ra c t ic a l  i f  conce n tra t io ns  must 

be managed a t  numerous lo c a t io n s  s im u ltaneous ly .

P e ra l ta  e t  al (1987) demonstrate use o f  l i n e a r  mass 

t ra n s p o r t  equations w i th in  two-d im ensiona l models f o r  o p t im iz in g  

groundwater management. These equations u t i l i z e  l i n e a r  c o e f

f i c i e n t s  c a l ib ra te d  to  approx im ate ly  rep resen t the  s o lu te  t ra n s 

p o r t  t h a t  i s  p re d ic te d  using method o f  c h a r a c te r is t ic s  (MOC) s i 

m u la t io n .  They use a MODCON procedure c o n s is t in g  o f  f i v e  l in k e d  

modules. T h e ir  computed optim a l pumping s t ra te g y  does cause an 

acceptab le  re d u c t io n  in  fu tu re  conce n tra t io ns  a t ta rg e t  c e l l s .  

However, the  accuracy o f  the  s o lu te  t ra n s p o r t  equations was 

u n s a t is fa c to r y .  One would expect a r e p e t i t i v e  cy c le  o f  c a l ib r a 

t i o n ,  o p t im iz a t io n ,  s im u la t io n ,  c a l ib r a t io n ,  e t c . ,  to  cause 

co n ce n tra t io n s  p red ic te d  by the  o p t im iz a t io n  model to  converge to  

those p re d ic te d  by the s im u la t io n  model. This d id  not occur.

Th is  paper re p o r ts  te s t in g  performed using s ig n i f i c a n t l y  

m od if ied  MODCON modules. Described changes r e s u l t  in  enhanced

3



s im u la t io n  o f  s o lu te  t ra n s p o r t .  A lthough l i n e a r  c o e f f i c ie n ts  are 

s t i l l  u t i l i z e d ,  n o n lin e a r  s o lu te  t ra n s p o r t  equations are used as 

c o n s t ra in ts .  As a r e s u l t ,  computed s t ra te g ie s  are lo c a l l y ,  not 

n e c e s s a r i ly  g lo b a l ly ,  o p t im a l .  Another enhancement to  the 

p re v io u s ly  reported  MODCON procedure is  the coding o f  MOC so lu te  

t ra n s p o r t  using GAMS/MINOS, p e rm it t in g  more ra p id  in te r a c t io n  

between modules. In the p re v io u s ly  reported  MODCON, MOC 

s im u la t io n  was accomplished using an ex te rna l FORTRAN s im u la t io n  

model.

METHODS AND PROCEDURES

A. M ode ll ing  Methodology Overview and Functions

We assume: 1) an unconfined is o t r o p ic  heterogeneous a q u ife r  

in  which the change in  wa ter le v e ls  w ith  t im e w i l l  cause 

in s ig n i f i c a n t  change in  t r a n s m is s iv i t y  (a lthough a n is o t ro p ic  

h y d ra u l ic  c o n d u c t iv i t y  can be r e a d i ly  cons idered, is o t r o p ic  

c o n d u c t i v i t y  is  used h e re ) ,  2) two-dimensional unsteady 

groundwater f lo w ,  3) two-dimensional s o lu te  t ra n s p o r t  and 

in s ig n i f i c a n t  v e r t i c a l  d e n s i ty  g ra d ie n ts ,  4) conse rva tive  

d ispersed contaminant, and 5) groundwater e x t ra c t io n  ra tes  th a t  

are unchanging w ith  t ime du r ing  the p lann ing  per iod  (This 

requ ire s  fewer v a r ia b le s  than would be needed i f  pumping v a r ie s  

w ith  t im e . Subject to  computer memory and o p t im iz a t io n  a lgo r ithm  

l im i t a t i o n s ,  pumping ra tes  can be pe rm it ted  to  vary w ith  t im e .)

4



The purpose o f the proposed model is  to develop 

vo lu m e trica lly  optimal groundwater ex trac tion  s tra teg ies tha t 

assure acceptable fu tu re  groundwater q u a lity . We wish 

concentrations predicted by the optim ization model to be as 

accurate as possible, but recognize tha t op tim ization models 

cannot generally use as fin e  a d is c re tiz a tio n  in time or space as 

sim ulation models. Therefore, i t  is  desirable to  be able to 

improve the accuracy o f the transport predicted by the 

op tim ization  models. For th is  reason, the MODCON procedure 

includes c a lib ra tio n  o f optim ization module so lu te transport 

equations w ith respect to  solute transport predicted via a more 

de ta iled  sim ulation module. Furthermore, sim ulation, c a lib ra tio n  

and op tim ization  are performed c y c lic a lly  u n t il sa tis fa c to ry  

s im i la r i t y  e x is ts  between co n cen tra tio ns  predicted by 

op tim ization  and sim ulation modules.

The MODCON procedure, ou tlined  in Figure 1, consists o f four 

op tim iza tion /s im u la tion  modules (A,B,D,E) and a sim ulation module 

(C). A ll modules are w ritte n  using GAMS/MINOS (Kendrick and 

Meeraus, 1985; Murtagh and Saunders, 1983). Components A, B and E 

incorporate the two-dimensional linea rized  Boussinesq equation to 

model groundwater flow . Module C u t i l iz e s  method o f cha racte ris 

t ic s  solute transport s im ulation. The function o f module C can 

also be accomplished using an external sim ulation model.

5



1. Flowchart o f module functions in MODCON.

6

A q u i f e r  pa ramete rs ,  i n i t i a l  c o n d i t i o n s ,  
b o un d s  on v a r i a b l e

A Compute SS b o u n d a r y  f l u x e s

Compute o p t i m a l  US s t r a t e g y
B

wo/ c o n s i d e r i n g  w a t e r  q u a l i t y

Compute c o n c e n t r a t i o n s  
r e s u l t i n g  f ro m  o p t i m a l  s t r a t e g y

C a l i b r a t e  c o e f f . f o r  
s o l u t e  t r a n s p o r t  e q u a t i o n s

a c c e p t a b l e ?STOP

E Compute m o d i f i e d  o p t i m a l  s t r a t e g y  
w h i l e  c o n s i d e r i n g  w a t e r  q u a l i t y



(Konikow and Bredehoeft, 1978). Modules D and E incorporate 

im p lic it  or e x p l ic i t  solute transport equations and lin e a r 

in fluence c o e ff ic ie n ts . The functions o f each part o f MODCON are 

discussed below. Figure 2 i l lu s tra te s  the most important 

ch a ra c te ris tic s  o f each module.

The use o f module A is  op tiona l. I t  performs steady-state 

flow  sim ulation and weighted lin e a r goal programming (LGP) 

op tim ization  to  determine acceptable boundary f lu x  rates fo r  the 

study area. This function  is  important when i t  is  im practical to 

model an e n tire  aqu ife r system. I t  aids developing a pumping 

stra tegy fo r  only a portion  o f the aqu ife r (a subsystem) in such 

a way as to prevent d is rup tion  o f flow  outside tha t subsystem. To 

do th is ,  an assumption tha t must be v a lid  is  tha t aquifer s tim u li 

outside the system during the management period w i l l  maintain the 

regional flow  patterns tha t e x is t at the beginning o f the era 

(t= 0 ), as long as pumping w ith in  the subsystem does not 

induce more groundwater flow  in to  the subsystem than occurred 

i n i t i a l l y .  The recharge fluxes computed fo r  boundary c e lls  by 

module A can be used as upper l im its  on recharge in subsequent 

op tim iza tion  modules.

As w ritte n , module B uses unsteady flow  simulation and 

weighted LGP optim ization  to compute a pumping strategy tha t w il l

7



Module Module Objective Type; Output Constraints (c :) 
and bounds (b :)

A Linear goal-programming (LGP) Optim ization; 
Steady boundary fluxes {Q* } tha t 
best maintain in i t ia l  heads.

c:
c:
b:

2D steady flow 
LGP fo r  head 
on head

B LGP Optim ization; Pumping strategy {Q*} 
tha t best a tta ins  ta rge t subsystem 
heads {Ht k} by time k.
Predicted heads {H* }

c:
c:
b:
b:

2D unsteady flow 
LGP fo r  head 
on head 
on pumping

C Nonlinear MOC solute transport Simulation; 
Future concentrations {Cck} 
re su ltin g  from {Q* } .

Simulation o f:
2D unsteady flow 
2D advect-dispersion

D LGP Optim ization; Calibrated co e ffic ie n ts  
{Fp} , {F r } , {F d} so {CkD}={Cck}

c:
c:
b:

2D advect-dispersion 
LGP fo r  conc. 
on coe ffic ie n ts

E LGP Optim ization; Modified pumping 
strategy {Q* } tha t best a tta ins  
ta rge t heads
and achieves sa tis fa c to ry  
concentrations {CEk}

c:
c:
c:
c:
b:
b:

2D unsteady flow 
LGP fo r  head 
2D advect-dispersion 
LGP fo r  conc. 
on head 
on pumping

Figure 2. S ig n ifica n t cha rac te ris tics  o f MODCON modul es
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cause fu tu re  potentiom etric heads to be as close to  ta rge t heads 

as possib le. These ta rge t heads can be the heads tha t e x is t at 

t=0. They may also be the fu tu re  desirable heads computed by 

other op tim iza tion  models, such as models tha t maximize 

groundwater ex trac tion  or the economic bene fit from groundwater 

use. A lte rn a tiv e ly , the ex is tin g  ob jective  function  o f module B 

can be replaced w ith a function  representing those goals 

d ire c t ly .

Module C uses nonlinear solute transport sim ulation to 

compute fu tu re  co n cen tra tio ns  th a t w i l l  r e s u lt  from 

imple mentation o f the pumping strategy computed by module B. I f  

fu tu re  concentrations w i l l  be unacceptable in some loca tions, the 

pumping stra tegy w i l l  need to  be modified. To accomplish strategy 

m od ifica tion , solute transport must be appropria te ly included in 

a model s im ila r to  module B. This is  u ltim a te ly  achieved in 

module E, a fte r  invoking module D.

Module D uses LGP to  ca lib ra te  two-dimensional im p lic it  or 

e x p l ic i t  solute transport equations so tha t they can re p lica te  

concentrations predicted by module C. When module D uses im p lic it  

equations, or e x p lic it  equations w ith more than one time step, 

i t s  solute transport equations are nonlinear. The use of 

nonlinear constra in ts is  acceptable when one is  g ra te fu l simply 

to have a v a lid  strategy and global op tim a lity  o f the so lu tion  is

9



not c r i t i c a l .

Module E includes the ob jective  function and unsteady 

volum etric sim ulation o f module B, as well as the ca lib ra ted  

lin e a r solute transport equations o f module D. I t  develops a 

modified pumping strategy tha t considers groundwater q u a lity  

constra in ts .

Because o f the re la t iv e ly  coarse d is c re tiz a tio n  used in 

module E, one should v e r ify  the concentrations predicted by tha t 

module. Module C, or an external sim ulation model, is  used fo r 

tha t purpose. Figure 1 shows tha t ite ra t io n  through modules D, E 

and C is  continued u n til concentrations predicted by module E are 

acceptably close to those predicted by module C, or i t s  

sub s titu te .

B. Model Development

For a n c e ll subsystem, the generic ob jective  function fo r  

modules, A, B, D and E can be expressed as a va ria tio n  o f tha t 

shown by Yazdanian and Peralta (1986).

minimize y =

+ - +c +c -c -c
( W ) {  D } + ( W ){ D } + g ( W ){  D } + g ( W ){  D }

. . [ 1]

where

( W ) = a l x n vector o f weighting factors fo r head,

10



(dimensionless)
+

{ D } and { D } are n x 1 column vectors o f nonegative over- 

and under-achievement variables fo r  f in a l 

heads, (L)

g = dummy fa c to r to convert concentration in to  head, (L/ppm) 

+c -c
( W ) and ( W ) are 1 x n vectors o f weighting factors applied 

to  those f in a l concentrations tha t exceed or 

are less than ta rge t concentrations, 

respective ly , (dimensionless)

+c -c
{ D } and { D } are n x 1 column vectors o f nonegative over- 

and under-achievement variables fo r  f in a l 

concentrations, (ppm)

Modules A and B use only those portions o f equation [1] tha t 

contain weights and achievement variables fo r head. Module D uses 

only weights and achievement variables fo r  concentration. Module

E uses the f u l l  equation and weights and achievement variables

fo r  both heads and concentrations.

Optimal so lu tions fo r  modules A and B are constrained 

subject to  the fo llow ing , simply described fo r  e ith e r steady- 

state flow  (module A) or unsteady flow  (module B). Equation [2] 

is  a m atrix representation o f the im p lic it  f in ite -d iffe re n c e  two-

11



dimensional linea rized  flow  equation. In the fo llow ing equations, 

fo r  k time steps, vectors o f magnitude n become n x k.

L *  * U
{Q      } ≤  { Q } = { B } - [ A ] { H } ≤  { Q }  . . [2 ]

L *  U
{  H}≤  {  H }  ≤ {  H }  . . [ 3 ]

*  + - t
{  H }  -  {  D }  + {  D }  = {  H }  . . [ 4 ]

0 . 0  ≤ {  D+ } ,  {D - }  . . [ 5 ]

where

L            U
{ Q } and { Q } = n x 1 column vectors o f lower and upper

bounds, respective ly , on pumping (or recharge), 

(L3T-1 )

{ Q* } = n x 1 column vector o f optimal net steady pumping

(or recharge) ra tes, where discharge is  

pos itive -va lued, (L3T-1 )

{ B } = n x 1 vector describ ing the change in storage w ith time,

(L3T-1). { B } is  a zero vector fo r  steady-state flow .

[ A ] = n x n symmetric banded m atrix o f aqu ife r properties,

(l2T-1)
*

{ H } = n x 1 column vector o f optimal f in a l or intermediate 

heads, depending on the number o f time steps, (L)

12



Note tha t the ob jective  function  considers a ll c e lls ,  not 

merely in te rna l c e lls .  In th is  example, through equations [2 ,3 ], 

boundary c e lls  are treated as va riab le  head/restrained f lu x  

boundary cond itions, ra ther than as c lass ica l constant head 

(D ir ic h le t)  or constant f lu x  (Neumann). The use o f weights o f 

large magnitude fo r  boundary c e lls  e ffe c t iv e ly  forces heads to 

c lose ly  approximate desired values.

Module C is  a sim ulation model o f two-dimensional advection 

and dispersion o f a conservative contaminant. I t  performs no 

op tim iza tion . I t  is  a GAMS representation o f the FORTRAN method 

o f ch a ra c te ris tic s  code developed by Konikow and Bredehoeft 

(1978). Here f iv e  p a rtic le s  are used i n i t i a l l y  in each c e ll .

As previously stated, the function  o f module D is  to 

c a lib ra te  im p lic it  or e x p l ic i t  f in i t e  d iffe rence advective solute 

transport equations so th a t they w i l l  p red ic t the same 

concentrations as the p o te n tia lly  more accurate module C. The 

change in concentration due to  dispersion as computed by module C 

is  used d ire c t ly  in  modules D and E. Thus ne ither D nor E need to 

include the nonlinear dispersion equations. The MODCON ite ra tio n

13
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{ H } and { H } = n x 1 column vectors o f lower and upper

bounds on head, (L) 

{ Ht } = ta rge t heads, (L)



procedure serves to  cause convergence between the change in 

concentration caused by dispersion assumed in modules D and E, 

and the values computed by module C.

Module D uses the la t te r  h a lf o f ob jec tive  function [1] 

subject to  constra in ts  and bounds [6 -9 ] mentioned below. The 

ob jective  function  o f module D usually applies the same weight to 

both over- or under-achievement variab les fo r  concentration. In 

p rac tica l app lica tion  i t  has been useful to also include in the 

ob jective  function  the sum o f a ll f r  and f d c o e ffic ie n ts  (defined 

below). These are included to  make th e ir  values be as small as 

p ra c tic a l. This forces them to  be zero when no contaminant needs 

to be moved between c e lls . To maintain consistency in  un its  while 

implementing th is  a r t i f ic e ,  these coe fic ien ts  must be m u ltip lie d  

by one  linear u n it.

In subsequent discussion, variab les or constants used to 

describe values fo r  ind iv idua l c e lls  are shown using lower-case 

le t te rs ,  as opposed to the upper-case notation used fo r vectors. 

For b re v ity , d e fin it io n s  o f lower-case terms are omitted i f  

d e fin it io n s  have already been provided fo r  analagous vectors.

          +c       -c 
{ CDk } - { D ) + { D }  = { CCk } . . [ 6 ]

 

+c    -c
0.0 ≤ { D } ,  { D } . . [ 7 ]
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where

 
{ CDk } and { CCk } are n x 1 vectors o f the concentrations 

 
predicted fo r  the end o f the f in a l time 

time step, using modules D and C, 

respective ly , (ppm) 

  
{ Fp ) ,  { Fr ) and { Fd } are n x 1 vectors o f co e ffic ie n ts

being applied to solute transport due to 

pumping in a c e ll and due to  advection across 

the right-hand face and the down-side face of 

tha t c e ll respective ly  (dimensionless)
 

{ FpU ) and { FrU } are upper bounds on the c o e ffic ie n ts  applied

to solute movement e ith e r due to extraction 

by pumping, or due to  advection, 

(dimensionless)

W ithin module D, concentration at a ce ll located in row i 

and column j  at the end o f time step k is  computed using the g rid  

system shown in Figure 3. For a c e ll ( i , j ) ,  midpoint terms w ith d 

superscripts ( f ,  t  and v) apply to the boundary between ce ll

15

 
0.0 ≤ { FP }        ≤ { FpU } . . [ 8 ]

r        d 
0.0 ≤ { F } ,  { F }     ≤ { FrU } . . [ 9 ]



Figure 3. Cell g r id  notation system fo r  f in i t e  d iffe rence 
equations.

16



( i , j )  and ce l l  ( i + l , j ) .  Midpoint terms with r  superscripts apply 

to the boundary between ce l l  ( i , j )  and ce ll  ( i , j + 1) .  Because the 

same f  co e ff ic ie n ts  apply to  c e l ls  on both sides o f a boundary, 

mass balance is  maintained. The same amount o f contaminant leaves 

through a boundary as enters the ce l l  on the other side o f the 

boundary.

Equation 10 is  the im p l ic i t  f in i te -d i f fe re n c e  equation that 

is  used fo r  advective solute transport. ( I t  can be converted into 

an e x p l ic i t  form by using ck-1 to compute the t  terms in 

Equations [11-15 ].) For a l l  active c e l ls  i , j  in the subsystem:

 Δ t
q i , j , k

ci,j,k = ci,j,k-l ( 1 - f pi,j _________  ) + d
  2 i , j , k

STi ,j Δ x

-  fri,j    t ri,j,k    +  f ri,j-l     t ri,j-l,k     - f di,j     t di,j,k     + f di-l,j    t di-l,j,k

         . . [ 10]

where

qi,j,k = pumping or recharge in ce ll i , j ,  time step k, ( L3T-1)

Δ t  = length o f time step, (T)

S = e f fe c t ive  porosity , (dimensionless)

17



T = saturated thickness in  c e ll i , j ,  (L)
i,  j

Δ  x = length o f a ce ll side, (L) 

k
d = change in  concentration in c e ll i , j  due to  d ispersion, 

i , j , k
as computed by module C, based on the concentrations 

ex is tin g  at the beginning o f time step k, (ppm) 

r  d
t  and t  = change in concentration in c e ll i , j  caused by

i , j  i , j
Δ Δ  across a c e ll boundary, (ppm)

= v e lo c ity  o f solute movement between ce ll i , j

r
and c e ll i , j + l ,  (L /T ). Since v denotes ’ to 

d
the r ig h t ’ , v denotes ’ down’ in a plan view.

r  a t  r
t  = - ___  v c

i , j , k Δ x i , j , k  i , j+ 1 /2 , k

r  Δ t  r
t  = ___ v c

i , j -1 ,k Δ  x i , j -1 ,k i , j-1 /2 ,k

d Δ t  d
t  = - ___  v c

i , j , k  Δ x i , j , k  i+ 1 /2 , j , k

d a t  d
t  = ___ v c

i - l , j , k  a x i -1 ,j , k i -1 /2 ,j , k

r  K
v = ___ ( h - h )

i , j , k  S i , j , k  i , j + l , k

. . [ 11]

. . [ 12]

. . [ 13]

• • [ 14]

. . [ 15]
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c + c 
i , j , k  i , j + l , k

i j + l / 2 , k  2

Expressions analagous to  equation [15] e x is t fo r  the other 

three v e lo c it ie s  shown in equations [12-14]. S im ila r ly , there are 

equations analagous to  [16] fo r  the other three midpoint 

concentrations shown in equations [12-14].

In module D, heads used to  compute v e lo c it ie s  in equations 

[11-14] are known fo r  a ll time steps, having been computed 

e a r lie r  in  module B. The concentrations used in  equations [11- 

14] are unknown variab les. The f  c o e ffic ie n ts  are also variables 

whose values are optimized in the module. Thus, im p lic it  

advective transport equations are nonlinear. An e x p lic it  

transport form ulation is  lin e a r fo r  a sing le time step, but is 

nonlinear fo r  m u ltip le  time steps.

Module E u t i l iz e s  ob jective  function [1 ] ,  constra in t 

equations [2 -5 ] fo r  unsteady flow  simulation and equations [7- 

9,17] fo r  solute transport s im ulation.

= midpoint concentration between c e ll i , j  and 

c e ll i , j + l ,  (ppm)

..[1 6 ]
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where 
E

{C  } =  a n x l  vector o f the f in a l concentrations 
k

re su lting  at the end o f time step k from optimal

pumping in module E, (ppm) 
t

{C  } =  a n x l  vector o f ta rge t concentrations, i .e .  the 
k

upper l im i t  on acceptable concentrations resu lting  

at the end o f the planning period, (ppm). These ta rge t 

concentrations are predetermined by management agency.

Equation [17] is  a ’ s o f t ’ constra in t in tha t i t  is  possible 

to exceed the f in a l concentrations. In p ractice , using a large 

W+c and re la t iv e ly  small values o f W- c and W in  the ob jective 

function causes ta rge t concentrations to be attained i f  i t  is  

phys ica lly  feas ib le  to do so.

In Module E, pumping values and fu ture  concentrations and 

heads are unknown variab les. Even though the f  co e ffic ie n ts  are 

known from Module D, transport constra in ts are nonlinear. 

Dispersion is  s t i l l  treated as a known value, having la s t been 

computed in module C. The e rro r in the assumed transport due to 

dispersion is  corrected through the process o f ite ra t in g  through 

modules C, D and E.

E +c -c t
{ C } - { D ) + { D } = { C } 

k k
. . [ 17]
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An a lte rn a tiv e  to  using the five-module MODCON approach is  

to  use Module E by i t s e l f .  In tha t case, a l l  f  co e ffic ie n ts  have 

values o f 1.0 and im p lic it  or e x p lic it  solute transport 

s im ulation is  used. A Crank-Nicolson form ulation might also be 

used. That approach is  p rac tica l i f  one can accept the e rro r 

caused by crude d is c re tiz a tio n . I t  permits one to forego the 

process o f ite ra t in g  through modules C, D and E. In tha t case, 

Module A would probably be used only to  determine lim its  on 

boundary recharge ra tes.
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PRINCIPAL FINDINGS AND SIGNIFICANCE 

A. Testing o f E x p lic it  Solute Transport Form o f MODCON

A hypothetical unstressed steady-state system is  assumed 

(Figure 4). Flow assumptions are as mentioned previously. An 

e ffe c tiv e  porosity  o f 0.3 and a transm iss iv ity  o f 1,092 m2/day 

(11,750 f t 2/day) are assumed. In th is  te s t contaminant movement 

occurs only by advection (d is p e rs iv ity  equals zero).

E ffec tive  weights o f 1 are assumed fo r  head over- and under

achievement variables in modules A, B and E. Weights o f 1 are 

used fo r  concentration over- and under-achievement variables in 

module D. In module E weights o f 1,000 and 1 are used fo r 

concentration over- and under-achievement variables respective ly . 

Thus module E attempts to  insure tha t concentrations do not 

exceed ta rge t concentrations. I f  necessary, the same emphasis can 

be achieved in module D by increasing the magnitude o f the 

achievement variables fo r  concentration. A ll f  c o e ffic ie n ts  are 

bounded to  be between 0.0 and 10.0 in value.

Lower bounds on recharge and discharge are zero. Upper 

bounds are a large enough value tha t they never are re s tr ic t iv e .  

A ll constant-head c e lls  are permitted to e ith e r discharge or 

accept recharge, depending on what the model p re fers. Discharge 

is  also permitted at a ll in te rna l c e lls , but recharge can occur 

only at c e lls  (9 ,4 ), (9,5) and (9 ,6 ). Potentiom etric heads
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J

I

1 2 3 4 5 6 7 8 9
1 34.8

2 34.1

3 33.5

4 32 9.

5 32 3

6 31.7

7 31 1. /

8 30.5

9 29.9/
10 29 3

11 28 7

12 28.0

13 27 4

14 26.8

15 26.2/
16 25.6

17 25.0

18 24.4

Constant-head Cell

Variable-head Cell

Potentiometric 
surface contour

Figure 4. Assumed in i t i a l  potentiom etric surface in
hypothetical study area, in m above sea le ve l.

—
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can change as long as they do not exceed the ground surface 

e leva tion . They never approach tha t l im i t  in tested s itu a tio n s .

Figure 5 shows the in i t i a l  s a l in ity  concentrations tha t are 

assumed. Figure 6 shows the concentrations tha t w i l l  re su lt a fte r  

25 years o f steady-state flow , assuming no addition of 

contaminant to  the system. Values shown in  Figure 6 are computed 

using two 12.5-year time steps. Concentrations predicted using 

tw en ty-five  one-year time steps or a sing le 25-year step are 

w ith in  10 ppm o f the displayed values. Accordingly, MODCON 

modules discussed below use two 12.5 year time steps. To reduce 

computational requirements, optimal pumping is  steady in time. 

Head response to  pumping is  tra n s ie n t.

Assume th a t a management agency wishes to assure tha t 25- 

year concentrations in ta rge t c e lls  (9 ,5 ), (9,6) and (9,7) do not

exceed 200 ppm. In Figures 5 and 6 we see tha t in i t i a l

concentrations in those c e lls are 375 ppm and 25-year

concentrations w ithout management are 390 ppm. C learly some 

ex trac tion  or in je c tio n  o f water to the aqu ife r is  needed to 

achieve the management ob jec tive .

In the in i t i a l  ite ra t io n  o f the MODCON modules, the e x p lic it  

form o f module E computes the optimal pumping values shown in 

Figure 7a. Note tha t to ta l discharge and recharge rates via wells 

are 927 and 917 103 m3y r -1 (751 and 743 a c - ft  y r -1 ) respective ly .

24



1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 550 550 550 550 550 0 0

6 0 0 550 550 550 550 550 0 0

7 0 0 450 450 450 450 450 0 0

8 0 0 400 400 400 400 400 0 0

9 0 0 380 375 375 375 380 0 0

10 0 0 350 350 350 350 350 0 0

11 0 0 325 325 325 325 325 0 0

12 0 0 300 300 300 300 300 0 0

13 0 0 270 270 270 270 270 0 0

14 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

Figure 5. Assumed in i t ia l  NaCl concentrations in groundwater, in ppm.
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1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 220 220 220 220 220 0 0

6 0 0 530 530 530 530 530 0 0

7 0 0 480 480 480 480 480 0 0

8 0 0 430 430 430 430 430 0 0

9 0 0 392 390 390 390 392 0 0

10 0 0 368 365 365 365 368 0 0

11 0 0 340 340 340 340 340 0 0

12 0 0 315 315 315 315 315 0 0

13 0 0 288 288 288 288 288 0 0

14 0 0 162 162 162 162 162 0 0

15 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

Figure 6. Concentrations tha t w i l l  re s u lt a fte r 25 years w ithout 
pumping, in ppm.
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2 3 4 5 6 7 8

7 0 0 0 0 0 0 0

8 0 0 15 59 15 0 0

9 0 27 -94 -22 -94 27 0

10 0 0 15 58 15 0 0

11 0 0 0 0 0 0 0

2 3 4 5 6 7 8

7 0 0 0 0 0 0 0

8 0 0 20 71 20 0 0

9 0 33 -112 -62 -112 33 0

10 0 0 18 75 78 0 0

11 0 0 0 0 0 0 0

Figure 7. Optimal groundwater extraction  (+) and in je c tio n  (-) rates 
computed by two versions o f module E in 103m3/yr:
a) e x p lic it  form o f solute transport equation,
b) im p lic it  solute transport equation.

J
a)

I

b)
J

I
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Since the model attempts to  d is rup t regional heads as l i t t l e  as 

possible, to ta l discharge and recharge rates are very s im ila r in 

magnitude.

Module E also predicts tha t as a re s u lt o f tha t pumping, 

concentrations o f p rec ise ly  200 ppm w i l l  be attained by year 25 in the 

ta rge t c e lls .  Subsequent reuse o f module C shows the concentrations 

tha t would more probably occur (Figure 8 ). Note concentrations o f 195, 

205 and 195 in c e lls  (9 ,4 ), (9,5) and (9,6) respective ly . Assuming 

tha t a concentration o f 205 ppm is  close enough to 200 to be 

acceptable, the flow  chart o f Figure 2 ind icates tha t no more 

ite ra tio n s  are necessary.

For demonstration purposes however, modules D, E and C are run again 

and provide the fo llow ing  re su lts . A fte r re ca lib ra tin g  the f  

co e ffic ie n ts  in module D to  emulate the concentrations projected by 

the second use o f module C, module E computes a new pumping strategy. 

Again module E expects th is  strategy to  cause 200 ppm concentrations 

in the three ta rge t c e lls . In the new strategy to ta l discharge and 

recharge by wells is  965 and 967 103 m3 y r - 1 (782 and 783 a c - ft y r -1 ) 

respective ly . These represent 4 to 5 percent increases from the 

resu lts  o f the previous ite ra t io n .

According to the module C M0C model, concentrations tha t would 

re su lt from implementing the revised pumping strategy are 191, 219 and 

202 ppm fo r  c e lls  (9 ,4 ), (9,5) and (9 ,6 ). For these target c e lls , th is
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1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 220 220 220 220 220 0 0

6 0 0 530 530 530 530 530 0 0

7 0 0 480 480 480 480 480 0 0

8 0 0 430 425 425 425 430 0 0

9 0 0 392 195 205 195 392 0 0

10 0 0 368 299 337 299 368 0 0

11 0 0 340 340 340 340 340 0 0

12 0 0 315 315 315 315 315 0 0

13 0 0 288 288 288 288 288 0 0

14 0 0 162 162 162 162 162 0 0

15 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0

Figure 8. Concentrations tha t w i l l  re su lt a fte r 25 years o f pumping 
at optimal rates computed by e x p lic it  version o f module 
E, in ppm.

J
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re s u lt is  less accurate than tha t predicted in  the f i r s t  ite ra t io n .

When a l l  contaminated c e lls  are considered however, ite ra t io n  seems 

to  improve the overa ll accuracy o f the presented lin e a r c o e ff ic ie n t 

s im ulation scheme. The sum o f the absolute values o f a ll d iffe rences 

between fu tu re  concentrations predicted by f i r s t  ite ra t io n  use o f the 

e x p l ic i t  module E and subsequent use o f MOC sim ulation is  600 ppm 

(average o f 12 ppm per contaminated c e l l ) .  On the other hand the sum 

o f a l l  po s itive  and negative-valued d iffe rences in concentration 

computed by E and C, (E - C) is  only 24 ppm. Analagous sum o f 

absolute-valued d iffe rences computed using the second ite ra t io n  

re su lts  from module E is  535 (average o f 11 ppm per contaminated 

c e l l ) .  In th is  case the sum o f concentration d iffe rences between E and 

C is  - 57 ppm.

As long as there is  d iffe rence between the heads used to ca lib ra te  

module D and the heads computed by subsequent optim ization in module 

E, one expects some e rro r in concentrations predicted by module E. 

A fte r a l l ,  modules D and E use e x p lic it  or im p lic it  representations of 

the p a r t ia l d if fe re n t ia l expression o f solute transport, while module 

C uses a method o f cha rac te ris tics  p a rt ic le  tracking method.

The f  c o e ffic ie n ts  in modules D and E permit advective transport to 

be increased or decreased to match tha t predicted by MOC simulation 

(or any other so rt o f p red ic tion  used in module C). For example in 

modules D and E, unless the f  c o e ffic ie n t describing advective
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transport equals zero, i f  there is  contaminant in a c e l l ,  some o f tha t 

contaminant w i l l  move to an adjacent c e ll i f  water flows to tha t ce ll 

from the contaminated c e l l .  On the other hand, in a MOC model, 

contaminant w i l l  appear in  the down-gradient c e ll only i f  

c h a ra c te r is tic  p a rtic le s  tra ve l fa r  enough to  cross the ce ll boundary. 

I f  p a rtic le s  do not traverse c e ll boundaries, then a MOC model w il l  

p red ic t no concentration in  the down-gradient c e l l .  Through use of 

c o e ffic ie n ts , modules D and E can match MOC-predicted concentrations.

The tested scenario provides a more rigorous te s t o f the model than 

would be imposed i f  there is  o r ig in a lly  no contamination in the ta rge t 

c e lls  and i f  no contaminant should enter them. In tha t case, the model 

merely needs to  pump in such a way as to prevent m igration due to 

advection. This can be accomplished by causing heads in the ta rget 

c e lls  to  be greater than those in surrounding c e lls . That simple 

approach is  commonly used in management models tha t do not incorporate 

solute transport equations.

The simple hydrau lic  gradient control approach is  inadequate i f  some 

contaminant is  acceptable in ta rge t c e lls  and i f  contaminant in i t i a l l y  

ex is ts  in  those c e lls .  In th is  case, the MODCON procedure ensures tha t 

f in a l concentration is  acceptable. I t  causes the development o f 

hydrau lic gradients tha t simultaneously l im i t  the in flow  of 

contaminant while flush ing ex is ting  contaminant out o f the ta rge t 

c e lls . Figure 9 shows the changes in potentiom etric surface elevations
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2 3 4 5 6 7 8

5 .0 .0 -.01 -.01 -.01 .0 .0

6 .0 .0 -.01 -.01 -.01 -.01 .0

7 .0 .0 -.01 -.04 -.01 .0 .0

8 .0 .0 -.01 -.10 -.01 .0 .0

9 .0 .01 .27 .17 .27 .01 .0

10 .0 .0 .01 -.10 .01 .0 .0

11 .0 .0 .01 -.03 .0 .0 .0

12 .0 -.01 -.01 -.02 -.01 -.01 .0

13 .0 -.01 -.01 -.01 -.01 .0 .0

Figure 9. Change in potentiom etric surface e levation by year 25 
caused by optimal pumping computed in f i r s t  ite ra tio n  
using e x p lic it  version o f module E, in meters.

32

I

J



tha t re s u lt from the optimal ex trac tion  and in je c tio n  stra tegy. Figure 

10 shows th a t although the gradient is  changed i t  is  not reversed to 

the extent tha t contaminant from up-gradient no longer enters the 

ta rge t c e lls .

The MODCON stra tegy slows contaminant entry to the ta rge t c e lls  and 

hastens contaminant e x it .  This is  seen by observing head d ifferences 

between c e lls  immediately above and below the ta rge t c e lls . Note tha t 

i n i t i a l l y  there is  a uniform 2 -foo t drop in head per mile (per row). 

By year 25, the drop between rows 8 and 9 fo r  columns 4, 5 and 6 has 

decreased to 1.123, 1.088 and 1.123 fee t respective ly . These

correspond to  gradient and contaminant v e lo c ity  decreases o f 44, 46 

and 44 percent respective ly . By the same time the head drop between 

rows 9 and 10 has increased to 2.877, 2.9 and 2.877 fee t,

corresponding to  v e lo c ity  increases o f 43, 45 and 43 percent

respective ly .

Although the presented methodology seems to adequately achieve 

desired concentrations, one may question whether computed stra teg ies 

are optimal from other perspectives. In th is  example, one part o f the 

ob jective  function  o f module E attempts to  maintain in i t ia l  heads to 

the extent possible. Thus, tha t function includes the sum of 

d iffe rences between 25 year heads re su lting  from the optimal strategy 

and those heads tha t would re s u lt from no pumping. I t  also contains 

the weighted concentration achievement variab les. For th is
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1 2 3 4 5 6 7 8 9

1 3 4  8

2 3 4 . 1

3 3 3 . 5

4  32 . 9

5 3 2 . 3

6  31 7 .

7

8

9

3 0 .5

2 9 .9

1 0  2 9  3

11 2 8  7*

1 2  

1 3 2 7 . 4

1 4  2 6 . 8

15 2 6 .2

16 2 5 .6

1 7 2 5 . 0

18 2 4 . 4

Constant-head Cell

Variable-head Cell

Potentiometric 
surface contour

Figure 10. Heads tha t w i l l  re s u lt a fte r  25 years o f pumping at 
optimal rates computed by e x p lic it  version of module 
E, in m above sea le v e l.
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m u ltio b jec tive  problem, weights are used to emphasize one ob jective 

versus another. When objectives are in c o n f l ic t  optimal stra teg ies l ie  

on the pareto optimum and enhancing attainment o f one ob jective can 

only be accomplished by harming attainment o f the other. In such a 

case i t  is  common practice to  compute tra d e -o ff functions fo r  selected 

s tra teg ies . These describe the change in one ob jective  caused by an 

incremental change in  the other ob jec tive .

There is  a p a rt ic u la r advantage to  using head achievement variables 

in the ob jec tive  function . As mentioned previously, the ta rget heads 

may be those developed by a ’ ta rge t design’ management model before 

invoking MODCON. They may be steady-state heads or trans ien t heads 

computed as being optimal fo r  the end o f the planning period. They may 

be developed by models w ith ob jective  functions tha t maximize economic 

or other bene fits . By seeking to  maintain those heads to the extent 

possible, module E seeks to d is ru p t the previously developed optimal 

s tra teg ies  as l i t t l e  as possible, while sa tis fy in g  q u a lita tiv e  goals. 

A simple example o f th is  decomposition process occurs i f  the 

pre lim inary optim ization model computes a pumping strategy tha t 

maximizes volum etric ex trac tion  o f groundwater. Associated w ith tha t 

strategy are the heads tha t w i l l  re su lt at the end o f the planning 

period. By using those heads as i t s  ’ ta rg e t’ heads, MODCON seeks to 

d is rup t the vo lum e trica lly  optimal strategy as l i t t l e  as possible, 

while achieving ta rge t concentrations.
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One may ask why recharge should be used and ta rge t concentrations 

should not be achieved using only ex trac tion . I f  only discharge wells 

are used, there is  a much greater d is rup tion  o f the regional flow than 

i f  both discharge and recharge are used. This somewhat negates the 

benefits o f using the ta rge t head achievement component o f the 

ob jective  function  o f module E. Furthermore, when using in te rna l 

discharge but no recharge, concentrations predicted by module E in  a 

pre lim inary ite ra t io n  are much less accurate than those presented and 

discussed above. In th is  case Module C demonstrates tha t implementing 

the optimal ex trac tion  strategy re su lts  in concentrations o f about 300 

ppm in the ta rge t c e lls . This occurs because as the d ifferences in 

head between those assumed by modules C and D and those computed by E 

increase, p red ic tive  e rro r also increases.

J u s tif ic a t io n  fo r  using recharge only at ta rge t c e lls  is  found by 

performing pre lim inary optim izations using MODCON. I f  le f t  free to 

recharge or discharge at a ll in te rna l c e lls , module E computes to ta l 

discharge and recharge o f 1,175 and 1,218 103 m3 y r -1 (952 and 987 ac- 

f t  y r -1 ) . Although most o f the recharge occurs at the ta rget c e lls , 

some occurs up to  two rows away. Since the ob jective function does not 

attempt to  minimize to ta l pumping, the model does not o f i t s e l f  

consider the p rac tica l aspects o f having to recharge at many d if fe re n t 

loca tions. For management purposes, concentrating recharge at ta rge t 

ce lls  is  most reasonable. In add ition , to ta l pumping is  less when
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concentrated.

B. Comparison o f E x p lic it  and Im p lic it  Solute Transport Versions 

o f MODCON

For the problem described above, optimal annual pumping computed by 

an im p lic it  so lu te -transport version o f MODCON is  shown in Figure 7b. 

Discharge and recharge through wells each to ta l about 1,160 103 m3 y r -

 (940 and 938 a c - f t  y r -1 re spec tive ly ). These rates are about 125 

percent o f the respective pumping rates computed by the e x p lic it  

model.

Above we describe e rro r as the sum o f the absolute-valued or real 

d iffe rences between concentrations predicted by modules E and C. Total 

absolute valued e rro r o f the im p lic it  model is  125 percent o f tha t o f 

the e x p l ic i t  model (750 versus 600 ppm). Total real-valued e rro r is 

almost ten times tha t o f the e x p lic it  model (-250 versus +24 ppm). In 

add ition , e rro r in  concentrations computed fo r  the ta rge t c e lls  in the 

f i r s t  ite ra t io n  is  s l ig h t ly  greater fo r  the im p lic it  than the e x p lic it  

version. Module C projected concentrations o f 205, 211 and 205 ppm in 

c e lls  (9 ,4 ), (9,5) and (9,6) respective ly , when using the optimal 

stra tegy from the im p lic it  model. Since the im p lic it  module E 

predicted concentrations o f 200 ppm in a ll three c e lls , i t  

underestimated by a to ta l o f 21 ppm. The e x p lic it  module E on the 

other hand overestimated by a to ta l o f 5 ppm. In the described 

scenario, a manager would generally p re fe r tha t his model overestimate
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fu ture  concentrations, ra ther than underestimate them.

In the performed comparison, c o e ffic ie n ts  computed by the e x p lic it  

module D p red ic t fu tu re  concentrations be tte r than those computed by 

an im p lic it  module--at least when heads and pumping values change from 

those assumed in  module D. For the e x p lic it  approach, values o f f p and 

f r  computed by module D are 1.0 and 0.0 respective ly . For th is  

approach f d is  e ith e r 0.0 ( fo r  c e lls  w ithout in i t ia l  contamination) or 

between 1.113 and 1.890 (average o f 1.226). For the im p lic it  approach 

the values are 1.0, 0.0 and e ith e r 0.0 or between 1.095 and 1.467 

(average o f 1.181) respective ly . One expects the im p lic it  

co e ffic ie n ts  to  be s lig h t ly  smaller than the e x p lic it  c o e ffic ie n ts  

because the im p lic it  equations u t i l iz e  concentrations at the end o f 

each time step to  pred ic t advective transport, while the e x p lic it  

equations u t i l iz e  concentrations at the beginning o f each time step. 

Because o f the flow  f ie ld ,  concentrations are increasing in more rows 

than they are decreasing (e ight out o f ten rows tha t have contaminated 

ce lls  by year 25). Therefore there is  s l ig h t ly  less need fo r 

co e ffic ie n ts  in the im p lic it  model to  increase transport.

I t  is  also useful to compare e x p lic it  and im p lic it  models when 

including dispersion in MODCON. Assuming long itud ina l and transverse 

d is p e rs iv it ie s  o f 200 f t ,  both models were run fo r  the same problem 

in i t i a l l y  posed. The e x p lic it  model computed to ta l discharge and 

recharge by wells as 884 and 923 103 m3 y r -1 (716 and 748 a c - ft  y r -1 )
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respective ly . This s lig h t decrease from pumping rates computed 

previously possib ly resu lts  because the contaminant moves a l i t t l e  

fa rth e r in  the same time period even i f  gradients are unchanged. The 

im p lic it  model pumps about the same as previously, discharging 1,167 

103 m3 y r -1 (945 a c - ft y r -1 ) and recharging 1,160 103 m3 y r - 1 (940 

a c - ft  y r -1 ) .

The accuracy o f concentrations predicted by e x p lic it  and im p lic it  

models using dispersion are s im ila r. Both versions o f module E 

predicted concentrations o f 200 ppm in  the three ta rge t c e lls . When 

tes tin g  the optimal strategy computed by the e x p lic it  model, module C 

predicted concentrations o f 207, 209 and 207 ppm from le f t  to r ig h t in 

those c e lls .  When tes ting  the strategy developed by im p lic it  model, 

module C predicted concentrations o f 207, 212 and 207 ppm.

For unexplained reasons, ne ithe r e x p lic it  nor im p lic it  versions of 

Module E can compute optimal so lu tions i f  a l l  f  co e ffic ie n ts  are 

assigned values o f 1.0. This precludes the use o f an uncalibrated 

Module E and means tha t i t  functioned s a t is fa c to r ily  only when used as 

part o f the MODCON procedure.

The e x p l ic i t  form o f MODCON requires less computer processing time 

than does the im p lic it  version. In th is  report, a l l  processing is  

accomplished using an IBM 4381 mainframe computer running under 

VM/CMS. Average CPU time required to run a ll f iv e  modules in the 

e x p lic it  version fo r  the above problem is  91.5 minutes. The im p lic it
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version required about 127 minutes, 139 percent o f the e x p lic it  

requirement. Assuming tha t the module D c a lib ra tio n  process elim inates 

the p o s s ib il i ty  o f numerical in s ta b i l i t y  in the e x p l ic i t  approach, the 

e x p lic it  version o f MODCON seems preferable to the im p lic it  version.

CONCLUSIONS

A methodology fo r  simulating conservative solute transport w ith in  

computer models fo r  optim izing groundwater management is  presented. 

The technique allows the achievement o f ’ ta rg e t’ groundwater 

contaminant concentrations w ith in  groundwater use s tra teg ies tha t may 

optimize attainment o f volum etric, economic or other po licy  

ob jectives. The technique d if fe rs  from the more common approach of 

preventing contaminant m igration by absolute ly re s tr ic t in g  advective 

movement. The presented method is  f le x ib le  in tha t advective 

contaminant movement may be permitted toward and through concentration 

control c e lls .  This is  especia lly  valuable i f  some contamination 

already ex is ts  w ith in  a contro l c e l l ,  or i f  preventing contaminant 

movement through such c e lls  may be economically or tech n ica lly  

im p rac tica l.

The technique u t i l iz e s  a f iv e  module approach consisting o f four 

optim ization modules and a s ing le  sim ulation module. The f i r s t  two 

modules optimize volumetric management and do not consider groundwater 

q u a lity  constra in ts . They u t i l iz e  the embedding approach fo r 

representing steady or trans ien t groundwater flow . The th ird  module
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simulates advective/d ispersive solute transport using the method of 

ch a ra c te ris tic s . I t  performs no op tim ization . The fou rth  module uses 

optim ization to  compute lin e a r co e ffic ie n ts  tha t best ca lib ra te  

e x p lic it  or im p lic it  transport d iffe rence equations. The f i f t h  module 

combines unsteady flow  and ca lib ra ted  solute transport equations to 

develop a volum etric strategy tha t achieves ta rge t concentrations as 

much as possib le.

Comparisons performed fo r  a hypothetical system show tha t an 

e x p lic it  form o f ca lib ra ted  solute transport equation requires 

s ig n if ic a n t ly  less computer processing time than an im p lic it  

fo rm ula tion . In add ition , probably because o f the c a lib ra tio n  process, 

the e x p l ic i t  form y ie lds  answers tha t are at least as accurate as 

those from an im p lic it  representation.
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