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Chitosanase may enhance 
anti-fungal defense responses
in transgenic tobacco

Bill L. Hendrix* and James McD. Stewart†

ABSTRACT

Chitosanase is an enzyme, similar to chitinase, capable of hydrolyzing the β-1,4-linkages between
N-acetyl-D-glucosamine and D-glucosamine residues in partially acetylated chitosan polymers
found in fungal cell walls. When attacked by pathogenic fungi, many plants exploit this hydrolyt-
ic action as a component of a larger post-attack defense response, but these enzymes may also
play a role in the initial plant-pathogen interaction via the generation of elicitors resulting from
the hydrolysis of fungal cell walls. To gain insight into these mechanisms, a Paenbacillus chi-
tosanase was cloned, sequenced, and modified for plant expression. The modified gene was deliv-
ered to tobacco (Nicotiana tabacum L. cv. Xanthine) leaf disks via Agrobacterium tumenfaciens-
mediated transformation. Whole plants were regenerated from the transformed cells. The puta-
tive transformants were tested for transgene integration, transcription, and translation.
Confirmed transformants were then screened for enhanced responses to a Rhizoctonia solani cell-
wall preparation by measuring time-course production of hydrogen peroxide, phenylalanine
ammonia lyase, and peroxidase. These compounds play roles at different points in a pathogene-
sis-related signal transduction pathway and thus allow for an initial assessment of the global
defense response. Preliminary data suggest that transgenic tobacco constitutively expressing a
Paenbacillus chitosanase may activate pathogenesis-related defense responses more quickly than
wild type tobacco.

* Bill L. Hendrix graduated in May 2003 with a B.S.A. degree in  crop management.

† James McD. Stewart, faculty sponsor, is a professor in the Department of Crop, Soil and Environmental Sciences.
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INTRODUCTION

Chitosanase (EC 3.2.1.132) is an enzyme widely dis-
tributed in nature. Its range of cellular functions centers
primarily around its ability to hydrolyze β-1,4-linkages
between N-acetyl-D-glucosamine (GlnAC) and D-glu-
cosamine (Gln) residues in partially acetylated chitosan
polymers found in fungal cell walls. The related enzyme
chitinase has a similar fungal cell wall-degrading capa-
bility. As a result, many scientists have made efforts to
exploit its action and increase plant fungal resistance by
over-expressing this enzyme in various plant systems
(Punja, 2001). To date, however, there has been only one
report of plant transformation with a chitosanase gene
(El Quakaoui et al., 1995) and no reports describing its
in-planta anti-fungal potential.

No matter which cell wall-degrading enzyme is over-
expressed, the degree of increased plant fungal resistance
depends on two factors: 1) The efficacy with which the
enzyme can degrade cell walls and, consequently, slow
the attacking fungus; and 2) the number, length, and
degree of acetylation of the oligomeric-carbohydrate
elicitors released from the fungal cell walls. These factors
are not mutually exclusive and may work together to
achieve the realized plant resistance (Lorito and Scala,
1999).

Lorito et al. (1998) reported that for chitinases the
source of the enzyme may influence its efficacy in degra-
dation of GlnAC and Gln polymers. Over the past
decade, the gamut of sources of cell wall-degrading
enzymes has been tested. Most plant, bacterial, and fun-
gal chitinases have offered plants varying degrees of pro-
tection from fungal pathogens, but generally, plant-
derived chitinases have conferred inadequate control
while bacterial and especially fungal chitinases have typ-
ically offered higher levels of resistance.

Glucosamine oligomers, released from fungal cell
walls or crab shells after hydrolysis with a chitinase or a
chitosanase (or by physical means) are known elicitors of
plant defense responses such as stomatal closure (Lee et
al., 1999); lignification (Vander et al., 1998;
Moerschbacher et al., 1988); mitogen-activated protein
kinase activation (Link et al., 2002); and pathogenesis-
related (PR) gene expression (Jabs et al., 1997). The
degree and type of responses elicited by these molecules
depend on the length; degree of acetylation (DA)
(Vander et al., 1998); and number of oligomers present.
These factors may be as important as enzyme efficacy for
increasing plant fungal resistance; however chitinase-
cleaved oligomers may differ from those cleaved by a chi-
tosanase. If acetylated vs. non-acetylated glucosamine
residues were distributed randomly along the length of a
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fungal cell-wall polymer, cleavage with chitosanase
would produce oligomers that vary little from those pro-
duced by chitinase, but in some fungi the distribution is
not random. Fukazimo et al. (1992) found the cell wall
glucosamine polymer of Fusarium oxysporum f. sp.
lycopersici had a DA of approximately 25-35%. In addi-
tion, they compared the degradation products produced
by chitinase and chitosanase. The chitinase produced a
GlnAC–Gln dimer as the primary product, whereas the
chitosanase produced a relatively larger, heterogeneous
pool of products that varied in length and DA. These
results indicated that the acetylated glucosamine
residues are clustered along the cell wall and that a chi-
tosanase may be more efficient for cell wall digestion.
Because only over-expression of chitinases has been
examined in plant systems, in vivo variability in this area
has not been tested.

In this study, a newly discovered Paenbacillus sp.
61427 chitosanase was expressed in tobacco (Nicotiana
tabacum L. cv. Xanthine) to investigate the in-planta
anti-fungal potential of this protein and to determine
whether plant-signal transduction pathways can be
enhanced by its elicitor-generating action.

MATERIALS AND METHODS

Bacterial Gene Isolation
A bacterium, identified by the sequence of the 16S

rRNA gene, was discovered on a chitosanase screening
plate (LB agar pH 7.9 + final concentration of 0.01% w/v
chitosan dissolved in 0.1N HCl overnight). The bacteri-
um produced a clear halo around the colony, indicating
the presence of strong extra-cellular chitosanase activity.
The bacterium was cultured and a genomic library was
constructed with pGEM®-3Zf(+) (Promega, Madison,
Wisc.) in Escherichia coli strain DH5α. The library was
screened for chitosanase activity and one colony that
exhibited strong activity was selected for further experi-
mentation (Hendrix et al., 2001). The cloned plasmid,
designated pCHN1, contained an insert of approximate-
ly 8 kb.

A nucleotide-deletion experiment (Promega,
Madison, Wisc.: Erase-a base kit) was performed on the
insert of pCHN1. The resultant clones began to lose chi-
tosanase activity at time point 10, indicating nucleotides
important for gene expression had been removed. The
clones from time point 10 to16 were sequenced to iden-
tify the open reading frame and mature protein region of
the chitosanase.

Gene Modification for Plant Expression
Specific primers were designed to 1) PCR-amplify the

mature protein region of the chitosanase, 2) add an
Arabidopsis extra-cellular chitinase signal peptide

(Hasselhoff, 1992), and 3) generate BamHI (5’) and SalI
(3’) restriction sites to facilitate further cloning.

The modified chitosanase fragment along with
pHPT1, a modified pUC19 vector containing a 35S
Cauliflower Mosaic Virus (35S) promoter and nopaline
synthase 3’ transcription terminator (nos), were digested
with BamH1/SalI and BamH1/AlwnI, SalI/AlwnI,
respectively. The resultant fragments were used in a tri-
molecular ligation. The product, pERCSN, was cloned in
E. coli strain DH5α for further manipulation.

pERCSN was digested with XbaI to liberate the exper-
imental construct and ligated into the binary plant-
transformation vector pPZP211 (Hajdukiewicz et al.,
1994), also digested with XbaI and cloned in E. coli. The
resultant E. coli colonies containing the experimental
vector, pPZP-ERCSN, were screened by PCR and restric-
tion digest to confirm proper gene size and orientation.

Tobacco Transformation
pPZP-ERCSN and an empty vector control were

transferred to Agrobacterium tumenfaciens strain
GV3101 by electroporation. Sterile tobacco (N. tabacum
cv Xanthine) leaf disks were co-cultivated with A.
tumenfaciens for 15 min in a Murashige and Skoog (MS)
salt (4.314g/L)/ 3% sucrose (pH 5.9 with 1N KOH) solu-
tion for infection. Disks were then incubated for 3 d in
the dark on MS/sucrose (same as above + phytoagar)
plates without antibiotics. Following the co-cultivation
period, disks were washed in MS/sucrose solution con-
taining 400 µg/ml Timetin for 3 h to kill residual A.
tumenfaciens and placed on shoot-initiation medium
(SIM) (MS salt 4.314g/L, 3% sucrose, 0.5mg/ml naph-
thaleneacetic acid, 1mg/ml 6-benzylaminopurine, 300
µg/ml kanamycin, 250 µg/ml Timetin, 0.7% phytoagar)
for callus and plantlet formation. Once plantlets regen-
erated and were 1 to 2 cm tall, they were removed with
forceps and placed in rooting medium (same as SIM
medium without hormones) for root formation. After
two to three weeks, rooted plants were transferred to soil
and grown under typical greenhouse conditions.

Analysis of the Integration Locus 
Transgene integration was confirmed by Southern

blot and hybridization. Total DNA was isolated from the
regenerated plantlets following a modified procedure
reported by Zhang et al. (2000). Ten micrograms of total
DNA/plant were digested with EcoRI (Fig. 1) and size-
separated by electrophoresis in 1% TAE agarose gels. The
digests were transferred to Hybond N+ nylon membrane
(Amersham Life Science, Piscataway, N.J.) with alkali
blotting. Pre-hybridization and hybridization were per-
formed according to Ausebel et al. (1995) with a 32P-
dCTP random prime-labeled csn probe. The mem-
branes were washed twice with 2x SSC/0.1% sodium
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dodecyl sulfate (SDS) followed by 0.2x SSC/ 0.1% SDS at
65°C until membrane signal was low. An autoradiograph
was prepared by overnight exposure of Hyperfilm
(Amersham Life Science, Piscataway, N.J.) to the gel at
–80°C.

Transcriptional Analysis
Chitosanase transcription was assayed by Northern

blot. Total RNA was isolated from young leaves with
Trizol reagent (Gibco BRL, Grand Island, N.Y.). Five
micrograms of total RNA were size-separated by elec-
trophoresis in a 1% formaldehyde-agarose gel, trans-
ferred to a Hybond N+ nylon membrane, and cross-
linked with UV irradiation. Pre-hybridization and
hybridization were performed at 42°C with
NorthernMax hybridization buffer (Ambion, Austin,
Tex.) and a 32P-dCTP random prime-labeled csn probe.
Washing was at 42°C, but otherwise, washes and autora-
diography were performed as described above.

Recombinant Protein Assay
Protein accumulation and activity were assayed with

a leaf-disk lysoplate assay using a modified protocol pre-
viously described by Grenier et al. (1990). Briefly, agar
slabs were augmented with 0.05% chitosan (pH 5.0 with
1N NaOH) dissolved in 0.1N HCl and 1% Triton-X 100.
Fresh leaf disks were placed on the slabs and incubated
at 28°C for 1 to 3 h to allow for diffusion of the extra-cel-
lular chitosanase into the medium. The slabs where then
stained with calcoflour white to visualize zones of chi-
tosan lysis under UV light.

In vitro Anti-fungal Assay
The anti-fungal efficacy of the native, unmodified,

bacterially produced chitosanase was compared to the
recombinant chitosanase to assess the effect of gene
modification and plant expression on the anti-fungal
activity of the protein. Rhizoctonia solani mycelial plugs
were centered on potato dextrose agar plates and chal-
lenged by transgenic leaf disks or by chitosanase buffer
(10 mM phosphate pH 6.0) containing 5 µg, 0.5 µg, 0.05
µg, and 0 µg of partially purified, native chitosanase.
After overnight incubation, growth inhibition was visu-
ally assessed.

Elicitor Preparation
Elicitors were prepared from R. solani and

Verticillium dalihae2 cell walls via methods described by
Ke et al. (1998). Fungi were propagated in potato-dex-
trose broth with shaking at 27°C for 3 d. Mycelia were
pelleted by centrifugation, washed with distilled water,
and suspended in 1N NaOH (1:40 w/v mycelia to solu-
tion ratio). The suspension was then autoclaved for 15
min at 121°C to lyse cells and remove proteinaceous
fractions. After a brief cooling period, insoluble material

was pelleted by centrifugation, and the supernatant frac-
tion was discarded. The pellet was washed with distilled
water to remove residual NaOH, then resuspended in
2% acetic acid (1:100 w/v ratio) and again autoclaved 15
min at 121°C. The slurry was filtered through two layers
of miracloth to remove acid insoluble material and col-
lected for precipitation. Cell wall preparations were pre-
cipitated with 10M NaOH by raising solution pH to
approximately 10. Precipitate was collected by centrifu-
gation, washed four times with distilled water to remove
any water-soluble fractions, and air-dried overnight.
Elicitors were then dissolved in distilled water adjusted
to pH 4.0 with acetic acid and stored at room tempera-
ture.

In-planta Elicitor Assay
The R. solani cell-wall preparation was applied to the

surface of transgenic and wild-type tobacco leaves.
Crude enzyme extracts (Moerschbacher et al., 1988)
were taken at 0, 2, and 24 h after elicitor application, and
phenylalanine ammonia lyase (PAL) and peroxidase
(POD) activities were measured as described by Vander
et al. (1998). All protein concentrations were estimated
spectrophotometrically by the method of Bradford
(1976).

Systemic H2O2 Production
Leaves from wild-type and transgenic plants were

excised and imbibed with a 1mg/ml 3,3-diaminobenzi-
dine (DAB) solution for 8 h. Elicitor preparations were
then applied in solution through the cut petioles, and
systemic H2O2 production was visually assayed on
bleached leaves (boiled in 95% ethanol 10 min) at 0, 2,
and 20 h after application as described by Orozco-
Cardenas and Ryan (1999).

RESULTS AND DISCUSSION

Gene Discovery and Modification for Plant Expression
The original chitosanase-producing bacterium was

identified as Paenbacillus sp. 61427 based on rRNA gene
sequence. This bacterium produces a 259 aa, 29 kDa
extra-cellular chitosanase. At the amino acid level, the
Paenbacillus sp. 61427 chitosanase is 64% and 66% iden-
tical to Bacillus circulans and B. ehimensis chitosanases,
respectively.

The Paenbacillus chitosanase mature protein gene was
cloned and sequenced, and an Arabidopsis signal pep-
tide, 35S Cauliflower Mosaic Virus promoter, and nopa-
line synthase terminator were added to obtain a 1676 bp
experimental gene construct (Fig. 1) that was fused to
the binary vector pPZP211 to obtain a 4409 bp T-DNA
insert (Fig. 2).

2 Fungi were courtesy of Dr. Craig Rothrock, University of Arkansas.



Transformation and Expression Confirmation
Numerous tobacco plantlets were regenerated, but

gene transfer was tested in only 10 lines. Eight lines were
confirmed transformed with varying copy number by
Southern hybridization (Fig. 3A), and seven of the lines
had high levels of csn mRNA as evidenced by Northern
blot (Fig. 3B). Lines csn4, 5, 9, 10, and 11 were confirmed
transformed by both Northern and Southern blots and
were used for further experimentation or seed produc-
tion. In addition, line csn3 was allowed to set seed to
explore the possibility of gene reactivation in the segre-
gating progeny of this multi-copy-silenced transgenic
line. Before any line was used in an experiment, accumu-
lation of active extra-cellular chitosanase was tested with
a leaf-disk lysoplate assay (Fig. 3C).

Growth Inhibition of R. solani
Many times, bacterial proteins expressed in plant sys-

tems are heavily glycosylated or may be otherwise ren-

dered inactive or less efficacious. To assess the effect of
the gene modifications and plant expression on our bac-
terial protein, the fungal pathogen R. solani was chal-
lenged by the native and recombinant chitosanase. The
partially purified native chitosanase dilutions inhibited
growth at each concentration tested (Fig. 4A), and the
transgenic leaf-disks from line csn5 inhibited growth at
a level intermediate to the 0.5 to 0.05 µg level of the
native chitosanase (Fig. 4B). No inhibition was observed
with chitosanase buffer or wild-type leaf disks. These
results indicated the recombinant chitosanase is
expressed in our transgenic tobacco with in-planta activ-
ity levels sufficient for further experimentation.

In-planta Elicitor Assay
Lines csn5, csn6, and a non-transformed (NT) line

(Fig. 3C) were assayed for a response to the R. solani cell-
wall preparations. The cell walls were prepared to elimi-
nate the small water-soluble oligomers known to elicit
plant defense responses (Barber et al., 1994; Vander et
al., 1998). As such, these polymeric glucosamine macro-
molecules required cleavage to produce soluble frag-
ments capable of diffusing into plant tissues and trigger-
ing a plant defense response. The intent was to assay for
enhanced plant perception of a simulated fungal attack
in which wounding and extraneous proteinaceous elici-
tors were absent.

Line csn5 and line csn6 showed increases in both PAL
and POD rates at 2 and 24 h. The PAL and POD rates for
the NT line, however, remained unchanged over the
course of the treatment (Fig. 5). POD activity in the
transgenic lines was initially much higher than that of
the NT line. We believe these results stem primarily from
growing conditions. The transgenic lines were grown in
small magenta boxes as a matter of convenience. The
plants, though, had become quite large at the time of the
experiments and were prone to moisture stress. While
not visibly stressed at elicitor application, peroxidase lev-
els may have been elevated due to an earlier moisture-
stress response. The NT lines were grown under the
same conditions but were much smaller and were never
visibly moisture stressed. As such, they had normal POD
activity at elicitor application. Despite minor discrepan-
cies, these results suggest that constitutive extra-cellular
expression of the Paenbacillus chitosanase may allow for
enhanced plant perception of attacking fungi and there-
by allow the plant to respond more quickly.

Systemic H2O2 Production
Lines csn5, csn6, and an NT line were evaluated for

elicited H2O2 production in response to R. solani cell-
wall preparations. Again, efforts were made to minimize
wounding in order to assess only signal transduction
events originating from elicitors released by the hydroly-
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Fig. 2. 4409bp experimental T-DNA insert.
Abbreviations: CaMV - 35S Cauliflower Mosaic Virus
promoter; CSN - Paenbacillus chitosanase mature 
protein gene; ER sp - Arabidopsis signal peptide

sequence; nos 3’ - nopaline synthase 3’ terminator
sequence; EcoRI – recognition site; NPTII – neomycin
phosphotransferase II gene; LB/RB – T-DNA left/right

border sequences.

Fig. 1. 1% TAE agarose gel (EtBr stained) for confir-
mation of experimental vector.  Ln1: 1kb ladder. Ln2
pPZPER-CSN HindIII digest; a-pPZP211 backbone

9014bp; b- experimental insert 1676bp. Ln3: PCR prod-
uct, Paenbacillus chitosanase mature protein region +

Arabidopsis signal peptide (ER sp); c- ER sp + csn
860bp. Ln4: PCR product, Paenbacillus chitosanase

mature protein region; d- csn 777bp.
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sis of the applied fungal cell-wall preparation.
Production of reactive oxygen species like H2O2 has been
widely reported as one of the early events of plant
defense response (Hancock et al. 2002; Vanacker et al.,
2000). DAB forms a brown, insoluble polymer in the
presence of H2O2 and peroxidase. As a semi-quantitative
assay for H2O2, the leaves were allowed to take up a DAB
solution through their petioles, exposed to the elicitor
preparations, and visually assayed for the formation of
the brown polymer and, hence, H2O2 production. Lines
csn5 and csn6 both responded to the R. solani cell-wall
preparation with systemic production of H2O2 at 2 and
20 h. The NT line, however, showed no response to the
cell-wall preparation at 2 h and only a slight response at
20 h (Fig. 6). These results provide further evidence that

transgenic tobacco constitutively expressing chitosanase
may be capable of faster responses to attacking fungi
than NT lines are.

In this study, the Paenbacillus chitosanase was tran-
scribed, translated, and transported correctly in trans-
genic tobacco. Additionally, this enzyme enhanced the
ability of transgenic tobacco to respond to fungal cell-
wall-derived elicitors by cleaving these macromolecules
into small fragments active as elicitors. This action may
be able to increase plant fungal resistance by both lower-
ing fungal infection efficacy and decreasing the time
required for defense-gene induction.
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Fig. 5. Time-course changes in (A) PAL and (B) POD production in elicitor-treated tobacco leaves.
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Fig. 6. Time-course changes in brown coloration due to DAB staining (H2O2 production) in the (A) NT,  (B) csn5,
and (C) csn6 lines at 2 and 20 h after treatment and at 20 h with DAB but no elicitor treatment [(20 h)c].
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