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ABSTRACT

Id e n t i f ic a t io n  o f C r i t ic a l  Water Levels 
In Flooded Rice F ie ld s

A mathematical model was developed to  s im ula te  the tra n s ie n t 
hydrology o f a flooded r ic e  f ie ld .  With the model, users can 
determ ine the c r i t i c a l  in te r le v e e  areas in  which to  m onitor the 
w ater le v e ls  so th a t the i r r ig a t io n  w e ll can be turned on a t the 
c r i t i c a l  low water le v e l,  and turned o f f  a t the  c r i t i c a l  high 
w ater le v e l,  in  order to  maximize water a p p lic a tio n  e f f ic ie n c y .  
S e n s it iv i ty  ana lys is  performed w ith  the model showed th a t i t  w i l l  
be necessary to  c a lib ra te  the  model fo r  each s p e c if ic  f ie ld .  A 
c a lib ra t io n  procedure has been developed.

Carl L. G r i f f is

Completion Report to  the United S tates Department o f the In te r io r ,  
Washington, D .C., August, 1984.

KEYWORDS: Mathematical M odelling /  I r r ig a t io n  /  Rice /  Microcomputer

i



TABLE OF CONTENTS

Page

A b s tra c t i

L is t  o f F igures i i i

Acknowledgements

In tro d u c tio n 1

A. Purpose and O b jectives

B. Related Research or A c t iv i t ie s

Methods and Procedures 6

General Mathematical P r in c ip le s  
A p p lic a tio n  o f the P r in c ip le s

P rin c ip a l F indings and S ig n ific a n c e 16

Conclusions 18

L ite ra tu re  C ited 19

Appendices 20

i  i



LIST OF FIGURES

Figure 1 -  Id e a lize d  In te r le v e e  Area

Page

7

i i i



INTRODUCTION

One o f the p r in c ip a l l im it in g  fac to rs  in  the production of 

r ic e  is  the need fo r  i r r ig a t io n .  The area of land used fo r  rice  

production is  frequen tly  lim ite d  by the amount o f water ava ilab le  

(Ferguson, 1979). In a d d itio n , in  many a g r ic u ltu ra l areas of the 

United S tates, the amount o f water ava ila b le  fo r  i r r ig a t io n  is  

s te a d ily  decreasing. Thus, the carefu l use o f the water ava ilab le  

is  o f v i ta l  importance to  the producer and to  the rest o f 

so c ie ty .

The production of r ice  requires large q u a n tit ie s  o f water. In 

Arkansas, on the s ilt- lo a m  s o ils  o f the Grand P ra ir ie ,  a producer 

may have to  add an average of 24 inches of water through i r r ig a ­

t io n  in  the average year (Engler, 1945). Many producers attempt 

to  maximize the acreage supported by each well by ir r ig a t in g  at 

the p ra c tic a l l im i t ,  10 ga llons per minute per acre (Ferguson, 

1979). One consequence of th is  e f fo r t  to  maximize production is  

the fa c t th a t long time in te rv a ls  e x is t between the moment when a 

w e ll is  s ta rte d , and the moment at which water has been applied 

successfu lly  to  the e n tire  f ie ld .  For example, i f  one wished to  

apply a flood  o f 4 inches o f water to  a 40-acre f ie ld ,  w ith  a 

w e ll producing 400 ga llons per minute, a period o f more than 7.5 

days would be required. The consequences o f such long time 

periods include major d i f f ic u l t ie s  in  c o n tro llin g  the a p p lica tio n  

o f water in  order to  minimize losses.
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Rates of loss through in f i l t r a t io n  are re la ted to  the depth 

o f the flo o d . Thus, the producer has an incen tive  to  maintain 

only as much water on his f ie ld  as is  required to  insure tha t 

there are no dry spots in  any of the in te rlevee  areas. In addi­

t io n ,  i t  w i l l  be to  h is advantage to  w a it as long as possible 

before adding add itiona l water. There is  a r is k ,  however, in 

w a iting  too long. I f  any part o f the f ie ld  becomes dry, there can 

be substan tia l losses in  production of r ice  (Ferguson, 1979, 

Bhuiyan, 1978). Thus, the producer needs a method of determining 

the c r i t ic a l  moment at which to  s ta r t  h is well so th a t water w i l l  

reach every part o f his f ie ld  ju s t before any part is  dry.

Another problem o f tim ing ex is ts  when the well is  in  opera­

t io n .  Water which is  pumped in to  the uppermost area of the f ie ld  

f i l l s  the volume enclosed by the f i r s t  levee u n t il i t  rises above 

the gate in s ta lle d  in  the levee. Then i t  flows in to  the next 

lower area. The water in  the upper area must r ise  well above the 

gate in  order to  flow  in to  the next. Thus, i f  the well were sud­

denly cut o f f ,  there would be some in - t ra n s it  water th a t would 

continue to  flow . Each in te rlevee  area overflows in  the same way 

in to  the next lower area. Thus, in  a large f ie ld  there can be 

sizeable q u a n tit ie s  o f in - t r a n s it  water. For example, i f  the flow  

ra te  produced by the w ell is  1000 gallons per minute, and the 

gate is  four fee t wide, then according to  the rectangular weir 

equation, (Roth, et a l , 1975), the water would have to  r ise  to  a
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leve l o f almost 4 inches above the gate. In a 40-acre f ie ld ,  the 

in - t r a n s it  water would amount to  almost 4 m il l io n  ga llons.

One o f the sim plest methods o f determ ining the time at which 

to  tu rn  o f f  the pump is  to  simply w a it u n t i l  water is  flow ing 

over the la s t o f the gates at the lowest e leva tion  in  the f ie ld .  

This technique, w hile  sim ple, is  extremely w aste fu l, since much 

o f the in - t r a n s it  water is  lo s t .  Careful producers have already 

learned to  a llow  fo r  the in - t r a n s it  water, and tu rn  o f f  the pump 

w e ll before water begins to  flow  over the la s t gate. The de te r­

m ination o f the c r i t ic a l  water leve l in  the f ie ld  at which the 

pump should be stopped, however, is  not a simple problem, and has 

fre que n tly  been based upon t r i a l  and e rro r.

A. Purpose and Objectives

The ob jec tives of th is  study were:

1. To develop a new mathematical model o f the tra n s ie n t flow  of 

floo d  water in  a r ic e  f ie ld .  The model must s a tis fy  the 

fo llo w in g  requirements:

a) The computer program must be executable on the IBM per­

sonal computer and IBM-compatible computers. In a d d itio n , 

the program must be executable on as many other microcom­

puters as poss ib le .

b) The computer program must be w ritte n  in  a language which 

is  common to  as many microcomputers as possib le .

3



2. To apply the model to  discover a general method fo r  de te r­

mining the fo llo w in g .

a) The c r i t ic a l  high water leve l at which to  tu rn  o f f  the 

pump.

b) The c r i t ic a l  in te rleve e  area in  which to  measure the high 

water le v e l.

3. To apply the model to  discover a general method fo r  de te r­

mining the fo llo w in g .

a) The c r i t ic a l  low water leve l at which to  tu rn  on the 

pump.

b) The c r i t ic a l  in te rlevee  area in  which to  measure the low 

water le v e l.

4. To te s t the assumptions in  the model by gathering f ie ld  data 

from a production r ice  f ie ld  and comparing the data to  a 

s im ula tion of the f ie ld .

B. Related Research or A c t iv it ie s

The techniques of mathematical modeling have been applied to  

various aspects o f r ice  production. McMennamy (1980) developed a 

simple p lant population model which responds to  d a ily  weather 

parameters. Hagan and Wang (1977) developed improved formulas fo r  

c a lcu la tin g  canal and pump capacities fo r  rice  i r r ig a t io n .  Their 

methods re su lt in  improved system e ff ic ie n c ie s . Wu (1980) also 

developed improved methods of designing water conveyance systems, 

leading to  higher u t i l iz a t io n  e ff ic ie n c y . Clark and Bramley
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(1982) studied water requirements during the p resatura tion  phase 

o f flood  ir r ig a t io n .  None o f these in v e s tig a to rs , however, 

modelled mathematically the hydrology o f flooded r ice  f ie ld s .

Ferguson and Gilmour (1981) developed a computer sim ulation 

o f the hydrology o f flooded r ic e  f ie ld s .  Their purpose was to  

combine th is  model w ith  a so lu te  mass-balance so th a t they could 

study the long-term e ffe c ts  o f the solutes in  the ir r ig a t io n  

water. Their model included a dynamic sim ula tion o f tra n s ie n t 

hydrology s im ila r  to  the one developed in  th is  study. Their 

model, however, was w ritte n  in  P L /I, a language which is  not com­

monly used on microcomputers. In a d d itio n , the model used an 

em pirica l equation to  solve fo r  the depth o f water in  an in te r ­

levee area when flow  was occurring over the gate in to  the next 

area. F in a lly ,  th e ir  model was based upon a time increment o f 2 

hours which appears too long fo r  precise water management.

Ferguson (1979) developed a technique fo r  qu an tify in g  the 

moisture stress which may occur in  an ir r ig a te d  r ic e  f ie ld  in  

which one or more of the in te rle ve e  areas may become dry through 

im perfect water management. He defined a dryness parameter as 

shown below.

1

i  t
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Where DP is  the dryness parameter 
Ni , t  the number o f continuous 2-hr

in te rv a ls  during which the water level 
o f area i is  less than 1 inch , 

and PFt  is  a fa c to r which adjusts fo r  the
se ve rity  o f the damage done to  the crop 
by dryness. The seve rity  is  a function  
o f tim e, t .

METHODS AND PROCEDURES

The mathematical development o f the model w i l l  be described 

f i r s t ,  and then the d e ta ils  o f the program w ritte n  to  implement 

the mathematical p r in c ip le s . The model is  a combination of 

general mathematical p r in c ip le s , s p e c ific  f ie ld  geometry, and 

hydro log ica l p r in c ip le s .

General Mathematical P rinc ip les

Transient responses of the volume of water in  an in te rlevee  

area can be described mathematically by the General Accounting 

Equation:

Rate o f A c c u m u la tio n  = In p u t  Rate -  O u tp u t Rate
+ Source R ate  — S in k  Rate 2

Since we w i l l  be in te rested  in  the height o f the water in  the 

in te rleve e  area, i t  w i l l  be desirab le to  re la te  the volume of the 

water to  the he igh t. There are three possible s itu a tio n s  which 

occur during the f i l l i n g  and depletion of the water in  each area.

1. Since there is  a d iffe rence  in  e levation  from one levee to  

another, the bottom o f the in te rleve e  area is  not le v e l. The

6



Levee n-1
Area = An

Levee n

Fi gure 1. Idealized Interlevee Area

Water CI

7



8

volume occupied by the water w i l l  have a shape s im ila r  to  the 

one in  Figure 1. The area of the surface of the water w i l l  

be a function  o f the shape of the in te rlevee  area. The 

sim plest approach is  to  assume a rectangular area. Another 

com plication arises when the f ie ld  is  being flooded fo r  the 

f i r s t  time in  a season.

Some of the water is  required to  wet the s o i l ,  and does 

not con tribu te  to  the height o f water in  the area. This is  

ca lled  the s o il water d e f ic i t . I f  the area is  assumed 

square, the re la tio n sh ip  between volume and height during the 

period of i n i t i a l  w etting can be expressed as fo llo w s .

V = h /2  *  h /C I  *  An + h def 3

Where V is  the volume of water in  an area in  cubic
fe e t,

h is  the height o f the water above the so il 
measured at the upstream side of the gate, 
in  fe e t,

hdef is  the s o il water d e f ic i t ,  in  fe e t,
CI is  the contour in te rv a l in  fe e t, 

and An is  the area contained w ith in  in te rlevee
area n in  square fe e t.

For the purpose of a dynamic s im u la tion , one is  more 

in te res ted  in  the ra te  at which the leve l o f water changes 

w ith  changes in  volume. Such a re la tio n sh ip  can be found by 

d if fe re n t ia t in g  Equation 3 w ith  respect to  tim e.

d V /d t = h *  An /C l  *  d h /d t  4



For the f i r s t  in te rleve e  area, the input ra te  has only 

one of two values, zero i f  the well is  o f f ,  or the well ou t­

put ra te  i f  the well is  on. For in te rleve e  areas a f te r  the 

f i r s t ,  the input rate o f an area is  the same as the flow  rate 

over the gate o f the previous area. The output ra te  from an 

area consists o f the flow  over the gate in to  the next area, 

plus the losses from in f i l t r a t io n  and evapotransp ira tion  (ET).

For s im p lic ity ,  losses from in f i l t r a t io n  can be set at a 

constant value per hour, depending upon the s o i l .

E vapotransp ira tion , however, is  a strong func tion  o f t im e -o f- 

day, r is in g  to  a peak during d a y lig h t hours, and dropping to  

a minimum at n ig h t. Follow ing Ferguson (1979) the ra te  o f 

loss due to  ET and in f i l t r a t io n  can be expressed as a fra c ­

t io n  of the to ta l d a ily  loss . The f i r s t  2-hour period is  from 

midnight u n t i l  2 am.

EVAPOTRANSPIRATION FACTORS

2-h r 
Peri od

Fraction 
Of Total

1
2
3
4
5
6
7
8 
9

0.04
0.04
0.04
0.04
0.05
0.10
0.15
0.19
0.15
0.09
0.07
0.04

10
11
12

9



10

Equation 2 can be re w ritte n  as fo llow s:

h *  An /C I  *  d h / d t  = Qn-1 -  Qn -  WL 5

Where Qn is  the flow  ra te  o f water out o f an area n
in to  area n+1

and WL is  the water loss rate from in f i l t r a t io n
and evapotransp ira tion .

Equation 5 can be solved (approxim ately) fo r  the rate of 

change of the height o f water w ith in  an area as fo llow s:

hn2 = hn1 + Δt * C I * [ Q n-1 -  Qn -  WL] /  ( An * h n1 ) 6

Where Δt  is  the time increment over which the
changes are to  be projected 

hn1  is  the current value o f hn 
hn 2 is  the projected value o f hn

The appearance of hn1 in  the denominator in  Equation 6 is  

the source of another com plication. I f  the area is  dry at the 

s ta r t  o f the s im u la tion , hn1 is  zero, and Equation 6 cannot 

be used w ithout m o d ifica tio n . Thus, an a lte rn a tiv e  procedure 

must be used to  determine the re la tio n sh ip  between the volume 

o f water added to  an area and the corresponding height w ith in  

the area. No change in  height is  perm itted u n t il s u ff ic ie n t 

water has been added to  s a tis fy  a l l  o f the d e f ic i t .  Then, 

the in i t i a l  increase in  height from the s ta r t in g  value of 

zero is  ca lcu la ted as fo llow s:

hn = (2  *  Qn-1 *  Δt  *  C l /A  ) 0 . 5 7



11

Equation 7 is  used only once in  each in te rlevee  area, 

then Equation 6 is  used u n t i l  the water leve l in  the area 

reaches the contour in te rv a l,  as described below.

2. The second p o s s ib i l i ty  is  th a t the water may have risen u n t il 

the  e n tire  cross section o f the in te rleve e  area has been 

covered. Thus, the water leve l in  the area w i l l  be numeri­

c a lly  equal to  the contour in te rv a l.  In th is  case there is  a 

new re la tio n sh ip  between the ra te  o f change of volume and the 

ra te  o f change of he igh t.

d V /d t = An *  d h /d t  8

Again, th is  equation can be substitu ted  in to  Equation 2 

w ith  the re s u lt shown below.

d h /d t  = [Qn-1 -  Qn -  W L t]/A n 9

This equation can be solved fo r  the height o f water 

w ith in  an area as fo llo w s , assuming th a t Qn is  zero.

h n 2  =  h n 1  + Δ t  *  [ Q n - 1 - W L t ] / A n  10

3. F in a lly ,  there is  the p o s s ib i l i ty  th a t the water leve l may 

r is e  to  the po in t at which flow  over the gate in to  the next 

lower in te rle ve e  area begins. Then, the ra te  o f change of 

volume w ith in  the area under consideration is  a func tion  not 

only o f the quan tity  flow ing in to  the area but o f the quan-
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t i t y  flow ing out. The quan tity  flow ing out is  re la ted to  the 

height o f the water w ith in  the in te rlevee  area by the rec­

tangu la r w eir equation.

Qn = 3 .3 3  *  [L  -  0 .2  *  hn ] hn 1 . 5 11

Where Qn is  the flow  rate o f water across the
nth w e ir, in  CFS

L is  the width o f the gate in  fe e t, 
and hn is  the height o f the water surface

above the s o il at the base of the nth 
gate on the upstream side in  fe e t.

I t  is ,  thus, possible to  solve fo r  the height o f water in  

an area from which there is  an overflow by su b s titu tin g  

Equation 11 in to  Equation 9.

hn 2 = h n 1 + Δt  *  [Qn-1 -  WLt 

-3 .3 3  *  (L  -  0 .2  *  hn2 ) *  hn21 . 5 12

Equation 12 must, o f necessity, be solved by an ite ra t iv e  

process, since, hn 2 appears on both sides of the equation.

A pp lica tion  o f the P rinc ip le s

The fo llow ing  procedure was used to  simulate the changes 

which occur in  the water leve ls h in  each area of the f ie ld .

1. The projected value of h in  each area was calcu la ted from the 

previous value, the mathematical p r in c ip le s  described above, 

and the assumed time increment.



2. I f  the previous value o f h in  an area was less than the con­

to u r in te rv a l,  CI , then Equation 4 was used to  p ro je c t in to  

the fu tu re .

3. I f  the previous value o f h in  an area was greater than or 

equal to  C l, but less than the gate he igh t, then Equation 8 

was used to  p ro jec t in to  the fu tu re .

4. I f  the previous value o f h in  an area was greater than the 

gate he igh t, Z, then Equation 12 was used to  p ro jec t in to  the 

fu tu re . An i te ra t iv e  procedure must be used, since h appears 

on both sides.

5. The time increment to  be used fo r  the s im ula tion was chosen 

by s e n s it iv ity  te s t in g . The equations used in  the sim ula tion 

are approximations to  the d if fe re n t ia l equations derived 

above. The approximations are more re lia b le  when very short 

time in te rv a ls  are used fo r  At .  Short time in te rv a ls ,  

however, re s u lt in  long c a lc u la tio n  tim es, leading one to  

attempt to  use time increments which are as long as poss ib le . 

Since the s im ula tion method is  a p ro jec tio n  in to  the fu tu re , 

i t  is  important to  minimize the cumulative e rro rs  which might 

re s u lt from such long increments. The s tra tegy was to  simu­

la te  p a r t ic u la r  f ie ld  cond itions w ith  successively sho rte r 

tim e increments u n t i l  no fu r th e r changes resu lted  from 

reducing the increment. An increment o f 2 hours was tested 

f i r s t .  Then increments o f 1 hour, 0.1 hours, and 0.01 hours.
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The model was used to  p red ic t the time at which water would 

flow  over the la s t gate in  a 50-acre f ie ld  w ith 10 levees 

enclosing 5 acres each. The assumed well capacity was 600 

galIons per minute.

Calculated Time to  Flow Over Last Gate 

Time Increment (hours) Elapsed Time (hr)

2 476
1 479
0.1 480
0.01 480

6. The e ffe c ts  o f assumptions about water d e f ic its  and loss 

rates were investiga ted  through s e n s it iv ity  te s t in g , a lso. 

These two assumptions have a great impact on the ca lcu la tion  

o f the time which passes between the moment at which the well 

is  turned on and the moment at which water begins to  flow 

over each gate. Thus, a series o f runs were made w ith the 

mathematical model to  p red ic t the time at which water began 

to  flow  over the la s t gate in  a simulated f ie ld  w ith d i f ­

fe re n t values fo r  i n i t i a l  water d e f ic its  and in f i l t r a t io n  

ra tes . The resu lts  are shown below fo r  a 50 acre f ie ld  w ith 

10 levees and a pump which produces 600 gallons per minute.

14



S e n s it iv ity  Testing o f S o il Water D e f ic it

Calculated
Assumed D e f ic it  

Feet
Time at which Water Tops 

The Last Gate (Hours)

0.045
0.050
0.055

477
480
482

S e n s it iv ity  Testing o f Water Loss Rate

Overal l  Water Loss 
Inches per Day

Calculated
Time u n t i l  Water Tops 
The Last Gate (Hours)

0.324
0.360
0.396

457
480
507

7. I t  has, thus, been shown th a t i t  w i l l  not be possib le to  use 

the  model to  sim ulate a general r ic e  f ie ld ,  unless one has 

very precise in fo rm ation  about ce rta in  s o il physical proper­

t ie s .  I f  the estimate o f the s o il water d e f ic i t  is  in  e rro r 

by as l i t t l e  as 10%, the estimated time at which flow  would 

begin across the la s t gate can be in  e rro r by as much as 

th ree hours. I f  the estimated d a ily  loss ra te  is  in  e rro r by 

as l i t t l e  as 10%, the estimated time at which flow  over the 

la s t  gate would begin can be in  e rro r by as much as 27 hours. 

I t  is  u n lik e ly  th a t a producer w i l l  have in fo rm ation about 

h is  s o il th a t is  accurate enough to  use in  the model w ith  any 

degree of confidence. I t  w i l l ,  thus, be necessary to  

c a lib ra te  the model to  each f ie ld .
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A c a lib ra tio n  procedure which can be used is  as fo llow s:

1. F ir s t ,  make a record of the exact time at which the well is  

s ta rte d .

2. Next, make sure th a t the flow  ra te  produced by the well is  

known, measuring i t  i f  necessary.

3. Make sure th a t the area of the f ie ld  above the f i r s t  gate is  

known to  a high degree o f accuracy.

4. Determine the exact time at which flow  begins over the f i r s t  

gate.

5. At th is  p o in t, there are three parameters to  be adjusted, the 

moisture d e f ic i t ,  the in f i l t r a t io n  ra te , and the evapotrans- 

p ira t io n  ra te .

6. A fte r the f ie ld  has been flooded fo r  the f i r s t  tim e, and the 

w ell has been stopped, the combined in f i l t r a t io n  rate and 

evapotranspira tion rate can be estimated by monitoring the 

de c lin ing  water leve l in  one of the areas.

7. When i t  is  time to  s ta r t  the well again, the s ta r t in g  water 

d e f ic i t  can be estimated by a comparison of the time required 

to  f i l l  the f i r s t  area w ith  the in i t i a l  f i l l i n g  tim e.

PRINCIPAL FINDINGS AND SIGNIFICANCE

A computer model has been developed to  simulate the hydrology

o f flood  water in  an ir r ig a te d  r ice  f ie ld .  The model has been

w ritte n  in  M-BASIC, the version o f BASIC developed by M icroso ft.
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This version o f BASIC has become the defacto standard fo r  m icro­

computers. The program has been executed on three types o f com­

puters to  te s t i t s  machine independence. I t  has been successfu lly  

executed on an Osborne 1, on an IBM PC, and on a Columbia VP. 

Results have been equivalent on a l l  three machines.

The maximum time increment th a t can be used fo r  Δt  in  the 

s im ula tion  was found to  be 0.1 hours, or 0.004167 days. Assuming 

the model can be properly ca lib ra te d  fo r  a p a r t ic u la r  f ie ld ,  i t s  

advice to  the user about the appropria te time fo r  tak ing  action 

w ith  respect to  the w ell should be w ith in  an hour o f the optimum 

tim e .

In the development o f the model, two assumptions were made 

which necessitate c a lib ra tio n  o f the model fo r  each f ie ld  where 

i t  is  to  be used. The f i r s t  assumption is  the ra te  at which 

in f i l t r a t io n  and evapotranspira tion w i l l  take place in  the f ie ld .  

The second assumption is  the volume of water required to  saturate 

the s o il when water is  f i r s t  added to  the f ie ld .  Each of these 

parameters has a s ig n if ic a n t e ffe c t upon the tim ing  required in  

c o n tro llin g  the w e ll, as shown by s e n s it iv ity  te s t in g .

The model ca lcu la tes and disp lays some parameters which help 

the user to  optim ize water management in  the f ie ld  sim ulated. The 

f i r s t  o f these, o f course, are the ca lcu la ted water leve ls  in  

each in te rleve e  area, at the end o f each hour. Another parameter 

is  the amount o f water which the model estimates would be lo s t by
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fo llo w in g  the management s tra tegy sim ulated. T y p ic a lly , the model 

can be used to  simulate the e n tire  growing season, in d ica tin g  the 

appropria te times fo r  s ta r t in g  and stopping the w e ll, based upon 

the c r i te r ia  supplied by the user.

CONCLUSIONS

Most o f the ob jectives ou tlined  at the beginning of th is  

study have been achieved.

1. The computer program developed pred ic ts  water leve ls  which 

change in  a way th a t is  consistent w ith  r e a l i ty .

2. S e n s it iv ity  analysis has demonstrated th a t the time in c re ­

ments used in  some previous models may have been too long fo r  

precise water management.

3. Further s e n s it iv ity  analyses have shown tha t ce rta in  s o il 

physical property data must be known w ith  an e rro r o f less 

than 10% before the model can be used to  aid the user in  

achieving optimum water management. These properties are:

a) The in i t i a l  water d e f ic i t .

b) The ra te  o f in f i l t r a t io n .

4. Further work must be done w ith  the model to  te s t the c a lib ra ­

t io n  procedure described. Work w i l l  continue during the next 

yea r, inc lud ing  the development o f a sensing device which 

w i l l  signal to  the operator when the c r i t ic a l  high and low 

water leve ls  have been reached.
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APPENDIX A

COMPUTER PROGRAM

10 DEFDBL A-Z
20 DIM A(30), H(30), XDEF(30), Q(31), WL(12)
30 REM ZN IS THE GATE HEIGHT
40 REM XDEF(I) IS THE MOISTURE DEFICIT REMAINING IN AREA I
50 REM ZWETN IS THE VARIABLE USED FOR DEFICITS IN THE ITERATIONS
60 HOUR = 0
70 DAY% = 0
80 CI=.2
90 ZN = .6
100 PRINT "HOW MANY DAYS TO SIMULATE " ;
110 INPUT NDAYS 
120 WL0SS=0
130 REM WL IS THE WATER LOSS RATE DUE TO INFILTRATION AND 

EVAPOTRANSPIRATION
140 WL(1)=.0144: WL(2)=.0144: WL(3)=.0144: WL(4)=.0144: WL(5)=.018 
150 WL(6)=.036: WL(7)=.054: WL(8)=.0684: WL(9)=.054 
160 WL(10)=.0324: WL(11) = .0252: WL(12) = .0144 
170 INPUT "HOW MANY LEVEES?";N%
180 LPRINT "THERE ARE",N%;" LEVEES"
190 REM DELT ESTABLISHED BY SENSITIVITY
200 DELT = .004167
210 TENTH=0
220 DELT = .004167
230 ZWETN=.05
240 FOR I % = 1 TO N%
250 XDEF( I %) = ZWETN
260 PRINT "Area of levee"; I %;" in  acres?";
270 INPUT A(I%)
280 LPRINT "LEVEE " ;I% ;" ENCLOSES ";A (I% );" ACRES 
290 A( I %)=A( I %)*435601 
300 NEXT 1%
310 INPUT "Well discharge in  gpm?";Q(1)
320 LPRINT "THE WELL DISCHARGES ";Q (1 );"  GPM"
330 LPRINT "THE GATE HEIGHT IS " , ZN;" FEET"
340 Q(1) = Q(1)*192.51 
350 WELL = Q(1)
360 INPUT "CRITICAL TURN OFF LEVEE ";L%
370 INPUT "CRITICAL HEIGHT " ;HT
380 LPRINT "TURN-OFF LEVEE IS ";L%;" AT HEIGHT OF " ;HT 
390 INPUT "CRITICAL TURN ON LEVEE ";L2%
400 INPUT "CRITICAL HEIGHT ";HT2
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410 LPRINT "TURN-ON LEVEE IS ";L2%;" AT HEIGHT OF ";HT2 
420 LPRINT
430 LPRINT "HR H1 H2 H3 H4 H5 H6 

H7 H8 H9 H10"
440 FOR I % = 1 TO NX 
450 QN = Q (I%)
460 AN = A ( I %)
470 HN = H(I%)
480 ZWETN=XDEF( I %)
490 GOSUB 920
500 IF HOUR<2 THEN J%=1: GOTO 620
510 IF HOUR<4 THEN J%=2: GOTO 620
520 IF HOUR<6 THEN J%=3: GOTO 620
530 IF HOUR<8 THEN J%=4: GOTO 620
540 IF HOUR<10 THEN J%=5: GOTO 620 
550 IF HOUR<12 THEN J%=6: GOTO 620 
560 IF HOUR<14 THEN J%=7: GOTO 620 
570 IF HOUR<16 THEN J%=8: GOTO 620 
580 IF HOUR<18 THEN J%=9: GOTO 620 
590 IF HOUR<20 THEN J%=10: GOTO 620 
600 IF HOUR<22 THEN J%=11: GOTO 620 
610 J%=12
620 H(I%) = HN - DELT*WL(J%)
630 IF H(I %)<0 THEN H (I%)=0 
640 Q(I%+1)=QNEXT 
650 XDEF( I%)=ZWETN 
660 NEXT I%
670 WLOSS = WLOSS + QNEXT*DELT
680 IF H(LX) > HT THEN Q(1) = 0
690 IF H(L2%) < HT2 THEN Q(1) = WELL
700 TENTH=TENTH+1
710 IF TENTH < 10 THEN GOTO 440
720 TENTH=0
730 HOUR=HOUR+1
740 LPRINT HOUR;
750 FOR I%=1 TO N%
760 LPRINT USING "#.### " ;H (IX );
770 NEXT I%
780 LPRINT
790 IF HOUR < 24 THEN GOTO 440 
800 HOUR = 0 
810 DAY% = DAY% + 1 
820 LPRINT "DAY";DAY%;
830 PRINT "DAY";DAY%;
840 FOR I % = 1 TO N%
850 LPRINT USING "#.### ";H (I% );
860 PRINT H (I%) ;
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870 NEXT 1%
880 LPRINT
890 IF DAY%=NDAYS THEN LPRINT "LOSS IS ";WLOSS;: END 
900 PRINT 
910 GOTO 440
920 REM subroutine to  determine height in  in te rlevee  area 
930 QNEXT=0
940 IF HN>0 THEN GOTO 1020 
950 IF ZWETN <= 0 THEN GOTO 980 
960 ZWETN = ZWETN - QN*DELT/AN 
970 IF ZWETN>0 THEN RETURN 
980 ZZN# = 2*QN*DELT*CI/AN 
990 REM LPRINT TIME 
1000 HN = SQR(ZZN#)
1010 RETURN
1020 IF HN>CI THEN GOTO 1080 
1030 H3=HN:H2=HN
1040 H2 = HN + DELT*CI*QN/((HN+H2)/2*AN)
1050 IF ABS(H3-H2)>.001*H2 THEN H3=H2: GOTO 1040 
1060 HN=H2 
1070 RETURN
1080 IF HN > ZN THEN GOTO 1110
1090 HN=HN +DELT*QN/AN
1100 RETURN
1110 H3=HN:H2=HN
1120 H2=HN + DELT*(QN-QNEXT)/AN
1130 QNEXT = 86400!*13.33*((HN+H2)/2-ZN)^1.5
1140 IF ABS(H3-H2)>.0001*H2 THEN H3=H2:GOTO 1120
1150 HN=H2
1160 RETURN
1170 END
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