University of Arkansas, Fayetteville ScholarWorks@UARK

Technical Reports

Arkansas Water Resources Center

5-1-1983

Chemistry of the Springs of the Ozark Mountains, Northwestern Arkansas

Kenneth F. Steele University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/awrctr

Part of the Fresh Water Studies Commons, and the Water Resource Management Commons

Citation

Steele, Kenneth F. 1983. Chemistry of the Springs of the Ozark Mountains, Northwestern Arkansas. Arkansas Water Resources Center, Fayetteville, AR. PUB098. https://scholarworks.uark.edu/awrctr/255

This Technical Report is brought to you for free and open access by the Arkansas Water Resources Center at ScholarWorks@UARK. It has been accepted for inclusion in Technical Reports by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, uarepos@uark.edu.

CHEMISTRY OF THE SPRINGS OF THE OZARK MOUNTAINS, NORTHWESTERN ARKANSAS

by Kenneth F. Steele

Geology Department, University of Arkansas

Publication No. 98 May, 1983

Research Project Technical Completion Report A-055-ARK

Arkansas Water Resources Research Center University of Arkansas Fayetteville, Arkansas 72701

Arkansas Water Resources Research Center

Prepared for United States Department of the Interior

CHEMISTRY OF THE SPRINGS OF THE OZARK MOUNTAINS, NORTHWESTERN ARKANSAS

Kenneth F. Steele

Geology Department, University of Arkansas Fayetteville, AR 72701

Research Project Technical Completion Report

Project A-055-ARK

The research on which this report is based was financed in part by the U. S. Department of the Interior, as authorized by the Water Research and Development Act of 1978 (P.L. 95-467), through annual cooperative program agreement No. 14-34-0001-1104.

Arkansas Water Resources Research Center University of Arkansas Fayetteville, AR 72701

Publication No. 98

May, 1983

Contents of this publication do not necessarily reflect the views and policies of the U. S. Dept. of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government.

The University of Arkansas, in compliance with federal and state laws and regulations governing affirmative action and nondiscrimination, does not discriminate in the recruitment, admission and employment of students, faculty and staff in the operation of any of its educational programs and activities as defined by law. Accordingly, nothing in this publication should be viewed as directly or indirectly expressing any limitation, specification or discrimination as to race, religion, color or national origin; or to handicap, age, sex or status as a disabled Vietnam-era veteran, except as provided by law. Inquiries concerning this policy may be directed to the Affirmative Action Officer.

ABSTRACT

Three lead-zinc mineralized areas of northern Arkansas were selected to study the effect of mineralization on ground water chemistry. The Ponca area has the largest amount of lead sulfide mineralization, the Zinc area has a significant amount of zinc silicate and zinc sulfide; whereas, the Rush area has zinc carbonate and zinc sulfide. A total of 143 samples were collected from these areas and analyzed for general water chemistry parameters including heavy metals.

The water quality of the area is generally good; however, a few springs exceed the drinking water standards for ammonia, nitrate, iron, manganese and lead. The surface temperatures and subsurface temperatures (determined from silica geothermometry) do not indicate any significant geothermal heating of these spring waters. Geochemical exploration using ground water chemistry, especially lead, appears to be very useful in outlining these lead-zinc mineralized areas; however, location of individual deposits using ground water chemistry does not appear to be promising.

ACKNOWLEDGEMENTS

The work upon which this publication is based was supported in part by funds provided by the U. S. Department of the Interior, through the Water Resources Research Center at the University of Arkansas under Project A-055-ARK, as authorized by the Water Research and Development Act of 1978 (P.L. 95-467).

Much of the field and laboratory work was carried out by John Bales, T. F. Dilday, III and Lawrence Smith.

The cooperation and assistance of the National Park Service for work in the Ponca and Rush areas is also gratefully acknowledged.

I gratefully acknowledge the assistance of Jean Corn, Alice Gamache, Pauline Mueller and Gloria Wood in the preparation of this report. Without their diligence this report would not have been completed.

i

TABLE OF CONTENTS

Page

Acknowledgements	i
List of Tables	iii
List of Figures	iv
Introduction	1
General Geology	9
Methodology	12
Water Quality	15
Comparisons of Water Chemistry	34
Geochemical Exploration	38
Geothermometry	44
Conclusions	45
References	46

.

.

LIST OF TABLES

																								Page
Table	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
Table	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
Table	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
Table	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
Table	5		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
Table	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
Table	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
Table	8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
Table	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	31
Table	10)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
Table	11		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ·	•	•	.•	•	36
Table	12) -	•	•	•	•	٩	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	41
Table	13	}	•		•		•	•							•		•	•	•	•	•	•	•	42

-

LIST OF FIGURES

																						Page
Figure	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Figure	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
Figure	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39

.

•

.

INTRODUCTION

The north-central part of the Ozark Mountains, Arkansas is highly mineralized with potentially commercial amounts of zinc, and associated lead and cadmium. Significant amounts of zinc and lead have been produced in the Ponca, Rush and Zinc areas of Arkansas in the past. There is a paucity of published ground water chemical (especially trace metals) data for this region, especially considering the number of people dependent upon ground water for home use. The ground water of this region issuing from springs, flows through fractures and solution-enlarged fractures in the carbonate rocks. Springs were sampled in this study (Fig. 1 and Table 1) because they represent ground water uncontaminated by plumbing which is not the case for well water samples.

The purpose of this study was threefold:

- (1) To obtain baseline ground water quality (especially trace metal) data for the area and evaluate the usefulness of the water for homes.
- (2) To determine the potential of hydrogeochemical prospecting for the Mississippi-Valley Type zinc and lead deposits in the Ozark Region.
- (3) To use silica geothermometry to obtain subsurface temperatures of the ground water that issues as springs in the mineralized areas.

Figure 1. Location of the lead-zinc mineralized area of northwestern Arkansas (lined area). Springs were sampled from the three dark rectangular areas -- Ponca, Rush and Zinc.

	Loca	tion							
Sample			Town-		·	•	Min."	Туре	F
Number	Quarter Secs	. Sec.	ship	Range	Quad	County	in ft.	of ore	Formation
NA 1	SEYSEZSWZNWZ	i 27	17N	15W	Cozahome	Marion	8300	Zn-S	Everton
NA 2	SELANWLISWLISEL	29	17N	15W	Cozahome	Marion	1000	Zn-S	Boone
NA 3	NWANEANWANEA	15	17N	15W	Cozahome	Marion	2000	Zn-S	Everton
NA 4	SWANEANEASWA	10	17N	15W	Rea Valley	Marion	1200	Zn-S, CO ₃	Everton
NA 5	NW4SW4NW4NE	; 11	17N	15W	Rea Valley	Marion	1000	Zn-S	Everton
NA 6	NEYSWYNEYSE	10	17N	15W	Rea Valley	Marion	1500	Zn-S, CO ₃	Everton
NA 7	SELSELSELNEL	9	17N	15W	Cozahome	Marion	1500	$Zn-S$, CO_3	Everton
NA 8	NEYSEYNEZNEZ	9	17N	15W	Cozahome	Marion	1500	Zn-S, COğ	Everton
NA 9	NEYSEZSEZNEZ	4	17N	15W	Cozahome	Marion	1000	Zn-S	Everton
NA10	SELSWLSELNEL	4	17N	15W	Cozahome	Marion	1500	Zn-S	Everton
NATT	NEINEISWINEI	6	17N	15W	Cozahome	Marion	5000	Zn-S	Powell
NA12	NELSWLSELSEL	36	18N	16W	Cozahome	Marion	2500	Zn-S	Everton
NA13	NEWNWSSWSE	15	17N	15W	Cozahome	Marion	4500	Zn-CO3	Boone
NA14	NWSSWSNESNWS	20	17N	15W	Cozahome	Marion	2700	Zn-S	Everton
NA15	NW4NW4SW4SE4	28	18N	16W	Yellville	Marion	18500	Zn-S	Everton
NA16	SW4SE4SE4NW4	8	16N	22W	Ponca	Newton	4900	Pb-S	Boone
NA17	NEZNWZSEZNWZ	8	16N	22W	Ponca	Newton	5300	Pb-S	Boone
NA18	SWASEANEANWA	8	16N	22W	Ponca	Newton	5600	Pb-S	Boone
NA19	SELSELSELSEL	6	16N	22W	Ponca	Newton	5800	Pb-S	Hale
NA20	SELSELSWLSEL	24	16N	23W	Ponca	Newton	2000	Pb-S Zn-CO3	Everton
NA21	SWINEISEISEI	23	16N	23W	Osage	Newton	2000	Pb-S Zn-CO3	Cane Hill
NA22	SELANELANWLANWL	25	16N	23W	Ponca	Newton	1000	Pb-S Zn-CO ₃	Cane Hill
NA23	SWANWANELSWA	24	16N	23W	Ponca	Newton	1700	Pb-S Zn-CO ₃	Everton
NA24	SELSWLNWLSEL	24	16N	23W	Ponca	Newton	2000	Pb-S Zn-CO3	Everton
NA25	NWANWASWASEL	24	16N	23W	Ponca	Newton	1500	Pb-S Zn-CO ₃	Everton
NA26	NELNELSWLSEL	24	16N	23W	Ponca	Newton	2500	Pb-S Zn-CO ₃	Everton
NA27	SWYSWYSEYSWY	25	16N	23W	Ponca	Newton	2500	Pb-S Zn-CO ₃	Boone
NA28	SWYSEYNEZSEZ	25	16N	23W	Ponca	Newton	4500	Pb-S Zn-CO ₃	Everton

Table 1. Sample location, distance to nearest mineralization, major types of ore, and formation from which the spring issues.

ω

	Lo	ocation	l						
Sample			Town-				Min.*	Туре	
Number	Quarter Sec.	Sec.	ship	Range	Quad	County	in ft.	of ore	Formation
NA20		25	161	2211	Donco	Nouton	2200		Eventer
NAZO		20		230	Punca	Newton	3200	PD-5 ZII-UU3	Eventon
NAJU		20		238	PORCa	Newton	3600	PD-S ZN-CU3	Everton
NAJI	SE4SW4NW4NE4	18		22W	Ponca	Newton	1000	PD-S	
NA32	NEANWANEANWA	25	ION	23W	Ponca	Newton	1500	PD-S Zn-CO3	Boone
NA33	SE ¹ 4NW ¹ 4SW ¹ 4NW ¹ 4	30	16N	22W	Ponca	Newton	4500	Pb-S Zn-CO ₃	Everton
NA34	SEI4SEI4SW4NEI4	3	15N	23W	Boxley	Newton	8000	Pb-S Zn-CO3, Si	Everton
NA35	NWIANWIASWIANEIA	3	15N	23W	Boxley	Newton	7500	Pb-S Zn-CO ₃ , Si	Everton
NA36	NEYSEYNWYNEY	3	15N	23W	Boxley	Newton	6500	Pb-S Zn-CO ₃ , Si	Everton
NA37	NEISWIGNWIGNEIS	3	15N	23W	Boxley	Newton	7000	Pb-S Zn-CO ₃ , Si	Everton
NA38	NWYSEYNWYNEY	3	15N	23W	Boxley	Newton	6500	Pb-S Zn-CO ₃ , Si	Everton
NA39	SEIANWIANWIASEIA	23	19N	18W	Pyatt	Marion	10300	UNK	Everton
NA40	SW4SW4SE4NE4	23	19N	18W	Pyatt	Marion	8800	UNK	Everton
NA41	SEIASWIASWIANWIA	24	19N	18W	Pvatt	Marion	7200	UNK	Everton
NA42	NWIANWIANWIASWIA	24	19N	18W	Pvatt	Marion	7400	UNK	Everton
NA43	SW&NE&SE&SW&	13	19N	18W	Pvatt	Marion	6700	UNK	Everton
NA44	SEFNMESEFNEE	27	19N	18W	Pvatt	Marion	14300	UNK	Everton
NA45	NWLSFLSFLNWL	21	19N	184	7inc	Roone	3900	LINK	Everton
NA46	NEWNEWNEWNEW	21	1 9N	184	7inc	Boone	3500	7n-S Si	Everton
	NELNULSULNUL	16	100	184	7 inc	Boone	0	2n 3 , $3n7n$ -Si	Everton
	CELCELNIJUNEL	20	100	184	7 inc	Boone	2000	2n-51	Everton
		20	160	2311		Nowton	2500	2n-5 $7n-5i$ Ch_{2} Dh_{2}	Eventon
		55	10N 16N	20M	Munipav	Newton	11700	211-31, 003 FD-3	
		U C		220	Munnay	Newton	11700	$\frac{1}{2}$	Fayetteville
		0		22W	Murray	Newton	12000	PD-3 211-603	Fayellevine
NA52	SE4SE4SE4NE4	22		2.3W	Boxley	Newton	8500		Boone
NA53	SWANEANEASWA	30	ION	23W	Ponca	Newton	5500	PD-S Zn-CU3	Everton
NA54	NE4NW4NE4SW4	24	16N	23W	Ponca	Newton	2000	PD-S Zn-CU ₃	Everton
NA55	NEIANWASWANEIA	24	16N	23W	Ponca	Newton	2800	Pb-S Zn-CO3	Everton
NA56	SEISEISEISEISEISEISEISEISEISEISEISEISEIS	25	16N	23W	Osage	Newton	2300	Pb-S Zn-CO3	Boone
NA57	SE¼SE¼SW¼SW¼	10	15N	23W	Boxley	Newton	4000	Pb-S	Boone
NA58	SEYNEYSWYSWY	17	16N	22W	Ponca	Newton	5000	Pb-S	Everton

	_		
Table	1 ((Continued))

	L	ocatior	1						
Sample			Town-				Min."	Туре	
Number	Quarter Secs.	Sec.	ship	Range	Quad	County	in ft.	ofore	Formation
NA59	NEZNEZNEZNEZ	29	15N	23W	Boxley	Newton	8500	Pb-S	Atoka
NA60	NE4SW4NE4SE4	32	15N	23W	Boxley	Newton	17000	Pb-S	Atoka
NA61	NWZNWZSEZSEZ	15	15N	23W	Boxley	Newton	5500	Pb-S	Boone
NA62	SELSELSWLSEL	24	16N	23W	Ponca	Newton	2000	Pb-S Zn-CO3	Boone
NA63	SWZSEZNEZNWZ	8	16N	22W	Ponca	Newton	6100	Pb-S	Everton
NA64	SW4SE4SE4NW4	8	16N	22W	Ponca	Newton	4900	Pb-S	Boone
NA65	NEZNWZNWZNWZ	16	19N	18W	Zinc	Boone	1000	Zn-S, Si	Everton
NA66	SELSELNWLSWL	9	19N	18W	Zinc	Boone	2800	Zn-S, Si	Everton
NA67	NEYSWYSWYNEY	9	19N	18W	Zinc	Boone	5000	Zn-S, Si	Everton
NA68	SELSELSWLSEL	29	19N	18W	Zinc	Boone	700	Zn-S, CO3	Everton
NA69	NEINEISEISEI	29	19N	18W	Zinc	Boone	1000	$Zn-S$, CO_3	Everton
NA70	SWIASWIANWIANWIA	33	20N	18W	Zinc	Boone	11100	Zn-CÓ3	Everton
NA71	SELSELNELNEL	33	20N	18W	Zinc	Boone	8500	Pb-S	Cotter
NA72	NEYSEYNEYNEY	5	19N	18W	Zinc	Boone	10000	Zn-CO3	Boone
NA73	SELSELNWLSWL	4	19N	18W	Zinc	Boone	7500	Zn-S	Boone
NA74	NWZSEZNWZSWZ	4	19N	18W	Zinc	Boone	8000	Zn-S	Boone
LS 1	NEIANEIANWANWA	13	16N	16W	Maumee	Searcy	2300	Zn-S	Everton
LS 2	NW4SW4SE4SE4	17	16N	15W	Cozahome	Searcy	500	Zn-S	Boone
LS 3	SELSELANWANWA	1	16N	16W	Maumee	Searcy	4000	Zn-Si	Boone
LS 4	NEYNEYSWYSWY	36	17N	16W	Maumee	Marion	5300	Zn-Si	Everton
LS 5	NEIANEIASEIANWIA	1	16N	16W	Maumee	Searcy	3000	Zn-Si	Everton
LS 6	NEISEINWISEI	36	17N	16W	Maumee	Marion	3000	Zn-Si	Boone
LS 7	SEIANWIANEIASEIA	31	17N	15W	Cozahome	Marion	2500	Zn-S	Everton
LS 8	NEIANEIASWIASWIA	32	17N	15W	Cozahome	Marion	2500	Zn-S	Boone
LS 9	NWISEIANWIANWIA	30	17N	15W	Cozahome	Marion	7000	Zn-S	Boone
LS10	SELSELNWANWA	30	17N	15W	Cozahome	Marion	6800	Zn-S	Boone
LSII	NWASELANWASEL	19	17N	16W	Maumee	Marion	1700	Zn-S	Everton
LS12	SEIANEIASWIASWIA	21	17N	16W	Maumee	Marion	1000	Pb-S	Boone

ப

Table 1 (Continued)

	Loc	ation							
Sample			Town-				Min.*	Туре	
Number	Quarter Secs.	Sec.	ship	Range	Quad	County	in ft.	of ore	Formation
LS13	NWANEASWANEA	6	16N	15W	Cozahome	Searcy	500	Zn-S	Everton
LS14	NW4SE4SW4NE4	6	16N	15W	Cozahome	Searcy	0	Zn-S	Everton
LS15	SWANEASWASEA	17	17N	16W	Maumee	Marion	6700	Zn-S	Everton
LS16	SWANEANWANEA	20	17N	16W	Maumee	Marion	5800	Pb-S	UNK
LS17	SWYSWYSEYSEY	24	17N	17W	Maumee	Marion	2200	UNK	Boone
LS18	SEYSMYNEYNEY	23	17N	17W	Maumee	Marion	2000	UNK	Boone
LS19	NW4SW4NW4NE4	11	17N	15W	Rea Valley	Marion	1000	Zn-S	Everton
LS20	SEYSEYNWYSWY	9	19N	18W	Zinc	Boone	2800	Zn-S, Si	Everton
LS21	SELSELSELNEL	22	15N	23W	Boxley	Newton	8500	Pb-S	Everton
LS22	SW4NE4SW4SE4	24	16N	23W	Ponca	Newton	2000	Pb-S Zn-CO3	Boone
LS23	SWIANWIANEIASWIA	24	16N	23W	Ponca	Newton	1700	Pb-S Zn-CO ₃	Everton
LS24	SELSELSELSEL	6	16N	22W	Ponca	Newton	5800	Pb-S	Everton
LS25	NEYNEYSWYSEY	24	16N -	23N	Ponca	Newton	2500	Pb-S Zn-CO3	Everton
LS26	SEYNEYSWYSWY	17	16N	22W	Ponca	Newton	5000	Pb-S	Hale
LS27	SEYSWYSWYNEY	35	16N	23W	Osage	Newton	2500	Zn-Si, CO ₃ Pb-S	Everton
LS28	SWYSEYSWYSWY	18	19N	17W	Pyatt	Marion	3000	UNK	Boone
LS29	NWYSEYSWYNWY	19	19N	17W	Pyatt	Marion	1000	UNK	Everton
LS30	SEYNEZSWANEZ	19	19N	17W	Pyatt	Marion	2000	UNK	Everton
LS31	NEZNEZNWZSWZ	20	19N	18W	Zinc	Marion	700	Zn-S	Everton
LS32	SEYSWYSEYSEY	19	19N	18W	Zinc	Marion	1500	Zn-S	Everton
LS33	SEYNEYSEYSEY	19	19N	18W	Zinc	Marion	700	Zn-S	Everton
LS34	SWANWANEASEA	24	19N	19W	Zinc	Marion	2000	Zn-S	Boone
LS35	NWANEANWASWA	19	19N	18W	Zinc	Marion	300	Zn-S	Everton
LS36	NEYNWYNWYNWY	13	19N	18W	Pyatt	Marion	8200	Zn-S, Si	Everton
LS37	NW&SE&SW&SW&	12	19N	18W	Pyatt	Marion	7600	Zn-S, Si	Everton
LS38	SEIASWIASEIANWIA	5	19N	17W	Pyatt	Marion	4300	Zn-S	Boone
LS39	SW4SE4NE4SW4	32	20N	17W	Pyatt	Marion	1100	Zn-S Pb-S	Everton

•

•

Table 1 (Continued)

Sample			Town-				Min.*	Туре	
Number	Quarter Secs.	Sec.	ship	Range	Quad	County	in ft.	<u>of ore</u>	Formation
1540	CELCELCHILCEL	22	201	1711		Maurian	2000	7. 6	F .
		32		1/₩	Pyatt	Marion	2000	Zn-S	Everton
L341		4	19N	1/W	Pyatt	Marion	3600	$PD-S$, CO_3	Everton
L342		4	191	1/W	Pyatt	Marion	5000	Zn-S	Boone
L543	NW43E43W4NE4	29	20N	I/W	Pyatt	Marion	1700	$2n-CO_3$	Everton
L544	NWANEASWANWA	28	20N	I/W	Pyatt	Marion	4000	Zn-CO3	Everton
LS45	NW4SE4NW4SW4	28	20N	17W	Pyatt	Marion	3600	Zn-CO ₃	Everton
LS46	NW4NW4NE4SW4	29	20N	17W	Pyatt	Marion	1000	Zn-S,Si,CO ₃ Pb-S	Powell
LS47	SW4SE4SW4SW4	26	20N	18W	Pyatt	Marion	3000	Pb-S	Cotter
LS48	NWZSWZNEZNEZ	36	20N	19W	Zinc	Boone	1500	Zn-CO3	Powell
LS49	SWASWANEANEA	36	20N	19W	Zinc	Boone	1500	Zn-CO3	Cotter
JB50	SEYNEZSEZSEZ	2	16N	16W	Maumee	Searcy	1500	Zn-S	Boone
JB51	NELSELNELNEL	11	16N	16W	Maumee	Searcy	500	Zn-S	Everton
JB52	NWYSEYSWYSEY	4	17N	16W	Yellville	Marion	3300	UNK	Boone
JB53	NWIANWIASWIASEIA	4	17N	16W	Yellville	Marion	2300	UNK	Boone
JB54	NEZSWZSEZNWZ	9	17N	16W	Yellville	Marion	1800	UNK	Boone
JB55	SWYSWYNEYNEY	9	17N	16W	Yellville	Marion	3600	UNK	Boone
JB56	NW4SE4SE4NE4	15	17N	16W	Maumee	Marion	7200	UNK	Everton
JB57	NW4SE4SE4NE4	15	17N	16W	Maumee	Marion	7200	UNK	Everton
JB58	NWIANWIANWIASWIA	24	17N	16W	Maumee	Marion	6300	UNK	Everton
JB59	NEIANWANEIANEIA	25	17N	16W	Maumee	Marion	7600	UNK	Boone
JB60	NW14SE14SE14NW14	24	17N	16W	Maumee	Marion	8100	UNK	Boone
JB61	NWASEANEANEA	3	16N	16W	Maumee	Searcy	3000	Zn-Si, CO2	Powell
JB62	NW4SW4NE4SW4	21	16N	16W	Maumee	Searcy	7600	Zn-S	Boone
JB63	NEIANWASWASWA	30	17N	16W	Maumee	Marion	6600	UNK	Boone
JB64	NWANEASEANWA	25	17N	17W	Maumee	Marion	7500	UNK	Everton
JB65	SWIASWIASEIASFIA	24	17N	17W	Maumee	Marion	2100	UNK	Boone
JB66	NE ¹ áNW ¹ áNW ¹ áSW ¹ á	24	17N	17W	Maumee	Marion	3000	UNK	Everton

Table 1 (Continued)

	Loc	ation					*			
Sample		_	Town-	_	a 1	_	Min.	Туре		
Number	Quarter Secs.	Sec.	ship	Range	Quad	County	in ft.	of ore	Formation	
JB67	SEYNEYNEYNWY	24	17N	17W	Maumee	Marion	3600	UNK	Boone	
KS68	NE4SW4NE4NW4	10	15N	23W	Boxley	Newton	7800	Pb-S	Boone	
KS69	SELSWANELNWA	15	15N	23W	Boxley	Newton	3800	Pb-S	Boone	
KS70	NEIANEIASEIASEIA	4	15N	23W	Boxley	Newton	9600	Pb-S	Cane Hill	
KS71	NWIANWIASEIASEIA	25	16N	23W	Ponca	Newton	3200	Pb-S Zn-CO3	Everton	
KS72	SELANWANWANEL	18	16N	22W	Ponca	Newton	600	Pb-S	Everton	

.

.

* Distance to known mineralization

GENERAL GEOLOGY

The rocks of northern Arkansas are mainly horizontal limestone, dolostone, shale and sandstone, and range in age from Pennsylvanian to Ordovician. Figure 2 shows the stratigraphic columns for the region; however, the oldest exposed rocks in the area are the Cotter and Jefferson City Dolomites. Springs in this area are usually located in the carbonate rocks. A brief summary of each of the three mineralized areas studied in this project are given below.

Ponca Area

Spring samples collected from the Ponca-Boxley mining district are simply referred to as from the Ponca area in this report. The Ponca-Boxley district lies in the valley of the upper Buffalo River in northwestern Newton County, Arkansas. Most of the deposits occur in the northwest side of the river and line up in a general northeast-southwest direction along the Ponca lineament (Smith, 1978 and McKnight, 1935). The ores are chiefly zinc carbonate and limestone. Some galena deposits also occur in the basal clay of the Batesville sandstone. Zinc silicate is present but rare. Most of the deposits are localized along fractures or faults. The production of the district has been about 2,500 tons of zinc concentrates and 1,500 tons of galena concentrates.

System		Formation	Member				
NA		Hartshorne ss. Atoka îm.					
SYI.VANI	wo a	Bloyd sh.(undiff.)	Kessier ls. Brentwood ls.				
LENN	Mori Gro	Hale fm.(undiff.)	Prairie Grove Cane Hill				
MISSISSIPPIAN		Pitkin ls. Fayetteville sh. Batesville ss. Ruddell sh. Moorefield fm. Boone fm. Chattanooga sh.	Wedington ss. Hindsville ls. Sylamore ss.				
DEVONIAN		Penters chert					
SILURIAN		Lafferty ls. St. Clair ls. Brassfield ls.)					
		Cason sh.					
	:	Fernvale ls.					
	:	Kimmswick ls.					
	-	Plattin Is.					
AN		Joachim dol.					
		St. Peter ss.	······································				
NO (Everton fm.					
ORI		Poweil dol.	•				
	·	Cotter dol.					
		Jefferson City dol.	······································				
	1	Roubidoux fm.					
	-	Gasconade-Van Buren fm.(undiff.)	Gunter				
CAMBRIAN		Eminence-Potosi im.(undiff.)					
	-	Pre-Potosi (undiff)					

Figure 2. Generalized stratigraphic column for northwestern Arkansas. From Caplan (1957).

Rush Area

The Rush area described here includes the Maumee-Water Creek and Rush Creek districts which are located in Marion and Searcy counties. The Rush Creek district has been the most productive district in northern Arkansas. Most of the ores in the Rush area are the oxidized ore smithsonite and primary sphalerite. About 75-80% of more than 29,500 tons of concentrates being carbonates and the remainder sphalerite. The ore occurs in limestone, dolomite and dolomitic sandstone in the Everton Formation and in the Rush district ore also occurs in a discontinuously dolomitized limestone whose top is 160 feet below the St. Peter sandstone. The mineralization is thought to be generally associated with faulting (McKnight, 1935).

Zinc Area

The Zinc area includes the Zinc, Dodd City and West Sugarloaf Creek - Malden Creek districts located in Boone and Marion Counties. Most of the mineralization occurs in a silicified limestone and dolomite of the Everton, some in the Cotter and Powell dolomites and rare mineralization in the St. Joe limestone. In the Zinc district most of the ore is zinc silicate instead of carbonate and some sphalerite. The Dodd City district ores include sphalerite, smithsonite, calamine and some galena. Although the West Sugarloaf - Malden Creek area ores are only zinc sulfide and carbonate located in the Powell and Cotter dolomites, only two springs were located in this district. Thus,

the unique aspect of the Zinc area is the preponderance of zinc silicate mostly located in the Everton.

METHODOLOGY

Temperature, pH, conductivity and total alkalinity as mg/l CaCO₃ were determined in the field on raw water samples. A one liter sample and a 500 milliliter sample were filtered through a 0.45 micron pore-size membrane using a freon-pressurized unit. The one liter sample was acidified with three milliliters of 1:1 nitric acid for cation analyses in the laboratory. The 500 milliliter sample was refrigerated for anion, silica and ammonia analyses also at the laboratory.

U.S. Environmental Protection Agency (EPA, 1974) Standard Methods (APHA, 1971) and Hach Chemical Company (1976) methods were used for analyses. See Table 2 for summary of the analytical methods used. Several springs were sampled two times. The analytical results for these samples include not only analytical variability but also collection and natural variability as well. The replicate samples are listed below.

NA	16	Ξ	NA	64
NA	18	Ξ	NA	63
NA	20	=	NA	62
NA	5	=	LS	19
NA	19	=	LS	24
NA	26	=	LS	25
NA	29	=	LS	22

	5
Parameter	Method
Temperature	thermometer
рН	pH meter
Specific Conductivity	conductivity meter
Total alkalinity	titration to methyl red end point with 0.02N sulfuric acid (APHA)
NO ₃	colorimetry cadmium reduction (HACH)
NH4	colorimetry phenate and nesslerization during early analyses*(APHA)
PO ₄ (ortho, dissolved)	colorimetry ascorbic acid (APHA)
S0 ₄	colorimeter turbidimetric (APHA)
C1	colorimetry Mercuric nitrate (APHA)
F	colorimetry SPADNS
Si0 ₂	colorimetry heteropoly blue (APHA)

Table 2. Summary of analytical methods. The method used is indicated in (). If no (), then the method is the same as or slightly modified EPA method.

•

*Nesslerization method used for samples collected on or before 11/1/1981.

Table 2 (Continued)

Parameter	Method									
Ca, Mg, Ba	AAS* C ₂ H ₂ -N ₂ O flame, CsCl added									
Sr	flame emission C ₂ H ₂ -N ₂ O flame, CsCl added									
Na, K, Li	flame emission H ₂ -air flame, CsCl added									
Нд	flameless AAS									
Zn, Pb, Fe, Cu, Ni, Co, Mn, ± 10%	C ₂ H ₂ -air flame chelation - extraction method of Nix and Goodwin, 1974.									

·

.

.

*ASS = atomic absorption spectrometry

NA	49	Ξ	LS	27
NA	52	=	LS	21
NA	58	Ξ	LS	26
NA	66	=	LS	20
LS	17	=	JB	65

Many of these samples have values mostly within analytical error. In a few cases, however, significantly different values are obtained. Considering that the samples were usually collected in different seasons, it is possible that the differences are simply natural variability.

Data for the individual samples are presented in Tables 3-8. Selected samples were selected for Ba, F and Hg determinations (Table 9). A total of 47 spring samples including one well sample were collected in the Ponca area, 52 spring samples were collected in the Rush area and 42 spring samples were collected in the Zinc area. The one well sample was collected for comparative purposes and is not used for any interpretations or included in any discussions.

WATER QUALITY

The ground water from the springs of the northern part of Arkansas is classed as calcium bicarbonate water with a total hardness value of about 170 mg/l as $CaCO_3$ on the average. Generally the spring water of this area is of good quality; however, several springs do exceed drinking water limits (see Table 10) for the

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as mg/l CaCO ₃	рН	PO4 as P ppm	Cl ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	504 ⁼ ppm	NO ₃ as N ppm
NA 16	3/29/81	13	257	160	7.6	.07	3.0	.04	6.7	< 5.0	.11
NA 17	3/29/81	14	327	190	7.6	<.01	3.0	.15	4.9	17.2	.75
NA 18	3/29/81	14	305	190	7.6	<.01	2.7	.08	5.2	9.0	.60
NA 19	3/29/81	12	208	125	7.8	.02	4.3	1.56	6.4	19.0	.51
NA 20	3/29/81	12	126	80	7.5	<.01	2.4	1.08	3.1	9.0	.17
NA 21	5/ 9/81	16	182	135	7.2	.06	2.4	<.01	5.1	< 5.0	1.30
NA 22	5/ 9/81	15	202	110	6.6	<.01	3.8	<.01	4.6	21.0	.06
NA 23	8/29/81	18	410	310	76	< 01	19	97	46	12.0	11
*NΔ 2Λ	8/29/81	21	410	255	7.0	< 01	2 4	31	4.0	23 5	
NA 24	8/29/81	18	271	70	75	07	11	24	5 2	< 5 0	< 02
NA 26	8/29/81	18	376	110	7 2	.07	1 2	17	53	< 5.0	.30
NA 27	8/29/81	18	373	260	74	< 01	1.6	.22	5.2	8.0	.45
NA 28	8/29/81	17	400	300	7.3	<.01	1.2	.20	5.8	< 5.0	.04
NA 29	8/29/81	17	313	220	7.3	<.01	2.3	.22	5.4	5.5	.35
NA 30	8/29/81	16	366	.240	7.7	<.01	1.1	.02	5.4	< 5.0	.40
ΝΔ 31	8/30/81	26	361	220	8.0	< 01	22	75	6.8	12 0	02
	8/30/81	19	336	200	75	< 01	0.8	28	53	< 5 0	.04
	8/30/81	17 5	316	205	7 2	< 01	13	18	5.7	< 5.0	.17
NA 34	8/30/81	19	291	215	77	< 01	1.6	.13	6.0	< 5.0	<.02
NA 35	8/30/81	21	346	215	74	47	0.6	.05	5.7	< 5.0	<.02
NA 36	8/30/81	19.5	231	150	7.1	<.01	1.2	<.01	6.1	< 5.0	<.02
NA 37	8/30/81	17	215	130	7.1	<.01	2.1	.04	6.3	< 5.0	<.02
NA 38	8/30/81	16.5	216	140	7.1	<.01	1.8	.04	6.4	< 5.0	.02

•

Table 3. General Water Chemistry of Ponca Area

•

				•	
Table	3 ((Continued)			

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as mg/l CaCO ₃	рН	P04 as P ppm	Cl ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	S04 ppm	NO ₃ - as N ppm
	0 (1 0 (0)	10	207	170	 	00	1 1	02	6.0	< 5.0	02
NA 49	9/19/81		29/	170	1.3	.09	1.1	.02	υ.υ Ε 9	< J.0 6 7	.02
NA 50	9/19/81	10.5	412	240	7.6	.01	0.9	.10	5.0	13 5	.04
NA 51	9/19/81	15	372	205	/.0	.01	1.0	.24	0.4	13.5	.04
NA 52	9/20/81	14	275	145	7.1	.01	1.4	.14	7.6	5.2	.13
NA 53	9/20/81	15	312	165	7.7	.02	0.9	.07	5.7	< 5.0	.04
NA 54	9/20/81	16	372	. 215	7.6	.01	0.8	.03	6.0	< 5.0	.10
NA 55	9/20/81	17.5	428	260	7.7	.01	1.5	.07	5.6	< 5.0	.07
NA 56	9/20/81	18	447	250	7.2	.04	0.8	<.01	6.5	< 5.0	.15
NA 57	9/20/81	17.5	359	210	7.4	<.01	1.5	<.01	7.6	< 5.0	.14
NA 58	9/20/81	15	218	135	7.3	<.01	1.3	<.01	7.1	< 5.0	.14
NA 50	10/ 0/81	19	13	25	5 5	< 01	16	10	78	< 5.0	90
	10/ 9/81	16 5	45	15	5.2	< 01	1.0	.15	67	< 5.0 5.0	. 50
NA 61	10/ 9/81	10.5	358	200	73	< 01	1.1	< 01	5 4	5.0	34
	10/ 9/81	15 5	383	220	7.2	< 01	0.9	<.01 07	5.7	17 7	38
NA 63	10/ 9/81	14 5	394	230	7.6	< 01	1 4	.07	6 2	16.0	20
NA 64	10/ 9/81	15.5	259	165	7.0	<.01	1.5	.02	7.1	< 5.0	.05
			-								
LS 21	5/24/82	14.0	257	120	7.2	.05	2.5	<.01	4.9	18.2	.56
LS 22	5/24/82	15.5	298	175	7.7	.02	1.6	<.01	4.5	9.0	.46
LS 23	5/24/82	14.0	239	130	7.8	.01	0.9	<.01	4.7	8.5	.08
LS 24	5/24/82	16.0	358	150	7.5	.02	2.1	.07	4.4	14.8	.91
LS 25	5/24/82	15.0	350	1.90	7.6	.04	0.7	<.01	4.4	17.2	.51
LS 26	5/24/82	17.0	219	110	7.7	.05	1.7	.03	5.7	6.2	.23
LS 27	5/24/82	15.0	254	130	7.5	.26	2.5	.05	4.6	12.2	.20
				•							
				•							

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Al <u>k</u> a- linity as mg/l CaCO3	рН	PO4 ³ as P ppm	Cl ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	504 ⁼ ppm	NO ₃ - as N ppm
KS 68	1/27/83	12.0	139	70	6.9	.19	2.8	<.01	4.6	18.2	.01
KS 69	1/27/83	12.0	220	155	7.5	.01	2.8	<.01	3.4	12.5	.24
KS 70	1/27/83	12.0	288	230	7.0	.17	1.8	<.01	5.8	9.5	.04
KS 71	1/27/83	12.0	316	250	7.8	.14	0.7	<.01	4.4	8.5	.06
KS 72	1/27/83	8.0	147	85	-	<.01	1.8	.02	4.8	9.5	.14

.

-

Table 3 (Continued)

* Well Sample

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as mg/l CaCO3	рН	PO4 ⁻³ as P ppm	Cl ⁻ ppm	NH4 as N ppm	SiO ₂ ppm	SO4 ⁼ ppm	NO ₃ - as N ppm
NA 1	3/18/81	10	254	180	7.9	.04	3.5	.06	6.0	< 5.0	.33
NA 2	3/18/81	13	151	100	7.9	.03	5.5	.04	5.8	< 5.0	.41
NA 3	3/18/81	11	259	175	8.3	.02	4.4	.06	5.6	8.5	.08
NA 4	3/18/81	11	310	215	7.7	<.01	4.5	.09	5.4	< 5.0	.13
NA 5	3/19/81	15	422	280	8.2	.04	2.4	.18	5.1	10.0	.08
NA 6	3/19/81	16	472	305	7.6	.03	2.5	.10	5.4	< 5.0	.04
NA 7	3/19/81	13.5	194	130	7.9	.16	2.9	.05	6.3	< 5.0	.13
NA 8	3/19/81	13	546	410	7.8	<.01	2.4	.50	4.4	6.7	.16
NA 9	3/19/81	11	397	295	7.8	<.01	4.2	.16	4.4	10.0	.29
NA 10	3/19/81	11.5	445	300	7.6	.03	3.3	.18	4.5	12.2	.31
NA 11	3/19/81	11.5	432	270	7.4	.10	4.2	.16	5.9	< 5.0	.20
NA 12	3/19/81	14	348	200	7.4	.10	4.0	.08	7.4	< 5.0	1.20
NA 13	3/19/81	8.5	146	90	8.1	<.01	4.9	.09	6.0	< 5.0	.35
NA 14	3/19/81	13	136	70	7.2	<.01	10.2	.09	5.9	< 5.0	.40
NA 15	3/19/81	13.5	351	225	7.6	.11	3.7	.09	7.7	< 5.0	.60
LS 1	5/ 6/82	14.0	344	190	7.0	<.01	2.0	.02+	6.1	8.5	.43
LS 2	5/ 6/82	14.0	293	170	7.2	<.01	1.6	.04+	6.7	10.6	<.03
LS 3	5/ 6/82	15.0	326	170	7.6	<.01	1.6	.02+	5.9	8.5	.36
LS 4	5/ 6/82	14.0	368	205	7.1	<.01	2.5	.02	5.5	12.0	
LS 5	5/ 6/82	14.5	218	95	7.1	<.01	2.0	.02+	6.4	10.6	
LS 6	5/ 6/82	14.0	323	190	7.3	<.01	6.0	.02	5.7	8.5	.43
LS 7	5/ 6/82	14.0	427	210	6.9	<.01	22.5	.02	6.7	6.2	.12
LS 8	5/ 6/82	14.0	293	165	6.8	<.01	7.3	.02	6.9	7.5	.13

.

Table 4.	General	Water	Chemistry	of	Rush A	Area
----------	---------	-------	-----------	----	--------	------

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as Mg/l CaCO ₃	рН	PO4 ³ as ^P ppm	C1 ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	S0 ₄ ppm	NO ₃ as N ppm
LS 9 LS 10 LS 11 LS 12 LS 13 LS 14 LS 15 LS 16 LS 17 LS 18	5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82 5/ 7/82	12.5 13.5 14.0 10.5 14.5 15.0 14.5 16.0 14.5 14.5	250 320 427 222 348 342 460 446 489 476	115 105 210 100 160 140 240 180 235 210	7.5 7.9 7.4 7.6 7.4 7.6 7.3 7.6 7.1 7.3	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	9.1 34.9 4.7 3.3 10.9 1.1 2.0 1.6 13.1 15.8	$.02^{+}$ $.02^{+}$ $.02^{+}$ $.02^{+}$ $.01^{+}$ $.02^{+}$ $.03^{+}$ $.02^{+}$ $.04^{+}$	6.2 6.9 6.5 7.1 6.2 5.5 6.7 6.1 7.9 6.9	11.2 12.0 8.5 10.6 13.5 16.4 10.6 4.3 14.8 6 2	.30 .41 <.03 <.03 .36 .20
LS 19 JB 50 JB 51	5/ 7/82 5/ 7/82 1/ 8/83 1/ 8/83	17.0 15.5 11.0 7.0	490 281 204	235 210 105	7.8 7.8 6.9 8.0	<.01 <.01 .05 .05	13.8 1.1 1.6 1.4	.04 .04 ⁺ .16 .06	5.7 4.9 4.7	9.5 8.5	.46 .03 .16 .06
JB 52 JB 53 JB 54 JB 55 JB 56 JB 56 JB 57 JB 58	1/15/83 1/15/83 1/15/83 1/15/83 1/15/83 1/15/83 1/15/83	11.0 12.0 12.0 14.0 10.0 11.0 12.0	377 287 402 359 150 146 173	270 230 275 240 105 105 135	7.2 7.0 7.3 7.3 8.2 8.0 7.7	<.01 <.01 <.01 <.01 <.01 <.01 <.01	3.0 9.1 0.9 3.0 4.2 4.9 4.4	<.01 <.01 <.01 <.01 <.01 .03 <.01	5.8 6.0 5.6 6.2 4.2 5.0 4.6	7.6 4.2 10.1 6.2 4.2 6.2 8.5	.03 .23 1.36 .16 .40 .29
JB 59 JB 60	1/16/83 1/16/83	9.0 9.0	277 218	185 155	7.3 8.2	<.01 <.01	9.1 3.3	<.01 <.01	-	7.6 12.5	.45 .13

Table 4 (Continued)

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as Mg/l CaCO ₃	рН	PO <mark>4</mark> 3 as P ppm	Cl- ppm	NH4 as ⁴ N ppm	SiO ₂ ppm	SO4= ppm	NO ₃ - as N ppm
JB 61	1/16/83	11.0	356	280	7.8	<.01	3.5	<.01	-	4.2	2.66
JB 62	1/16/83	12.0	313	265	7.9	.02	2.1	<.01	-	9.5	.39
JB 63	1/16/83	13.0	177	130	7.4	<.01	2.6	<.01		6.2	
JB 64	1/16/83	13.0	304	200	7.6	.05	6.5	<.01	-	8.5	1.68
JB 65	1/16/83	14.0	337	175	7.4	<.01	9.1	<.01	-	9.5	2.91
JB 66	1/16/83	13.0	530	205	7.1	.17	45.1	<.01	-	55.0	20.23
JB 67	1/16/83	13.0	426	255	7.3	<.01	27.9	.05	-	8.5	1.93

•

•

•

Table 4 (Continued)

⁺Analysis on acidified (HNO₃) samples.

.

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as mg/l CaCO ₃	рН	PO4 as P ppm	Cl ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	SO ₄ = ppm	NO3 ⁻ as N ppm
NA 39 NA 40 NA 41 NA 42 NA 43 NA 43 NA 44 NA 45 NA 45 NA 46 NA 47 NA 48	9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81 9/ 7/81	19.5 19 16 17 18.5 17 17 16.5 17 15.5	438 394 389 348 350 510 429 385 284 286	220 220 220 190 200 280 235 230 150 165	7.2 7.4 7.3 7.0 7.8 7.1 7.0 7.0 7.1 7.6	.03 .03 .02 .03 <.01 <.01 <.01 <.01 <.01 <.01	2.2 6.2 2.1 1.5 1.1 1.1 4.1 1.5 2.0 2.8	1.53 .42 .14 .14 .04 .87 .66 .98 2.34 1.48	6.1 6.4 6.0 6.3 6.4 6.4 7.5 7.0 6.7 7.5	9.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	.04 .20 1.10 1.90 .30 .40 2.20 .70 .70 1.40
NA 65 NA 66 NA 67	10/31/81 10/31/81 10/31/81	15 15 15	294 294 168	150 170 90	7.7 7.4 7.7	<.01 <.01 .01	1.3 2.0 1.3	.29 .32 .32	7.1 6.4 6.0	< 5.0 < 5.0 < 5.0	.23 .04 <.02
NA 68 NA 69 NA 70 NA 71 NA 72 NA 73 NA 74	11/ 1/81 11/ 1/81 11/ 1/81 11/ 1/81 11/ 1/81 11/ 1/81 11/ 1/81 11/ 1/81	15.5 16 15 15 15.5 15.5 14	428 443 240 422 240 312 264	240 250 145 250 130 135 140	6.8 7.1 7.4 7.3 7.3 7.3 7.3	.01 <.01 <.01 <.01 <.01 <.01 .05	1.8 2.2 2.5 1.4 2.0 1.5 1.7	.39 .44 .33 .44 .46 .26 .15	6.4 7.1 6.2 7.0 5.8 5.8 5.5	< 5.0 < 5.0 < 5.0 10.5 < 5.0 < 5.0 < 5.0 < 5.0	.60 <.02 .47 .05 .03 <.02 .04
LS 20	5/ 7/82	13.0	229	120	7.3	<.01	2.0	.02+	6.1	7.6	.06

Table 5.	General	Water	Chemistry	of	Zinc	Area.
----------	---------	-------	-----------	----	------	-------

٠

.

laple 5 (continued)	Tabl	le 5	(Co	ontir	nued)
---------------------	------	------	-----	-------	-------

Sample Number	Collec- tion Date	Temper- ature of Sample °C	Spec. Cond. Normal'd to 25°C	Alka- linity as mg/l CaCO3	рН	PO <mark>4</mark> ³ as P ppm	C1 ⁻ ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	SO4 ⁼ ppm	NO ₃ - as N ppm
LS 28 LS 29 LS 30 LS 31 LS 32 LS 33 LS 34 LS 35 LS 36 LS 37 LS 38	8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82 8/28/82	17.0 18.0 17.0 16.0 15.0 16.0 16.0 16.0 15.0 15.0 15.0	357 410 486 290 340 414 313 307 362 330 374	210 290 285 215 205 260 150 185 210 175 220	7.3 7.2 6.5 6.7 6.7 6.8 7.0 7.1 7.4 6.5	.02 ⁺ .01 ⁺ .01 ⁺ .01 ⁺ .02 ⁺ .02 ⁺ .02 ⁺ .01 ⁺ .01 ⁺	3.8 4.0 3.3 2.0 3.5 6.5 3.0 3.3 2.5 3.8 3.3	<.01* <.01* <.01* <.01* .03* .03* <.01* .02* <.01* <.01*	7.6* 8.2* 8.5* 7.9* 7.6* 7.6* 6.6* 6.8* 7.3* 6.8* 7.3*	4.2+ 6.2+ 7.6+ 7.6+ 8.5+ 6.2+ 7.6+ 11.2+ 4.2+ 4.2+ 4.2+	
LS 39 LS 40 LS 41 LS 42	8/28/82 8/28/82 8/28/82 9/25/82	15.0 16.5 17.0 15.5	313 415 394 383	165 235 235 250	6.8 6.8 7.3 6.8	.01+ .01+ .02+ .02+	2.0 4.3 3.0 3.0	*10. *10.> *10.> *10.>	4.6* 7.6* 7.6* 7.3*	6.2+ 8.5+ 6.2+ 4.2 ⁺	
LS 43 LS 44 LS 45 LS 46 LS 47 LS 48 LS 49 * Analys	9/26/82 9/26/82 9/26/82 9/26/82 9/26/82 9/26/82 9/26/82 is exceeded	15.5 15.0 14.0 17.5 15.0 16.0 16.0 EPA holding	321 258 238 301 552 236 425 time by	160 150 195 315 130 265 several o	7.4 7.8 7.4 7.0 7.3 6.8 days	.07 ⁺ .01 ⁺ .01 ⁺ .01 ⁺ .01 ⁺ .01 ⁺ <.01 ⁺ + Ana	4.3 4.3 0.8 2.3 1.3 4.0 2.0	.07* .01* .03* .03* .03* .02* .04* on acidi	7.0* 6.6* 6.0* 7.0* 6.8* 7.0* 7.6* fied (1	7.6 ⁺ 7.6 ⁺ <4.2 ⁺ 6.2 ⁺ 11.9 ⁺ 8.5 ⁺ 4.2 ⁺ HNO ₃) Sa	 mples

San Nun	nple nber	Zn ppb	РЬ ррЬ	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Co ppb	Cu ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppm
NA	16	6	13	-	28	4	3	10	3	1.9	0.80	49	2.4	0.046
NA	17	4	13	-	18	4	7	10	3	1.5	0.50	65	3.9	0.048
NA	18	<]	<5	-	8	1	3	4	2	1.5	0.64	63	4.0	0.048
NA	19	25	100	-	239	20	33	27	3	1.5	2.00	42	2.2	0.038
NA	20	6	27	-	373	17	14	15	2	1.2	1.00	25	1.7	0.022
NA	21	6	20	-	18	2	11	10	3	1.3	0.40	38	0.9	0.040
NA	22	9	7	-	58	2	7	10	2	2.7	1.20	32	4.9	0.066
NA	23	4	<5	-	<4	<1	3	4	3	1.1	0.66	90	3.7	0.048
*NA	24	275	<5	-	18	.2	3	4	2	1.4	1.05	73	12.5	0.055
NA	25	63	41	-	18	2	14	15	2	0.8	0.64	37	13.1	0.024
NA	26	39	48	-	28	4	18	15	<2	1.1	0.66	73	3.6	0.036
NA	27	13	<5	-	8	2	3	3	<2	1.3	0.90	77	1.5	0.044
NA	28	11	<5	-	18	2	3	<1	<2	0.8	0.60	84	2.0	0.038
NA	29	19	27	-	38	4	18	10	<2	1.6	1.05	53	8.3	0.035
NA	<u>30</u>	11	20	-	8	2	11	4	3	1.6	0.64	71	3.8	0.053
NA	31	7	<5	-	18	20	11	4	3	2.2	1.40	63	7.7	0.100
NA	32	14	່ <5	-	<4	2	7	4	3	0.7	0.74	71	0.6	0.033
NA	33	13	7	-	8	4	11	4	2	1.5	0.66	52	9.7	0.035
NA	34	11	34	-	8	2	18	10	2	1.0	0.40	59	1.1	0.030
NA	35	9	20	-	<4	6	11	4	3	0.9	0.66	53	1.0	0.035
NA	36	17	48	-	18	8	22	15	3	1.4	1.10	43	2.7	0.035
NA	37	9	20	-	8	4	. 11	10	3	1.2	0.80	41	1.4	0.031
NA	38	13	41	-	• 58	8	18	10	3	1.2	1.00	42	1.4	0.031
NA	49	-	-	-	-	-		-	-	2.0	1.10	60	2.4	0.055
NA	50	17	7	-	18	15	· 11	4	3	1.8	0.60	87	3.0	0.145
NA	51	11	13	-	18	15	11	4	3	6.6	1.05	69	6.0	0.165

•

•

Table 6. Metal analyses for Ponca area.

.

.

Table 6(continued)

Sample Number	Zn ppb	РЬ ррЬ	Cd ppb	Fe ppb	Mn PPD	Ni ppb	Со ррь	Cu ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppm
NA 52	20	34	-	28	6	18	10	3	1.3	0.47	55	1.3	0.040
NA 53	52	<5	-	90	Ř		4	13	1.1	0.74	69	1.7	0.042
NA 54	6	<5	-	<4	< <u>1</u>	ż	<i< td=""><td>3</td><td>1.2</td><td>0.57</td><td>79</td><td>1.5</td><td>0.042</td></i<>	3	1.2	0.57	79	1.5	0.042
NA 55		<Š	-	8	<1	ż	<1	3	1.2	0.50	97	1.2	0.044
NA 56	Ż	7	-	8	2	ni	4	3	1.5	0.70	98	2.3	0.055
NA 57	4	<5	-	38	<1	ij	<i></i>	3	1.3	0.33	80	0.7	0.033
NA 58	n	27	-	18	2	18	4	3	0.9	0.57	39	6.5	0.030
NA 59	17	13	-	38	11	14	4	3	1.8	0.50	5	1.2	0.024
NA 60	14	20	-	100	20	14 ·	4	3	0.9	0.44	2	0.5	0.007
NA 61	7	<5	-	8	2	11	4	3	1.0	0.60	78	1.0	0.036
LS 21	8	29	2	9	<3	5	2	<3	1.9	0.56	51	1.9	0.044
LS 22	8	45	2	9	6	8	2	<3	1.9	0.82	52	7.9	0.031
LS 23	8	40	1	6	<3	3	<1	<3	-	0.50	32	11.9	0.019
LS 24	11	34	2	15	57	8	ì	<3	2.2	0.68	71	3.4	0.060
LS 25	6	<4	<]	<3	<3	<3	<	<3	1.4	0.54	72	3.1	0.036
LS 26	2	<4	<1	<3	<3	<3	<1	<3	1.4	0.48	38	6.0	0.272
LS 27	32	34	2	12	5	3	1	<3	2.4	0.96	51	2.2	0.044
KS 68	10	6	2	97	5 ·	10	5	5	1.9	0.57	31	1.3	0.027
KS 69	7	6	2	<6	<4	10	5	5	1.9	0.70	70	1.7	0.064
KS 70	4	<6	<2	<6	<4	<5	<5	<5	2.3	0.74	84	3.4	0.165
KS 71	4	6	2	<6	<4	<5	<5	<5	1.0	0.48	93	1.6	0.047
KS 72	<2	<6	<2	<6	<4	<5	<5	<5	1.0	0.48	32	1.8	0.036

۰.

25

.

Sample Number	Zn ppb	Pb ppb	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Co ppb	Cu ppb	Na ppm	K DDM	Ca ppm	Mg maa	Sr ppm
									• i _i			F F ···	F
NA 1	9	14	-	10	9	<1	8	<2	1.8	0.86	60	2.0	0.041
NA 2	5	14	-	15	5	<]	8	<2	2.2	0.76	52	0.9	0.027
NA 3	9	28	-	10	2	7	13	<2	1.5	0.74	56	4.8	0.038
NA 4	8	14	-	4	3	<]	5	<2	1.7	0.80	60	11.7	0.038
NA 5	26	38	_	36	22	7	18	2	0.9	0.53	76	17.1	0.048
NA 6	41	5	-	17	2	<1	8	<2	0.8	0.66	90	14.3	0.064
NA 7	6	21	-	10	2	<]	8	<2	1.4	0.80	42	1.6	0.031
NA 8	23	<5	-	4	2	<1	8	<2	0.8	0.66	86	34.5	0.058
NA 9	6	8	-	4	2	<]	5	<2	0.8	1.00	53	30.0	0.036
NA 10	1.1	5	-	4	2	<1	8	<2	1.3	0.74	60	32.0	0.036
NA 11	5	<5	-	15.	4	<1	2	<2	1.5	0.86	69	23.0	0.040
NA 12	8	<5	-	4	1	<]	8	<2	1.7	0.74	48	22.0	0.031
NA 13	5	<5	-	10	4	<]	10	<2	2.0	0.70	31	1.4	0.027
NA 14	4	<5	-	4	3	<1	8	<2	4.8	0.92	22	0.8	0.017
NA 15	6	<5	-	12	2	<1	13	<2	1.7	0.80	51	19.5	0.027
LS 1	242	34	2	13	<3	8	2	<3	1.8	0.68	64	7.3	0.040
LS 2	26	24	2	28	3	. 5	2	<3	1.3	0.50	64	0.8	0.042
LS 3	15	34	2	9	8	16	2	<3	1.6	0.68	72	1.0	0.042
LS 4	8	34	<]	6	<3	3	1	<3	1.9	0.82	82	1.0	0.044
LS 5	26	24	1	9	<3	5	1	<3	1.4	0.74	46	1.1	0.029
LS 6	162	14	1	9	<3	8	2	<3	1.9	0.51	69	0.7	0.038
LS 7	12	<4	<]	<3	<3	<3	<]	<3	5.3	0.84	85	1.2	0.060
LS 8	26	40	2	12	3	13	2	<3	3.0	0.82	59	1.2	0.042

•

Table 7. Metal analyses for Rush area.

Table 7 (Continued)

Sample Number	Zn ppb	Pb ppb	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Co ppb	Cu ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppm
LS 9 LS 10 LS 11 LS 12 LS 13 LS 14 LS 15 LS 16 LS 17 LS 18	12 2 11 <1 26 252 32 18 16 27	4 <4 29 8 40 4 45 8 40	<1 <1 <1 <1 2 <1 3 <1 2 <1	6 3 6 <3 6 <3 9 6 12	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	5 3 8 3 16 <3 16 <3 16 <3 11	<1 <1 2 <1 2 <1 3 <1 2 <1	<3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <	5.5 9.6 2.4 2.3 3.3 1.0 2.0 1.9 5.5	0.97 1.10 0.82 0.70 0.83 0.60 0.72 0.72 0.72	50 51 64 42 64 55 69 64 92	1.0 1.1 21.6 0.8 2.8 6.1 16.1 15.0 2.2	0.038 0.040 0.038 0.023 0.048 0.040 0.040 0.040 0.040 0.060
LS 18 LS 19 JB 50 JB 51	27 8 12 9	<4 24 <6 <6	<1 1 <2 <2	6 < 6 < 6	<3 <4 <4	< 3 < 3 10 5	<1 1 <5 5	<3 <3 5 <5	1.4 1.8 1.3	0.46 0.66 0.98 0.88	83 79 46	1.0 17.5 1.2 0.9	0.048 0.057 0.053 0.036
JB 52 JB 53 JB 54 JB 55 JB 56 JB 57 JB 58	12 12 12 17 4 7 7	<6 <6 10 10 <6 <6 <6	4 2 3 2 <2 2 <2	< 6 < 6 < 6 < 6 < 6 < 6 < 6	<4 5 <4 <4 <4 <4 <4	<5 5 10 10 <5 <5 <5	< 5 < 5 10 < 5 < 5 < 5 < 5	< 5 5 < 5 < 5 < 5 < 5 < 5	1.7 1.8 3.1 2.2 2.8 2.8 3.3	0.54 0.50 0.62 0.44 0.82 0.84 0.82	105 89 118 100 42 40 47	1.4 1.0 1.1 1.4 0.8 0.8 1.6	0.053 0.047 0.061 0.055 0.032 0.032 0.034
JB 59 JB 60 JB 61 JB 62 JB 63 JB 64	13 8 13 8 9 14	10 6 10 10 6 <6	2 2 3 2 2 2	10 6 <6 <6 6	4 <4 <4 <4 <4	<5 5 5 5 10	<5 5 10 5 5 10	11 <5 <5 <5 <5 <5	5.0 2.3 1.8 1.4 1.9 2.7	0.86 0.86 0.44 0.66 0.82 0.80	64 56 101 83 44 64	1.4 1.4 0.7 1.4 1.0 12.4	0.041 0.041 0.050 0.041 0.032 0.041

•

Sample	Zn	РЬ	Cd	Fe	Mn	Ni	Со	Cu	Na	Κ	Ca	Mg	Sr
Number	ppb	ppb	ppb	ppb	<u>ppb</u>	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm
JB 65	12	6	2	6	4	10	5	<5	5.0	0.84	91	1.8	0.055
JB 66	12	6	2	6	4	10	<5	<5	20.0	4.10	97	18.3	0.090
JB 67	7	6	2	<6	<4	5	5	<5	5.7	0.57	109	3.9	0.064

• .

.

Table 7 (Continued)

Sample Number	Zn ppb	Pb ppb	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Со ррь	Си ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppm
NA 20	0	11		15	10	7	15	< 2	17	1 16	71	14.0	0 050
NA 39	9	41	-	15	12	. /	10	<2	1./		/	14.9	0.058
	6	۲ ۲	-	20	13	4 ~1	13	<2	1.5	0.50	04	3.3 7 0	0.052
	20	C I N	-	12	3	۲۱ ۱۵	13	<2	1.4	0.70	74	1.2	0.040
NA 42	20 6	41	-	10	4	12	21	<2		0.53	/5	2.0	0.044
NA 43	0	21	-	10	2	1	10	<2	1.4	0.00	100	2.0	0.042
NA 44	9	14	-	4	1		5	<2	1.8	1.10		0.0	0.070
NA 45	44	24	-	10	<	/	13	<2	2.2	1.70	85	3.1	0.058
NA 46	25		-	/	1	/	8	<2	1.0	0.74	/9	2.4	0.048
NA 47	85	41	-	10	2	18	21	<2	2.0	1.05	55	2.2	0.040
NA 48	18	14	-	4	<	4	13	<2	1.7	0.92	57	1.2	0.036
NA 65	36	24	-	12	3	10	13	<2	1.4	0.86	60	2.7	0.040
NA 66	24	38	_	17	3	12	13	2	1.7	1.05	57	3.0	0.044
NA 67	9	18	-	15	4	7	18	<2	1.2	0.70	35	1.1	0.022
	20	21		17	л	л	10	~2	2 2	1 20	63	57	0 070
	29	21	-	50	4 5	4	10	~2	2.2	0.02	03	11 1	0.070
NA 09	12	14	-	20	С СС	1	10 10	<2	2.2	1 00	02	2 1	0.000
	13	24 20	-	20 41	22	7	13	<2	2.0		49	2.1	0.030
	12	20 40	-	41	د 70	/ .10	, O	<2	1.4	0.00	11	10.5	0.050
	20	40	-	100	9/	12	10	<2	1./	1.10	4/	4.2	0.042
NA 73	8	24	-	10	4	/	13	<2	1.0	1.00	00	2.2	0.000
NA 74	9	21	-	12	b	. 4	5	<2	1.5	1.10	55	2.3	0.042
LS 20	17	50	3	12	3	11	2	<3	1.8	0.86	44	2.0	0.031
LS 28	31	34	<2	27	11	16	9	<6	1.8	0.78	64	1.8	0.039
LS 29	14	11	2	19	11	8	9	<6	1.9	1.51	73	11.2	0.050
LS 30	20	15	<2	19	20	. 8	<u>9</u> .	<6	2.5	0.95	80	11.1	0.056

Table 8. Metal analyses for Zinc area.

Table 8 (Continued)

•

Sample Number	Zn ppb	Pb ppb	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Co ppb	Cu Ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppm
LS 31	32	<8	<2	19	7	<4	<5	<6	2.0	1.10	61	5.0	0.046
LS 32	22	<8	<2	<11	4	4	<5	<6	2.2	0.95	64	3.3	0.048
LS 33	36	<8	<2	34	38	4	<5	<6	4.4	2.45	76	7.2	0.070
LS 34	11	<8	<2	<11	4	<4	<5	<6	1.9	1.22	55	2.6	0.041
LS 35	17	11	<2	<]]]	<3	4	<5	<6	2.0	1.28	56	3.1	0.041
LS 36	9	<8	<2	<11	<3	4	<5	<6	2.4	0.92	68	2.0	0.044
LS 37	31	24	<2	<11	4	16	9	<6	2.1	0.95	62	2.1	0.039
LS 38	-	-	-	-	-	-	-	-	-	-	-	-	-
LS 39	32	28	6	<11	4	16	9	<6	1.8	0.60	60	1.2	0.036
LS 40	64	24	2	<11	17	12	9	<6	2.2	1.38	74	5.9	0.050
LS 41	54	<8	<2	<11	4	4	<5	<6	2.8	1.22	74	4.4	0.050
LS 42	85	15	3	11	24	12	<5	<6	3.0	0.72	76	3.7	0.046
LS 43	25	11	<2	<11	4	8	<5	<6	4.2	2.20	56	4.5	0.070
LS 44	31	24	<2	11	4	16	<5	<6	2.7	1.48	47	2.5	0.046
LS 45	24	41	2	19	3	8	14	<6	1.7	1.00	45	2.0	0.034
LS 46	27	15	<2	11 '	<3	12	<5	<6	1.9	1.14	52	6.8	0.039
LS 47	214	15	2	<11	<3	8	<5	<6	1.9	1.10	68	30.8	0.046
LS 48	47	31	<2	11	<3	16	9	<6	3.0	1.20	45	2.8	0.043
LS 49	82	18	<2	27	24	12	9	<6	1.6	0.83	76	11.3	0.050

.

•

Sample	Zn	РЬ	Hg	Ba	F	
Number	ppb	ррЬ	ppb	ppb	ppm	
LS 1	242	34	<0.1	10	0.13	
LS 8	26	40	<0.1	15	0.13	
LS 10	2	<4	0.7	12	0.13	
LS 13	26	40	<0.1	8	0.13	
LS 14	252	<4	<0.1	4	0.17	
LS 15	32	45	<0.1	4	0.17	
LS 20	17	50	<0.1	5	0.17	
LS 25 LS 26 LS 27 NA 18 NA 23 NA 25 NA 25 NA 26 NA 29 NA 36 NA 52 NA 55	6 2 32 <1 4 63 39 19 17 20 4	<4 <4 <5 <5 41 48 27 48 34 <5	<0.1 <0.1 <0.1 <0.1 0.8 <0.1 <0.1 <0.1 0.3 <0.1 <0.1	8 7 8 5 12 3 6 6 8 9 14	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	

•

Table 9. Analysis of selected samples for Hg, Ba and F(Zn and Pb values shown for comparison).

Var	iable	Precision	Detection Limits	<u>Limits</u>
Temperature	°C	± 0.5	0.50	-
Specific Conductance	µmhos/cm at 25°C	± 5.	2.00	-
Alkalinity	ppm CaCO ₃	± 5.	5	-
рН		± 0.1	.01	5 - 9 ¹
P04-3	as P ppm	± 0.02	.01	-
C1-	ppm	± 0.30	.30	250 ²
NH4+	as N ppm	± 0.02	.01	0.5 ²
SiO ₂	ppm	± 2.00	0.20	-
504 ⁻²	ppm	± 5.0	2.0	250 ²
NO3-	as N ppm	± 0.5	.02	10 ¹
F ⁻	ppm	± 0.05	.05	-
Zn	ррЬ	± 10%	2	5000 ¹
РЬ	ррЬ	± 10%	5	50 ¹

.

Table 10. Variable, precision, recommended limits (for drinking water) for water chemistry parameters.

.

	Variable	Prec	ision	Detection Limits	<u>Limits</u>
Fe	ррЬ	±	10%	10	300 ¹
Cu	ррЬ	ŧ	10%	1	1000 ¹
Ni	ррЬ	±	10%	4	·_
Со	ррЬ	±	10%	5	-
Mn	ррЬ	±	10%	2	50 ¹
NA	ppm	±	10%	0.1	-
К	ppm	±	10%	0.1	-
Sr	ppm	t	10% [.]	0.002	-
Ca	ppm	±	10%	1.0	200 ³
Mg	ppm	ŧ	10%	0.05	150 ³
Ba	ррЬ	Ŧ	10%	4	1000 ¹
Hg	ррЬ	ŧ	10%	.1	ر5

¹EPA (1976) ²Public Health Service (1962) ³World Health Organization (1971) limits used).

Ten springs, (NA 19, NA 20, NA 31, NA 39, NA 44, NA 45, NA 46, NA 47, and NA 48) exceed the ammonium limit of 0.5 ppm. The method of ammonia analysis used early in this project was the Nesslerization method which also detects organics. Thus, these high values of ammonium, may in part reflect a relatively high organic content of this spring. Only one spring, JB 66, exceeded the 10 ppm nitrate limit. This high nitrate content is probably due to local contamination by farm animal waste. Only five springs exceed the limits set for metals and only one of these limits is set for health reasons. Spring NA 19 has a lead concentration of 100 ppb which exceeds the 50 ppb limit. However, there are several springs with lead values in the 40 ppb range which could exceed the drinking water limit ocassionally due to natural variations. Spring NA 20 exceeds the 300 ppb limit for iron and springs NA 70, NA 72 and LS 24 exceed the manganese limit of 50 ppb. The iron and manganese limits are not health limits but rather limits set for staining problems.

COMPARISONS OF WATER CHEMISTRY

As indicated earlier, there has been little work published on the ground water chemistry of northern Arkansas. The U.S. Geological Survey has published a Hydrologic Atlas for the Ozark Plateaus (Lammonds, 1972) based on data in an open file report (Lammonds and

Stephens, 1969); however, iron and manganese were the only two heavy metals analyzed. There is a significant difference between well water and spring water (Steele, et al., 1975 and Hawkes and Webb, 1962) due to plumbing, type of flow, casing etc.; therefore, only spring water data is presented in Table 11. There is an overall similarity of the data in Table 11; however, there are significant differences between the U.S.G.S. data for the Ozark Plateau and the present study. Most of these differences can be attributed to the fact that the U.S.G.S. samples were not filtered, and that the present study has concentrated sampling in mineralized areas. Carbonate Unit 1 data are based on 16 springs issuing from the Boone through Everton Formations. Carbonate Unit 2 data are based on 5 springs issuing from the Black Rock Limestone through Cotter Dolomite units (Lammonds and Stephens, 1969).

A study in the Joplin, Missouri area only included three springs (Proctor et al., 1977). The maximum metal values obtained for these springs are given in Table 11. The major mineralization in the Joplin area includes sphalerite, galena and marcasite (FeS_2). It is interesting to note the higher lead values for this study compared to those in the Joplin area.

Ten springs were included in a detailed study of a part of Washington County, Arkansas (Wagner et al., 1976 and Coughlin, 1975). These springs all issue from the Boone Limestone and are relatively free of heavy metals, especially in comparison with springs from

Area	Specific Cond. 25°C	Alkalinity as mg/l CaCO ₃	рH	PO4 ⁻³ as P ppm	Cl- ppm	NH4 ⁺ as N ppm	SiO ₂ ppm	SO ₄ = ppm	NO ₃ as N ppm	F ⁻ ppm
Poncal	12-447 302	15-358 183	5.2-8.0 7.4	<.0147 .01	.6- 4.3 2.0	<.01-1.56 .07	3.1-7.8 5.7	<5.0-23.5 5.9	<.02-1.30 .14	08- 17
Rush ¹	136-546 348	70-410 195	6.8-8.3 7.6	<.0117 <.01	.9-45.1 4.2	<.0150 .02	4.2-7.9 5.9	<5.0-55.0 8.5	<.03-20.23 .33	.13
Zinc ^l	168-552 348	90-315 205	6.5-7.8 7.3	<.0107 .01	1.3- 6.5 2.2	<.01-2.34 .04	4.6-8.5 7.0	<4.2-11.9 5.0	<.02- 2.20 .3)
Northern Arkansas ² Carbonate unit l	192-451 270	85-207 140	7.0-8.4 7.5		1.5-16.0 3.4	-	6.0-11.0 7.4	<.4- 9.0 2.5	.02-13.0 3.4	, <,]-,] <,]
Carbonate unit 2	320-600 329	140-282 169	7.6-8.4 7.9	-	1.5- 4.2 3.5	-	8.2-14.0 11.1	<.4- 8.0 2.2	1.4 - 3.9 2.6	<.12 <.1
Joplin ³	-	136	7.2	-	-	-	-	-	-	-
Washington ⁴ Co., AR	-	-	-	<.0109 .01	-	-	-	-	11.0 - 4.6 5.6	-

Table 11. Comparison of spring water data. The top values are the range and the bottom value is the median value. See footnote for Joplin data. .

l Data from this study. 2 Data from Lammonds and Stephens (1969) 3 Data from Proctor et al., (1977). Average values for alkalinity and pH. Maximum values for metals. 4 Data from Coughlin (1975).

Table	11 (cont	inued)
-------	------	------	--------

•

Table 11 (continued)															
Area	Zn ppb	, Pb ppb	Cd ppb	Fe ppb	Mn ppb	Ni ppb	Со ррђ	Cu ppb	Na ppm	K ppm	Ca ppm	Mg ppm	Sr ppb	Ba ppb	Hg ppb
Ponca	<1- 63 10	<4-100 13	<1-2 2	<3-373 18	<1- 57 4	<3-33 11	<1-27 4	<2-13 3	.1-6.7 1.4	.4-1.4 .7	2-98 65	.5-11.9 2.4	22-272 42	$\overline{)}$)
Rush	4-252 12	<4-40 6	<1-3 2	<3-36 6	<3-22 <4	<1-16 5	<1-18 8	<2-11 <3	.8-20.0 1.9	.4-4.1 .7	22-118 64	.7-34.5 1.6	17- 90 41	4-15 8	<.1-8
Zinc	6-214 25	<8-48 24	<2-6 <2	<11-50 12	<1-97 4	< 4-1 8 7	<5-21 9	<2-2 <6	1.2- 4.2 1.8	.5-2.5 1.0	35-100 68	1.1-30.8 3.1	22-70 46]	
Northern Arkansas Carbonate Unit l	-	-	-	<10-200 30	<10-10 <10	-	-	-	1.6-12.0 2.0	.6-1.5 .8	41-105 52	.9-10.0 1.2	-	-	-
Carbonate Unit 2	! -	-	-	<10-100 80	- <10	-	-	-	1.8-2.0 2.0	.8-1.5 1.2	26-65 53	5.2-37.0 25.0	-	-	-
, Joplin	200	6	-	11	-	-	-	1.5	-	-	-	-	-	-	۲.۱
Washington Co., AR	<2-381 20	<1-2 <1	<.2-1.(<1	0 <1-46 <2	<.4-36 1	<2-5 <2	2-6 4	<1-9 <1	3-18 5	.9-3.5 1.8	30-75 54	1-2 2	25-41 38	-	-

.

.

.

the mineralized areas (Table 11).

GEOCHEMICAL EXPLORATION

Although there are not many published ground water geochemical studies, the method appears to be very promising, especially for certain types of deposits. Often an ion or element can be used as a pathfinder for ore, e.g. sulfate or mercury for sulfide deposits. It is interesting to note that the mineralized areas generally contain more sulfate than other springs from northern Arkansas (Table 11). However, the mercury content does not appear to be indicative of mineralization compared with mercury values of <.2 to .8 ppb reported by Barber and Steele (1980) for ground water in the northwest Arkansas region.

Figure 3 indicates that the phases controlling lead and zinc solubility in the vast majority of the spring waters will be $PbCO_3$ (angelsite) and $ZnCO_3$ (smithsonite) based on the pH, and a reasonable estimate of Eh of these waters. Dilday (1982) has shown that the solubility of $PbCO_3$ under typical ground water conditions in the study area would yield about 1760 ppb lead. The maximum content measured is 100 ppb. Similar calculations made for $ZnCO_3$ yield a zinc concentration of 340 ppm compared to a maximum concentration of 252 ppb. Although many factors contribute to the lowering of the observed lead and zinc concentrations compared to theoretical values,

Figure 3. Composite diagram of stability of metal sulfides and oxidation products at 25°C and 1 atmospheric total pressure in the presence of total dissolved carbonate = 10^{-1.5}, total dissolved sulfur = 10⁻¹. From Garrels and Christ, 1965, p. 395.

dilution by mixing of ground water, kinetics and sorption are probably the most important. Nonetheless it is surprising to note how low the zinc concentrations are. Although the lead and zinc values are not exceedingly high, they do reflect the mineralization in the Ponca, Rush and Zinc areas (Table 11).

The lead and zinc anomalous values (Tables 12 and 13) were determined using the methods of Lepeltier (1969) and Sinclair (1976). It is interesting to note that anomalous sites are indicated as well as and perhaps better by lead compared to zinc, even for predominantly zinc mineralized areas. One might expect more anomalous values near known mineralization; however, this is indicated to be the case only in the Rush area. The general lack of a relationship between distance to mineralization and number of anomalies may be attributed to (1) the quality of the mineralization mapping, and (2) hydrological factors.

The quality of mapped mineralization in the three northern Arkansas areas investigated appears to be varied, and thus, has affected the results in Tables 12 and 13. The location of mineralization was obtained from McKnight (1935), Stroud et al., (1969) and Rand McNally (1917). Ponca has had only the main mines and prospects mapped, whereas, the Rush area has a number of minor prospects and "sbows" mapped. The quality of mapping for the Zinc area is probably intermediate of the other two areas. For example, unmapped

Table 12. Number of anomalies with respect to distance to known mineralization.

	Distance to Nearest Mineralization (meters)							
	Area	0-402	402-804	804-1615	1615-3230	3230		
Ratio	of Pb Anom	alies and Numb	er of Springs					
	Ponca Rush Zinc	0/3 = 0% 4/12 = 33% 6/10 = 60%	7/19 = 37% 6/14 = 43% 5/8 = 63%	3/8 = 38% 3/11 = 27% 9/12 = 75%	9/15 = 60% 1/14 = 7% 10/12 = 83%	1/3 = 33% 0/1 = 0% 1/1 = 100%		
Ratio	of Zn Anom	alies and Numb	er of Springs					
	Ponca Rush Zinc	0/3 = 0% 4/12 = 33% 8/10 = 80%	3/19 = 16% 4/14 = 29% 5/8 = 63%	1/8 = 13% 2/11 = 18% 9/12 = 75%	3/15 = 33% 1/14 = 7% 2/12 = 17%	0/3 = 0% 0/1 = 0% 0/1 = 0%		
Ratio	of Anomalo	us Sites and N	umber of Springs	5				
	Ponca	0/3 = 0%	7/19 = 37%	3/8 = 38%	10/15 = 67%	1/3 = 33%		

Ponca	0/3 = 0%	7/19 = 37%	3/8 = 38%	10/15 = 67%	1/3 = 33%
Rush	5/12 = 42%	8/14 = 57%	4/11 = 36%	1/4 = 7%	0/1 = 0%
Zinc	8/10 = 80%	7/8 = 88%	11/12 = 92%	10/12 = 83%	1/1 = 100%

		Dis	tance to Neares	st Mineralization	(meters)					
	Area	0-402	402-804	804-1615	1615-3230	>3230				
Ratio	of Pb Anoma	alies and Numbe	r of Springs ¹							
	Ponca Rush Zinc	0/3 = 0% 5/12 = 42% 8/10 = 80%	7/19 = 37% 8/14 = 57% 7/8 = 88%	3/8 = 38% 4/11 = 36% 11/12 = 92%	10/15 = 67% 1/14 = 7% 10/12 = 83%	1/3 = 33% 0/1 = 0% 1/1 =100%				
Modif	ied Anomalo	us Ratio ²	•							
	Ponca Rush Zinc	0/0 3/3 =100% 6/6 =100%	5/10 = 50% 5/9 = 56% 3/3 =100%	2/6 = 33% 3/6 = 50% 6/7 = 86%	1/3 = 33% 0/2 = 0% 1/1 =100%	0/0 0/0 0/1 = 0%				
1 _{Fro}	From Table 12.									

Table 13. Comparison of number of anomalous sites based on all sites and number of anomalous sites based on only hydrologically significant sites.

² Ratio based only on springs that might be hydrologically connected with mineralization based on topography.

.

. .

mineralization (perhaps occurring as small or weakly mineralized deposits) are probably affecting springs that are 800 or more meters from known mineralization. The fact that Rush shows a general decline of anomalies with distance from known mineralization suggests that there is not as much unmapped mineralization present.

Hydrological factors including ground water flow direction, as well as recharge aspects (e.g. wet versus dry seasons) also affect anomalous values. A crude attempt was made to take into account the flow of the ground water with respect to the location of the mineralization (Table 13). All springs that were up slope from mineralization or on the other side of drainage divides from mineralization were eliminated and a modified anomalous ratio calculated from the remaining data. Although the modified ratio did not greatly affect the percent of anomalous springs near mineralization, the Rush area did show an improved distance to mineralization versus number of anomalous sites relationship (Table 13).

The study in the Joplin area (Proctor et al., 1977) found that generally the highest lead and zinc values for spring and well samples were obtained during the Fall, a dry period. It may be that samples collected for this study during wet periods (seasonal or soon after rains) do not exhibit anomalous concentrations due to dilution.

These factors plus others make it difficult to locate a specific deposit in these areas using ground water chemistry. However, ground

water geochemical exploration does appear to be quite useful in locating mineralized areas (compare lead values from Washington County with data from Ponca, Rush and Zinc.

GEOTHERMOMETRY

The presence of a well with high heat flow in the northeastern part of Arkansas suggested that it might be valuable to determine the subsurface temperatures of the springs in northern Arkansas. There were no anomously high surface temperatures measured except for spring NA 31 with a temperature of 26.0°C. Only one other spring (NA 35) and the one well sampled (NA 24) had surface temperatures over 20.0°C. All three of these samples were collected during August with air temperatures in excess of 30°C and thus may represent warming of the waters at the surface. The fact that none of these samples had high silica contents also argues against geothermal heating.

The subsurface temperatures based on silica geothermometry using both chalcedony and quartz (Fournier and Rowe, 1966 and Fournier, 1973), do not yield values considered to be significant. The maximum subsurface temperature (34°C) is obtained using the maximum silica concentration of 8.5 ppm and using quartz solubility:

$$T_{Si0_2} = [1315/(5.205-log_{10}Si0_2)] - 273.15.$$

The median subsurface temperatures for each area are - 28°C for Zinc and 22°C for both Rush and Ponca using quartz solubility.

CONCLUSIONS

Basically the ground water in the three mineralized areas is a calcium bicarbonate that is of good quality. However, a few springs do exceed drinking water limits for ammonia, nitrate, lead, iron and manganese. Although individual anomalous sites do not indicate nearby mineralization effectively, the mineralized areas do appear to have higher lead, and perhaps zinc and sulfate than surrounding non-mineralized areas with similar geology. Thus, although specific deposits may not be located by ground water geochemistry, mineralized areas should be detected fairly easily with sufficient sampling. Neither surface temperatures nor subsurface temperatures based on silica geothermometry indicate significant geothermal heating of these spring waters.

REFERENCES

- APHA, 1971, <u>Standard Methods for the Examination of Water and</u> <u>Wastewater</u>, 13 ed.: American Public Health Association, Washington, D.C., 874 p.
- Barber, L. II, and Steele, K.F., 1980, Mercury content of waters in the midcontinent region: Proceedings of the Ark. Acad. Sciences, Vol. 34, p. 19-21.
- Bedinger, M.S., Pearson, F.J., Jr., Reed, J.E., Sniegocki, R.T. and Stone, C.G., 1979, The waters of Hot Springs National Park, Arkansas - their nature and origin: U.S. Geol. Surv. Prof. Paper 1044-C, 33 p.
- Caplan, William M., 1957, Subsurface geology Northwestern Arkansas: Arkansas Geological Commission, Information Circ. 19, 14 p.
- Coughlin, T.L., 1975, Geologic and environmental factors affecting ground water in the Boone Limestone of northcentral Washington County, Arkansas: unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 98 p.
- Dilday, T.F. III, 1982, Hydrogeochemical exploration for Mississippi Valley - type mineral deposits, Arkansas: unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 82 p.
- EPA, 1974, Methods for Chemical Analysis of Water and Wastes: U.S. Environmental Protection Agency, Washington, D.C., 298 p.
- EPA, 1976, <u>Quality Criteria for Water</u>: U.S. Environmental Protection Agency, Washington, D.C., 256 p.
- Fournier, R.O. and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and steam wells: Am. Jour. Sci., vol. 264, p. 685-697.
- Garrels, R.M., and Christ, C.L., 1965, <u>Solutions, Minerals, and</u> Equilibria: Harper and Row Publishers, New York, 450 p.
- Hach Chemical Company, 1975, Water Analysis Handbook: Hach Chemical Company, Ames, Iowa, 186 p.
- Hawkes, H.E. and Webb, J.S., 1962, <u>Geochemistry in Mineral Explora</u>tion, Harper and Row, New York, 415 p.

- Lammonds, A.G., 1972, Water-resources reconnaissance of the Ozark Plateaus Province, northern Arkansas: Hydrologic Investigations Atlas HA-383, U.S. Geol. Survey.
- Lammonds, A.G. and Stephens, J.W., 1969, Water-resources data for the Ozark Plateaus Province, Arkansas, unpublished report, available through the U.S. Geological Survey, Water Resources Division, Little Rock, Arkansas.
- Lepeltier, C., 1969, A simplified statistical treatment of geochemical data by graphical representation: Econ. Geol., Vol. 64, p. 538-550.
- McKnight, E.T., 1935, Zinc and Lead Deposits of Northern Arkansas: U.S. Geol. Surv. Bull. 853, 311 p.
- Nix, J. and Goodwin, 1970, The simultaneous extraction of Fe, Mn, Cu, Co, Ni, Cr, Pb and Zn from natural water for determination by atomic absorption: At. Absorpt. Newsl., Vol. 9, p. 119-122.
- Proctor, P.D., Kisvarsanyi, G., Garrison, E. and Dilamarter, R.R., 1976, Heavy metal additions to waters of the Joplin area, Tri-State mining district, Missouri: <u>in</u> Hydrologic Problems in Karst Regions, R.R. Dilamarter ed., Western Kentucky Univ. Press, Bowling Green, KY, 481 p.
- Public Health Service, 1962, Public Health Service Drinking Water Standards: U.S. Public Health Service, Dept. of Health, Education and Welfare, 61 p.
- Rand McNally, 1917, Mineral map of the Arkansas zinc and lead district: Rand McNally and Co., Chicago, Ill., 1 p.
- Sinclair, A.J., 1976, Applications of probability graphs in mineral exploration: Assoc. of Explor. Geochemists, Special Vol. 4, 93 p.

Smith, D.A., 1978, Lead-zinc mineralization in the Ponca-Boxley area, Arkansas: unpub. M.S. Thesis, Univ. of Arkansas, Fayetteville, 188 p.

Steele, K.F., MacDonald, H.C. and Grubbs, R., 1975, Composition of groundwater in Northwest Arkansas: Arkansas Farm Research.

- Stroud, R.B., Arndt, R.H., Fulkerson, F.B. and Diamond, W.G., 1969, Mineral resources and industries of Arkansas: U.S. Bureau of Mines, Bull. 645, 418 p.
- Wagner, G.H., Steele, K.F., MacDonald, H.C. and Coughlin, T.L., 1976, Water quality as related to linears, rock chemistry and rain water chemistry in rural carbonate terrain: Jour. Envir. Qual., Vol. 5, p. 444-451.
- World Health Organization, 1971, <u>International Standards for</u> Drinking Water: 3rd ed., WHO, Geneva, 70 p.