Zooplankton Limnology of Beaver and Degray Reservoirs in Arkansas

Eugene H. Schmitz
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/awrctr
Part of the Fresh Water Studies Commons, and the Water Resource Management Commons

Recommended Citation

This Technical Report is brought to you for free and open access by the Arkansas Water Resources Center at ScholarWorks@UARK. It has been accepted for inclusion in Technical Reports by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.
Zooplankton Limnology Of Beaver And Degray Reservoirs In Arkansas

by

Eugene H. Schmitz

Department of Zoology

Arkansas Water Resources Research Center

UNIVERSITY OF ARKANSAS
Fayetteville

Publication No. 55
1978
ZOOPLANKTON LIMNOLOGY OF BEAVER AND DEGRAY RESERVOIRS

IN ARKANSAS

A Report to the
United States Fish and Wildlife Service

Contract No. 14-16-0008-1184

Period of Performance
June 1, 1977 - May 31, 1978

Eugene H. Schmitz
Principal Investigator

1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Beaver Reservoir</td>
<td>1</td>
</tr>
<tr>
<td>DeGray Reservoir</td>
<td>5</td>
</tr>
<tr>
<td>Copepoda</td>
<td>6</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>8</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>8</td>
</tr>
<tr>
<td>Figure and Table Legends</td>
<td>10</td>
</tr>
</tbody>
</table>
Research during the year 1975-76 continued to emphasize studies of seasonal changes in patterns of zooplankton abundance and biomass in Beaver and DeGray Reservoirs. Zooplankton samples were taken monthly from three stations on Beaver Reservoir (Figure 1) during the period May 1975 through May 1976. Collections from DeGray Reservoir were made weekly from a single station (Station 1) during the period April 1975 through December 1975. Beaver collections were obtained by taking oblique tows using a Miller sampler equipped with no. 10 mesh. The DeGray program entailed stratified vertical samples taken at 5 m intervals to 20 m and 20 m to 2 m off of the bottom using a 29.5 cm aperture Birge closing net equipped with no. 20 mesh.

Beaver Reservoir

Abundance data for the three Beaver stations are given in Tables 1-3. Seasonal patterns based upon total organism densities are graphically illustrated in Figures 3-5. Spring pulses were evident at Stations B5 and B7; such were not recorded at B1, a relatively low standing crop having been characteristic of the entire sampling year. An autumn pulse also was observed for B7; both Copepoda (mostly nauplii, but all life history stages were present) and Cladocera (Bosmina longirostris was dominant) contributed to this increase. Figure 6 represents a mean seasonal pattern based on data from all three stations. The pattern does not resemble that for any given station; the appearance of a fall pulse is mostly influenced by B7 and to some extent by the overall autumn, winter, and early spring increase recorded for B5.
Tables 4-6 are compilations which summarize mean annual zooplankton densities at each of the three sampling stations for the periods April 1965 through June 1966, August 1970 through July 1971, and June 1972 through May 1976. At B1, significantly greater densities were recorded during 1965-66 (Applegate and Mullan, 1967) and 1970-71 (Damico, 1972) than during the entire period 1972-76, although a slight increase was detected in 1975-76. A slightly different pattern was noted at B5 and B7, where significant increases over 1972-75 were observed during 1975-76.

In general, the period 1972-75 was characterized by low zooplankton production, slightly increasing from year to year, but increasing by nearly two-fold in 1975-76 over the previous year (Table 7). Lowest production was recorded for 1972-73 (a flood year). Maximum abundance values were obtained during 1970-71 at B5 (cf. Applegate and Mullan, 1967 and Damico, 1972 with our data).

Zooplankton biomass data for the period May 1975 through May 1976 are presented in Table 8. A summary of formulae used in the computation of biomass values is appended to Table 9. The method employed to obtain these data involved a much refined version of the procedure presented by Schmitz, et al (1975). Modifications embraced the separation procedure, production and preparation of glass fiber filters, drying procedure, and the use of a Cahn Electrobalance (Model M-10, and subsequently Model 4100). Details of these refinements will be the subject of a separate and subsequent report. It should be noted that all dry weight data were obtained from material preserved in 3% formalin.

Of considerable interest are data presented in Table 9. These data represent replicated zooplankton counts and replicated biomass determinations from all three stations for the period July 1975 through May 1976.
Comparisons reveal some degree of parallelism on a relative basis; i.e., note that greater biomass values generally correspond with greater abundance values, especially at B7. However, one for one correspondence cannot be expected since larger zooplankters in smaller numbers may equate to greater biomass than greater numbers of smaller zooplankters. Further, some replicated counts and some replicated biomass determinations show a considerable range of error. A similar data base extended over a much longer period of time is needed before general interpretations can be reasonably attempted. Even so, such interpretations are vulnerable to the dangers of not having weight data for individual species of dominant zooplankters.

Table 10 presents mean dry weight values from each of the three sampling stations for the period May 1975 through May 1976. Figures 7-9 are based upon these mean values, and are presented for the purpose of providing a better picture of seasonal zooplankton biomass patterns during the 1975-76 period. A small early winter peak and a well-defined spring pulse (1976) were evident at B1. Spring pulses (1975 and 1976) were apparent at B5. A bimodal pattern, involving a spring pulse (1975) and a fall pulse (1975) followed by a spring pulse (1976) was recorded at B7. A fundamental correspondence could be detected between overall seasonal abundance patterns and biomass patterns; however, pint for point correlations could not be established for reasons already stated above (cf. Figures 3-5 with 7-9).

In recognition of the probable ultimate need for dry weight data derived from individual zooplankton species and from size classes within species, two predominate species from Beaver Reservoir were selected for the purpose of assessing a procedure necessary to obtain such. A brief account of this procedure follows.
Specimens of *Daphnia parvula* and *Boismina longirostris* were removed from the sample using Irwin loops and with the aid of a binocular dissecting microscope. All specimens were taken from a B5 sample collected on 22 May 1975. To ensure consistent counts and "clean" subsamples, each subsample was counted three times. *D. parvula* specimens were measured using a calibrated ocular micrometer and sorted into "large" (greater than 0.75 mm head to base of spine length) and "small" (less than 0.75 mm head to base of spine length) size classes. A predetermined number of individuals representing each species and size class were then placed in preweighed aluminum foil planchets. The planchet subsamples thus prepared were dried under vacuum at 60°C for 24 hr, removed to a dessicator until cooled to room temperature, and weighed on a Cahn Electrobalance (Model M-10). Results are given in Table 11.

Water samples for seston and dissolved solids determinations were taken monthly with a 3.1 l nonmetallic Kemmerer water bottle from B1, B5, and B7 during the period March 1975 through May 1976. Seston was removed using a Foerst centrifuge, dried for 24 hr at 60°C, weighed on a chain-o-matic analytic balance, combusted at 650°C for 20 min, and reweighed. Loss on ignition was taken as % organic seston. Seasonal patterns are given in Figures 10-12. The fragmentary nature of these patterns may be attributed to errors in procedure through December 1975. A modified procedure was instigated in January 1976 (so indicated on figures). Modifications entailed: (1) collection of seston on 15 mm glass fiber filters; (2) drying under vacuum at 60°C; (3) weighing with a more sensitive balance (Cahn Electrobalance, Model M-10); and (4) combustion for 2 hr at 450°C. A marked reduction in obvious errors stemming from inadequately sensitive gravimetric techniques was noted following initiation of these modifications.
For dissolved solids determinations, the water samples (from which seston had been removed) were evaporated. The total residue was collected in tared crucibles, dried at 60°C for 24 hr, weighed on a chain-o-matic analytic balance, combusted at 650°C for 20 min, and reweighed. Loss on ignition was taken as % organic dissolved solids. The only modification introduced into this set of procedures was drying under vacuum at 60°C beginning in January 1976. Seasonal patterns are presented graphically in Figures 13-15.

DeGray Reservoir

Table 12 presents weekly abundance data based upon continuous 50 m vertical net hauls taken at Station 1, DeGray Reservoir, during the period 9 April through 17 December 1975. Figure 16 represents a series of seasonal plots of these data. With the exception of the spring season, rotifers clearly were the dominant zooplankters in terms of abundance. Copepods generally were subdominant. Collectively, the Entomostraca almost never attained a position of dominance, owing to low densities of Cladocera. Strong pulses in total zooplankton abundance were not observed, although fluctuating maxima were recorded for both spring and fall seasons. No doubt, a classical bimodal pattern might have been more pronounced had a monthly sampling program been employed, although the relatively low total abundance values recorded throughout the collecting period would have dampened any sharp or contrasting patterns. However, these data must be interpreted with caution, for the low density values may be attributed in part to the clogging effects upon a relatively small net that is hauled through a 50 m water column.

Total net seston and zooplankton dry weight data for Station 1, DeGray Reservoir, during the period 16 April through 17 December 1975 are presented in Table 13. These data are represented as a series of seasonal plots.
in Figure 17. Fluctuating pulses in zooplankton biomass were recorded for late spring-early summer and fall seasons. When weekly data were meaned for each month, a bimodal pattern characterized by a spring pulse and a weaker fall maximum emerged (Figure 18).

Copepoda

Since 1972, continued efforts have been directed toward the establishment of an inventory of copepod species occurring in the limnetic waters of Beaver Reservoir. In 1974, the same goal was extended to include the copepod species inhabiting DeGray Reservoir. Early efforts revealed relatively few species in Beaver Reservoir (see Schmitz, 1974), presumably because of extremely low zooplankton production during 1972-73. It may be noted that this phenomenon occurred subsequent to flood conditions in 1971. Examination of samples representing the 1976-77 period yielded the greatest diversity of copepod species both for Beaver and DeGray Reservoirs.

A list of species identified to date is given for each reservoir. Cyclopoid specimens were prepared according to the method of Pennak (1963) and calanoids as necessary according to Yeatman (1959). The following sources were used in the confirmation of calanoid species: Herrick (1883), Humes and Wilson (1951), Schacht (1897, 1898), and Wilson (1959). Pennak (1963) and Yeatman (1959) were used for cyclopoids.

Beaver Reservoir

Calanoida:

Diaptomus reighardi Marsh 1895

Diaptomus sanguineus S. A. Forbes 1876

Oeosphricum labronectum S. A. Forbes 1882
Cyclopoida:

Cyclopes bicuspidatus thomasi S. A. Forbes 1882
Cyclopes varicans rubellus Lilljeborg 1901
Cyclopes vernalis Fischer 1853
Eucyclopes prionophorus Kiefer 1931
Eucyclopes agilis (Koch) 1838
Eucyclopes speratus (Lilljeborg) 1901
Macrocydops albidus (Jurine) 1820
Mesocylops edax (S. A. Forbes) 1891
Orthocyclopes modestus (Herrick) 1883
Paracyclops fimbriatus poppei (Rehberg) 1880

DeGray Reservoir

Calanoida:

Diaptomus reighardi Marsh 1895
Epischura fluviatilis Herrick 1883

Cyclopoida:

Cyclopes bicuspidatus thomasi S. A. Forbes 1882
Cyclopes varicans rubellus Lilljeborg 1901
Cyclopes vernalis Fischer 1853
Eucyclopes agilis (Koch) 1838
Eucyclopes prionophorus Kiefer 1931
Eucyclopes speratus (Lilljeborg)
Mesocylops edax (S. A. Forbes) 1891
Orthocyclopes modestus (Herrick) 1883
Tropocylops prasinus (Fischer) 1860
Additional Remarks: Although the Harpacticoida are recognized as a benthic group, it is here noted that several specimens (at least six females with eggs) of *Canthocamptus staphylinoides* appeared in the 27 March 1977 sample taken from Station B5 on Beaver Reservoir.

Acknowledgements

I am grateful to Mr. John T. McCraw, Jr. and to Ms. Pamela Williams Blore for their most valuable and helpful technical assistance while employed as research assistants under this project. I am further indebted to Mr. Raul Amores-S. for his painstaking efforts in the identification of copepod species. Heartfelt thanks go to Dr. Larry Aggus, United States Fish and Wildlife Service, for his helpful counsel, constructive comments, and untiring efforts in the field. My sincere appreciation also is extended to Ms. Susan M. Heinrichs and to Ms. Linda S. Poppe for the final preparation of figures and tables, respectively. This project was supported by United States Fish and Wildlife Contract No. 14-16-0008-1184.

Literature Cited

Figure and Table Legends

Figure 1. Map of Beaver Reservoir showing the locations of sampling stations designated by the United States Fish and Wildlife Service.

Figure 2. Map of DeGray Reservoir showing the locations of sampling stations designated by Nix, et al. (1974, 1975). All collections herein reported on were taken from Station 1 (reproduced by permissions from Nix, et al., 1975).

Table 1. Densities of zooplankton organisms occurring at Station B1, Beaver Reservoir, during the period May 1975 through May 1976. Data are expressed as organisms per liter (o/l).

Table 2. Densities of zooplankton organisms occurring at Station B5, Beaver Reservoir, during the period May 1975 through May 1976. Data are expressed as o/l.

Table 3. Densities of zooplankton organisms occurring at Station B7, Beaver Reservoir, during the period May 1975 through May 1976. Data are expressed as o/l.

Figure 3. Seasonal pattern of total zooplankton densities occurring at Station B1, Beaver Reservoir, during the period May 1975 through May 1976.

Figure 4. Seasonal pattern of total zooplankton densities occurring at Station B5, Beaver Reservoir, during the period May 1975 through May 1976.

Figure 5. Seasonal pattern of total zooplankton densities occurring at Station B7, Beaver Reservoir, during the period May 1975 through May 1976. Note that a sample was not taken during June 1975.

Figure 6. Mean seasonal pattern of total zooplankton densities occurring in Beaver Reservoir (Stations B1, B5, and B7) during the period May 1975 through May 1976. The dashed line between May and July reflects the lack of a sample from B7 during June.

Table 4. Summary of mean annual zooplankton densities occurring at Station B1, Beaver Reservoir, for the periods April 1965 through June 1966, August 1970 through July 1971, and June 1972 through May 1976. Data are expressed as o/l.

Table 5. Summary of mean annual zooplankton densities occurring at Station B5, Beaver Reservoir, for the periods April 1965 through June 1966, August 1970 through July 1971, and June 1972 through May 1976. Data are expressed as o/l.

Table 6. Summary of mean annual zooplankton densities occurring at Station B7, Beaver Reservoir, for the periods April 1965 through June 1966, August 1970 through July 1971, and June 1972 through May 1976. Density data are expressed as o/l.
Table 7. Summary of mean annual zooplankton densities occurring in Beaver Reservoir (Stations B1, B5, and B7) for the periods April 1965 through June 1966, August 1970 through July 1971, and June 1972 through May 1976. Mean densities are expressed as o/1.

Table 8. Replicated total zooplankton dry weight values for Beaver Reservoir (Stations B1, B5, and B7) during the period May 1975 through May 1976.

Table 9. Comparison of replicated total zooplankton counts (o/1) and replicated total zooplankton dry weight determinations (μg/1) for Beaver Reservoir (Stations B1, B5, and B7) during the period July 1975 through May 1976. Replicated subsamples are designated R₁ and R₂.

Table 10. Mean total zooplankton dry weight values (μg/1 based on R₁ and R₂ subsamples) for Beaver Reservoir (Stations B1, B5, and B7) during the period May 1975 through May 1976.

Figure 7. Seasonal pattern of total zooplankton biomass (mg/1 × 10³ dry weight) occurring at Station B1, Beaver Reservoir, during the period May 1975 through May 1976.

Figure 8. Seasonal pattern of total zooplankton biomass (mg/1 × 10³ dry weight) occurring at Station B5, Beaver Reservoir, during the period May 1975 through May 1976. Note that a value was not obtained for June 1975.

Figure 9. Seasonal pattern of total zooplankton biomass (mg/1 × 10³ dry weight) occurring at Station B7, Beaver Reservoir, during the period May 1975 through May 1976. Note that a sample was not taken in June 1975.

Table 11. Individual dry weights (μg) obtained for Bosmina longirostris and two size classes of Daphnia parvula.

Figure 10. Seasonal pattern of total seston (mg/1) occurring at Station B1, Beaver Reservoir, during the period March 1975 through May 1976. Note that data were not available for April 1975, August 1975, and March 1976. Organic fraction ratios (%) are plotted for January, February, April, and May 1976.

Figure 11. Seasonal pattern of total seston (mg/1) occurring at Station B5, Beaver Reservoir, during the period March 1975 through May 1976. Note that data were not available for August and September 1975. Organic fraction ratios (%) are plotted for the period January through May 1976.

Figure 12. Seasonal pattern of total seston (mg/1) occurring at Station B7 during the period March 1975 through May 1976. Note that data were not available for June and August 1975. Organic fraction ratios (%) are plotted for the period January through May 1976.
Figure 13. Seasonal pattern of total dissolved solids (mg/l) and organic fraction ratios (%) occurring at Station B1, Beaver Reservoir during the period March 1975 through May 1976. Note that data were not available for August 1975 and March 1976.

Figure 14. Seasonal pattern of total dissolved solids (mg/l) and organic fraction ratios (%) occurring at Station B5, Beaver Reservoir, during the period March 1975 through May 1976. Note that data were not available for August 1975.

Figure 15. Seasonal pattern of total dissolved solids (mg/l) and organic fraction ratios (%) occurring at Station B7, Beaver Reservoir, during the period March 1975 through May 1976. Note that data were not available for June and August 1975.

Table 12. Densities of zooplankton organisms occurring at Station 1, DeGray Reservoir, based upon weekly samples during the period 9 April through 17 December 1975. Data are expressed as o/l.

Figure 16. Seasonal pattern of total zooplankton densities occurring at Station 1, DeGray Reservoir, based upon weekly samples during the period 9 April through 17 December 1975.

Table 13. Total net seston and total zooplankton dry weight values for Station 1, DeGray Reservoir, based upon weekly samples during the period 16 April through 17 December 1975.

Figure 17. Seasonal pattern of total net seston and total zooplankton biomass (mg/l X 10^3 dry weight) occurring at Station 1, DeGray Reservoir, based upon weekly samples during the period 16 April through 17 December 1975.

Figure 18. Seasonal pattern of total net seston and total zooplankton biomass (mg/l X 10^3 dry weight) occurring at Station 1, DeGray Reservoir, based upon monthly means of weekly samples taken during the period 16 April through 17 December 1975.
Figure 2

De Gray Reservoir
Arkansas

5 Miles

(Reproduced by permission from Nix, et al., 1975)
Table 1

<table>
<thead>
<tr>
<th></th>
<th>5/75</th>
<th>6/75</th>
<th>7/75</th>
<th>8/75</th>
<th>9/75</th>
<th>10/75</th>
<th>11/75</th>
<th>12/75</th>
<th>1/76</th>
<th>2/76</th>
<th>3/76</th>
<th>4/76</th>
<th>5/76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>1.81</td>
<td>0.69</td>
<td>0.60</td>
<td>1.20</td>
<td>0.93</td>
<td>0.77</td>
<td>0.50</td>
<td>2.60</td>
<td>1.60</td>
<td>1.19</td>
<td>2.31</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>Calanoida</td>
<td>1.59</td>
<td>0.25</td>
<td>0.26</td>
<td>0.41</td>
<td>0.57</td>
<td>0.16</td>
<td>0.08</td>
<td>0.63</td>
<td>0.33</td>
<td>0.75</td>
<td>0.82</td>
<td>0.51</td>
<td>0.30</td>
</tr>
<tr>
<td>Nauplii</td>
<td>0.15</td>
<td>0.01</td>
<td>0.68</td>
<td>0.03</td>
<td>0.02</td>
<td>0.31</td>
<td>0.70</td>
<td>0.25</td>
<td>0.10</td>
<td>0.11</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepodid</td>
<td>1.22</td>
<td>0.18</td>
<td>0.21</td>
<td>0.29</td>
<td>0.03</td>
<td>0.17</td>
<td>0.08</td>
<td>1.00</td>
<td>0.01</td>
<td>3.34</td>
<td>2.27</td>
<td>1.29</td>
<td>1.58</td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>4.77</td>
<td>1.12</td>
<td>1.08</td>
<td>1.90</td>
<td>2.21</td>
<td>1.13</td>
<td>0.68</td>
<td>4.54</td>
<td>3.64</td>
<td>5.53</td>
<td>5.57</td>
<td>2.73</td>
<td>2.94</td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
</tr>
<tr>
<td>Daphnia parvula</td>
<td>1.29</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
<td>0.54</td>
<td>0.12</td>
<td>0.07</td>
<td>0.16</td>
<td>0.12</td>
<td>0.13</td>
<td>0.11</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. galeata mendotae</td>
<td>0.15</td>
<td>1.30</td>
<td>1.31</td>
<td>0.30</td>
<td>0.18</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. schiodleri</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
<td>0.03</td>
<td>0.10</td>
<td>0.08</td>
<td>0.80</td>
<td>1.13</td>
<td>4.03</td>
<td>6.15</td>
<td>7.45</td>
<td></td>
</tr>
<tr>
<td>D. ambiguа</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia lacustris</td>
<td>0.08</td>
<td>0.13</td>
<td>0.08</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphnanosoma leuchtenb.</td>
<td>0.07</td>
<td>0.14</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>5.61</td>
<td>0.12</td>
<td>8.74</td>
<td>2.00</td>
<td>1.07</td>
<td>0.22</td>
<td>0.15</td>
<td>2.62</td>
<td>1.56</td>
<td>1.78</td>
<td>2.42</td>
<td>0.17</td>
<td>0.40</td>
</tr>
<tr>
<td>Alona guttata</td>
<td></td>
</tr>
<tr>
<td>Alona rectangula</td>
<td></td>
</tr>
<tr>
<td>Pleuroxus denticulatus</td>
<td></td>
</tr>
<tr>
<td>P. trigonellus</td>
<td></td>
</tr>
<tr>
<td>Moina micrura</td>
<td></td>
</tr>
<tr>
<td>Leydigia quadrangularis</td>
<td></td>
</tr>
<tr>
<td>Total Cladocera</td>
<td>7.19</td>
<td>1.65</td>
<td>10.33</td>
<td>2.43</td>
<td>1.86</td>
<td>0.51</td>
<td>0.32</td>
<td>2.81</td>
<td>2.48</td>
<td>3.04</td>
<td>6.56</td>
<td>6.32</td>
<td>7.85</td>
</tr>
<tr>
<td>Rotatoria</td>
<td></td>
</tr>
<tr>
<td>Asplanchna priodonta</td>
<td>0.72</td>
<td>0.30</td>
<td>0.04</td>
<td>0.28</td>
<td>2.27</td>
<td>0.47</td>
<td>3.10</td>
<td>2.79</td>
<td>0.62</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyarthra vulgaris</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total Rotatoria</td>
<td>0.72</td>
<td>0.30</td>
<td>0.01</td>
<td>0.04</td>
<td>0.28</td>
<td>2.27</td>
<td>0.47</td>
<td>3.10</td>
<td>2.79</td>
<td>0.62</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaoborus punctipennis</td>
<td>TR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Total organisms/liter** | 12.68 | 3.07 | 11.41 | 4.34 | 4.11 | 1.92 | 1.00 | 9.62 | 6.59 | 11.67 | 14.92 | 9.67 | 11.00
Table 2

<table>
<thead>
<tr>
<th></th>
<th>5/75</th>
<th>6/75</th>
<th>7/75</th>
<th>8/75</th>
<th>9/75</th>
<th>10/75</th>
<th>11/75</th>
<th>12/75</th>
<th>1/76</th>
<th>2/76</th>
<th>3/76</th>
<th>4/76</th>
<th>5/76</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Clyclopoida</td>
<td>6.88</td>
<td>2.91</td>
<td>0.67</td>
<td>0.61</td>
<td>0.74</td>
<td>1.15</td>
<td>1.05</td>
<td>0.44</td>
<td>2.22</td>
<td>5.91</td>
<td>4.47</td>
<td>8.00</td>
<td>2.74</td>
</tr>
<tr>
<td>Calanoida</td>
<td>0.71</td>
<td>0.38</td>
<td>0.59</td>
<td>0.21</td>
<td>0.09</td>
<td>0.22</td>
<td>1.07</td>
<td>3.48</td>
<td>4.07</td>
<td>6.60</td>
<td>1.27</td>
<td>1.69</td>
<td>0.54</td>
</tr>
<tr>
<td>Nauplii</td>
<td>0.43</td>
<td>0.01</td>
<td>TR</td>
<td>0.03</td>
<td>0.19</td>
<td>0.38</td>
<td>0.39</td>
<td>0.20</td>
<td>0.38</td>
<td>0.90</td>
<td>0.37</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Copepodid</td>
<td>2.35</td>
<td>0.62</td>
<td>0.33</td>
<td>0.17</td>
<td>0.56</td>
<td>0.20</td>
<td>0.36</td>
<td>1.97</td>
<td>2.52</td>
<td>5.02</td>
<td>8.55</td>
<td>8.71</td>
<td>2.66</td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>10.37</td>
<td>3.91</td>
<td>1.60</td>
<td>0.99</td>
<td>1.42</td>
<td>1.76</td>
<td>2.86</td>
<td>6.28</td>
<td>9.01</td>
<td>17.91</td>
<td>15.19</td>
<td>18.77</td>
<td>6.55</td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
</tr>
<tr>
<td>Daphnia parvula</td>
<td>2.70</td>
<td>0.03</td>
<td>TR</td>
<td>0.04</td>
<td>0.19</td>
<td>0.69</td>
<td>0.24</td>
<td>0.13</td>
<td>0.19</td>
<td>0.11</td>
<td>12.60</td>
<td>6.67</td>
<td></td>
</tr>
<tr>
<td>D. galeata mendotae</td>
<td>0.17</td>
<td>0.09</td>
<td>0.05</td>
<td>0.02</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. schodleri</td>
<td>TR</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. ambiguas</td>
<td>0.24</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia lacustris</td>
<td>0.20</td>
<td>1.14</td>
<td>0.30</td>
<td></td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphnanosoma leuchtenb</td>
<td>0.07</td>
<td>0.07</td>
<td>0.11</td>
<td>TR</td>
<td>0.15</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>17.86</td>
<td>0.21</td>
<td>0.41</td>
<td>0.12</td>
<td>0.60</td>
<td>3.06</td>
<td>4.68</td>
<td>5.34</td>
<td>9.63</td>
<td>11.35</td>
<td>2.02</td>
<td>29.64</td>
<td>4.14</td>
</tr>
<tr>
<td>Total Cladocera</td>
<td>21.08</td>
<td>1.65</td>
<td>0.91</td>
<td>0.17</td>
<td>0.84</td>
<td>3.43</td>
<td>5.43</td>
<td>5.67</td>
<td>TR</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotatoria</td>
<td></td>
</tr>
<tr>
<td>Asphiantha priodonta</td>
<td>0.16</td>
<td>1.00</td>
<td>0.33</td>
<td>TR</td>
<td>0.02</td>
<td>0.62</td>
<td>1.64</td>
<td>1.32</td>
<td>0.50</td>
<td>0.06</td>
<td>1.02</td>
<td>1.54</td>
<td>0.26</td>
</tr>
<tr>
<td>Polyarthra vulgaris</td>
<td>TR</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Brachionus calyciflorus</td>
<td>0.21</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total Rotatoria</td>
<td>0.16</td>
<td>1.00</td>
<td>0.33</td>
<td>TR</td>
<td>0.02</td>
<td>0.62</td>
<td>1.64</td>
<td>1.32</td>
<td>0.50</td>
<td>0.06</td>
<td>1.23</td>
<td>1.55</td>
<td>0.26</td>
</tr>
<tr>
<td>Chaoborus punctipennis</td>
<td>0.01</td>
<td>TR</td>
<td>0.07</td>
<td>0.02</td>
<td>0.12</td>
<td>TR</td>
<td>0.01</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
<td>0.03</td>
<td>TR</td>
</tr>
<tr>
<td>Total organisms/liter</td>
<td>31.62</td>
<td>6.56</td>
<td>2.91</td>
<td>1.18</td>
<td>2.40</td>
<td>5.81</td>
<td>9.94</td>
<td>13.27</td>
<td>19.34</td>
<td>29.52</td>
<td>18.63</td>
<td>62.84</td>
<td>18.60</td>
</tr>
<tr>
<td></td>
<td>5/75</td>
<td>6/75</td>
<td>7/75</td>
<td>8/75</td>
<td>9/75</td>
<td>10/75</td>
<td>11/75</td>
<td>12/75</td>
<td>1/76</td>
<td>2/76</td>
<td>3/76</td>
<td>4/76</td>
<td>5/76</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>3.70</td>
<td>0.12</td>
<td>0.11</td>
<td>0.72</td>
<td>4.02</td>
<td>2.75</td>
<td>0.83</td>
<td>0.41</td>
<td>0.35</td>
<td>2.70</td>
<td>9.40</td>
<td>23.48</td>
<td></td>
</tr>
<tr>
<td>Calanoida</td>
<td>0.20</td>
<td>TR</td>
<td>0.04</td>
<td>2.91</td>
<td>3.71</td>
<td>0.18</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.19</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nauplii</td>
<td>0.25</td>
<td>0.01</td>
<td>0.03</td>
<td>0.22</td>
<td>1.86</td>
<td>9.85</td>
<td>0.24</td>
<td>0.03</td>
<td>0.05</td>
<td>1.66</td>
<td>1.95</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Copepodid</td>
<td>0.56</td>
<td>0.11</td>
<td>0.07</td>
<td>0.54</td>
<td>2.22</td>
<td>3.41</td>
<td>0.19</td>
<td>0.13</td>
<td>0.73</td>
<td>2.10</td>
<td>8.64</td>
<td>19.22</td>
<td></td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>4.71</td>
<td>0.24</td>
<td>0.21</td>
<td>1.52</td>
<td>11.01</td>
<td>19.72</td>
<td>1.44</td>
<td>0.64</td>
<td>1.16</td>
<td>6.47</td>
<td>20.18</td>
<td>45.16</td>
<td></td>
</tr>
</tbody>
</table>

Cladocera													
Daphnia parvula	11.90	TR	0.01	8.26	0.62	0.09	0.02	0.03	0.32	13.87	20.10		
D. galeata mendotae	TR												
D. scholzleri	TR	0.01											
D. ambigua	1.36												0.25
Ceriodaphnia lacustris	0.62	TR	0.01	0.04	0.22	0.01						0.15	
Diaphanosa leuchtenb.	0.77	0.04	0.17	0.60	0.83	TR	0.03	0.48					
Bosmina longirostris	13.59	0.07	0.04	0.03	7.20	7.31	1.11	0.43	0.23	0.40	3.53	7.67	
Alona guttata		0.11	0.04	TR									
A. rectangularis		0.01											
Pleuroxus denticulatus													
P. trigonellus													
Moina micrura		0.16											
Leydigia quadrangularis	0.05												0.05
Total Cladocera	28.24	0.11	0.22	0.86	16.61	8.07	2.08	0.48	0.27	0.73	17.48	28.74	

Rotatoria													
Asplanchna priodonta	1.71	0.01	0.03	0.11	2.46	1.63	0.11	0.04	0.09	0.45	9.99	0.38	
Polyarthra vulgaris		TR	0.02										
Brachionus calyciflorus	0.23												
Total Rotatoria	1.71	0.01	0.05	0.11	2.46	2.21	0.11	0.04	0.09	3.28	14.28	0.48	

| **Chaoborus punctipennis** | 0.02 | 0.21 | 0.11 | 0.14 | TR | TR | TR | TR | 0.01 | 0.01 | 0.05 | | |
| Total organisms/liter | 34.68| 0.57 | 0.59 | 2.63 | 30.08| 30.00 | 3.63 | 1.16 | 1.52 | 10.49| 51.95| 74.42| |
Figure 3

B-1

TOTAL ORGANISMS PER LITER

MONTHS

M J J A S O N D J F M A M
Figure 4

B-5

TOTAL ORGANISMS PER LITER

MONTHS
Figure 5

B-7

TOTAL ORGANISMS PER LITER

MONTHS

M J J A S O N D J F M A M
Figure 6

B-1-5-7

TOTAL ORGANISMS PER LITER

MONTHS

M J J A S O N D J F M A M
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclopoida</td>
<td>2.50</td>
<td>6.13</td>
<td>1.04</td>
<td>1.77</td>
<td>0.95</td>
<td>1.22</td>
</tr>
<tr>
<td>Calanoida</td>
<td>4.30</td>
<td>1.13</td>
<td>1.22</td>
<td>0.68</td>
<td>0.83</td>
<td>0.51</td>
</tr>
<tr>
<td>Copepods+Nauplii</td>
<td>0.14</td>
<td>0.67</td>
<td>0.33</td>
<td>1.10</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>1.00</td>
<td>2.13</td>
<td>1.34</td>
<td>0.78</td>
<td>0.35</td>
<td>1.99</td>
</tr>
<tr>
<td>Bosmina</td>
<td>2.50</td>
<td>4.63</td>
<td>1.76</td>
<td>1.56</td>
<td>3.28</td>
<td>2.07</td>
</tr>
<tr>
<td>Ceriodaphnia</td>
<td>1.50</td>
<td>0.21</td>
<td>0.02</td>
<td>0.64</td>
<td>0.44</td>
<td>0.02</td>
</tr>
<tr>
<td>Diaphanosoma</td>
<td>1.20</td>
<td>0.28</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Other Cladocera</td>
<td>0.10</td>
<td>TR</td>
<td>0.07</td>
<td>TR</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Asplanchna</td>
<td>3.20</td>
<td>0.72</td>
<td>0.52</td>
<td>1.63</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Chaoborus</td>
<td>0.25</td>
<td>TR</td>
<td>0.01</td>
<td>TR</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Total org./liter</td>
<td>13.10</td>
<td>17.85</td>
<td>6.80</td>
<td>6.39</td>
<td>7.63</td>
<td>7.75</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Cyclopoidea</td>
<td>2.50</td>
<td>7.35</td>
<td>0.82</td>
<td>1.81</td>
<td>1.25</td>
<td>2.91</td>
</tr>
<tr>
<td>Calanoida</td>
<td>7.20</td>
<td>3.84</td>
<td>0.41</td>
<td>1.08</td>
<td>0.26</td>
<td>1.61</td>
</tr>
<tr>
<td>Copepods+Nauplii</td>
<td>0.45</td>
<td>0.45</td>
<td>1.08</td>
<td>1.04</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>1.30</td>
<td>2.35</td>
<td>0.31</td>
<td>0.63</td>
<td>0.73</td>
<td>1.92</td>
</tr>
<tr>
<td>Bosmina</td>
<td>1.00</td>
<td>8.09</td>
<td>1.23</td>
<td>1.58</td>
<td>2.48</td>
<td>6.85</td>
</tr>
<tr>
<td>Ceriodaphnia</td>
<td>2.00</td>
<td>1.35</td>
<td>0.12</td>
<td>0.84</td>
<td>0.37</td>
<td>0.18</td>
</tr>
<tr>
<td>Diaphanosoma</td>
<td>1.60</td>
<td>0.77</td>
<td>0.03</td>
<td>0.29</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Other Cladocera</td>
<td>0.10</td>
<td>0.09</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>TR</td>
</tr>
<tr>
<td>Asplanchna</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chaoborus</td>
<td>3.51</td>
<td>8.51</td>
<td>6.33</td>
<td>17.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total org./liter</td>
<td>15.80</td>
<td>24.86</td>
<td>3.51</td>
<td>8.51</td>
<td>6.33</td>
<td>17.10</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>2.00</td>
<td>3.64</td>
<td>0.45</td>
<td>1.28</td>
<td>1.67</td>
<td>4.05</td>
</tr>
<tr>
<td>Calanoida</td>
<td>5.00</td>
<td>1.48</td>
<td>0.18</td>
<td>0.80</td>
<td>0.47</td>
<td>0.72</td>
</tr>
<tr>
<td>Copepodids+Nauplii</td>
<td>0.27</td>
<td>0.22</td>
<td>0.44</td>
<td>1.01</td>
<td>4.54</td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>5.80</td>
<td>4.63</td>
<td>0.53</td>
<td>1.02</td>
<td>1.92</td>
<td>4.74</td>
</tr>
<tr>
<td>Bosmina</td>
<td>0.70</td>
<td>3.43</td>
<td>0.69</td>
<td>1.49</td>
<td>1.99</td>
<td>3.47</td>
</tr>
<tr>
<td>Ceriodaphnia</td>
<td>2.80</td>
<td>1.07</td>
<td>0.19</td>
<td>1.03</td>
<td>0.36</td>
<td>0.09</td>
</tr>
<tr>
<td>Diaphanosoma</td>
<td>1.50</td>
<td>1.26</td>
<td>0.16</td>
<td>0.25</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td>Other Cladocera</td>
<td>0.17</td>
<td>0.29</td>
<td>0.03</td>
<td>0.01</td>
<td>0.80</td>
<td>0.04</td>
</tr>
<tr>
<td>Asplanchna</td>
<td>2.06</td>
<td>0.20</td>
<td>0.64</td>
<td>0.36</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Chaoborus</td>
<td>0.18</td>
<td>0.16</td>
<td>0.03</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Total org./liter</td>
<td>19.70</td>
<td>18.29</td>
<td>2.65</td>
<td>7.04</td>
<td>8.21</td>
<td>19.35</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>2.33</td>
<td>5.71</td>
<td>0.77</td>
<td>1.62</td>
<td>1.29</td>
<td>2.73</td>
</tr>
<tr>
<td>Calanoida</td>
<td>5.50</td>
<td>2.15</td>
<td>0.60</td>
<td>0.85</td>
<td>0.52</td>
<td>0.95</td>
</tr>
<tr>
<td>Copepods + Nauplii</td>
<td>0.29</td>
<td>0.67</td>
<td>0.62</td>
<td>1.05</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>Daphnia</td>
<td>2.70</td>
<td>3.04</td>
<td>0.49</td>
<td>0.81</td>
<td>1.00</td>
<td>2.88</td>
</tr>
<tr>
<td>Bosmina</td>
<td>1.40</td>
<td>5.38</td>
<td>1.23</td>
<td>1.54</td>
<td>2.58</td>
<td>4.13</td>
</tr>
<tr>
<td>Ceriodaphnia</td>
<td>2.10</td>
<td>0.88</td>
<td>0.11</td>
<td>0.84</td>
<td>0.39</td>
<td>0.10</td>
</tr>
<tr>
<td>Diaphanosoma</td>
<td>1.43</td>
<td>0.77</td>
<td>0.07</td>
<td>0.19</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>Other Cladocera</td>
<td>0.63</td>
<td>0.13</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Asplanchna</td>
<td>0.34</td>
<td>0.75</td>
<td>0.71</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaoborus</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Total org./liter</td>
<td>16.20</td>
<td>20.34</td>
<td>4.31</td>
<td>7.31</td>
<td>7.72</td>
<td>14.74</td>
</tr>
</tbody>
</table>
\[DW_c = \frac{V_c \times DW_s}{V_s} = \frac{DW_s}{DW_c} = \frac{V_s}{V_c} \]

\[DW_1 = \frac{DW_c}{K} \]

\[DW_2 = DW_1 \times 10^3 \]

\[DW_1 = \text{mg/liter} \]
\[DW_2 = \mu\text{g/liter} \]
\[DW_c = \text{dry weight of concentrate} \]
\[DW_s = \text{dry weight of subsample} \]
\[V_c = \text{volume of concentrate} \]
\[V_s = \text{volume of subsample} \]
\[K = \text{total liters sampled} \]
<table>
<thead>
<tr>
<th>Sta. #</th>
<th>Sample date</th>
<th>Vc ml</th>
<th>Vs ml</th>
<th>Dw1 mg</th>
<th>Dw2 mg</th>
<th>K mg/l</th>
<th>Dw1/2 mg/l</th>
<th>Dw1/2 ug/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>5-15-75</td>
<td>75</td>
<td>10</td>
<td>11.339</td>
<td>85.04</td>
<td>6561</td>
<td>0.0130</td>
<td>13.0</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>75</td>
<td>10</td>
<td>14.788</td>
<td>110.91</td>
<td>1863</td>
<td>0.0595</td>
<td>59.5</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>30</td>
<td>10</td>
<td>10.389</td>
<td>31.167</td>
<td>1784</td>
<td>0.0655</td>
<td>65.5</td>
</tr>
<tr>
<td>B1</td>
<td>6-13-75</td>
<td>20</td>
<td>10</td>
<td>21.532</td>
<td>43.06</td>
<td>3377</td>
<td>0.0127</td>
<td>12.7</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>No Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>No Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>7-14-75</td>
<td>20</td>
<td>10</td>
<td>27.232</td>
<td>54.46</td>
<td>3742</td>
<td>0.0145</td>
<td>14.5</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>22.462</td>
<td>44.92</td>
<td>2821</td>
<td>0.0159</td>
<td>15.9</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>22.395</td>
<td>44.79</td>
<td>2695</td>
<td>0.0166</td>
<td>16.6</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>22.204</td>
<td>48.41</td>
<td>2672</td>
<td>0.0181</td>
<td>18.1</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>9.679</td>
<td>19.36</td>
<td>1570</td>
<td>0.0123</td>
<td>12.3</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>18.051</td>
<td>36.10</td>
<td>1558</td>
<td>0.0232</td>
<td>23.2</td>
</tr>
<tr>
<td>B1</td>
<td>8-12-75</td>
<td>20</td>
<td>10</td>
<td>14.635</td>
<td>29.26</td>
<td>4034</td>
<td>0.0073</td>
<td>7.3</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>7.727</td>
<td>15.45</td>
<td>2030</td>
<td>0.0076</td>
<td>7.6</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>9.512</td>
<td>19.08</td>
<td>2123</td>
<td>0.0090</td>
<td>9.0</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>4.433</td>
<td>8.87</td>
<td>1409</td>
<td>0.0063</td>
<td>6.3</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>5.385</td>
<td>10.77</td>
<td>1322</td>
<td>0.0081</td>
<td>8.1</td>
</tr>
<tr>
<td>B1</td>
<td>9-17-75</td>
<td>20</td>
<td>10</td>
<td>10.687</td>
<td>21.37</td>
<td>4262</td>
<td>0.0050</td>
<td>5.0</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>7.471</td>
<td>14.94</td>
<td>1455</td>
<td>0.0103</td>
<td>10.3</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>8.502</td>
<td>17.00</td>
<td>1509</td>
<td>0.0110</td>
<td>11.0</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>6.322</td>
<td>12.64</td>
<td>1414</td>
<td>0.0089</td>
<td>8.9</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>8.140</td>
<td>16.28</td>
<td>1053</td>
<td>0.0155</td>
<td>15.5</td>
</tr>
<tr>
<td>B1</td>
<td>10-22-75</td>
<td>20</td>
<td>10</td>
<td>9.129</td>
<td>18.25</td>
<td>3840</td>
<td>0.0047</td>
<td>4.7</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>6.360</td>
<td>12.72</td>
<td>2062</td>
<td>0.0062</td>
<td>6.2</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>25</td>
<td>10</td>
<td>14.908</td>
<td>37.27</td>
<td>1690</td>
<td>0.0441</td>
<td>44.1</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>5.806</td>
<td>11.61</td>
<td>1264</td>
<td>0.0276</td>
<td>27.6</td>
</tr>
<tr>
<td>B1</td>
<td>11-17-75</td>
<td>20</td>
<td>10</td>
<td>4.693</td>
<td>9.39</td>
<td>4040</td>
<td>0.0023</td>
<td>2.3</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>5.652</td>
<td>11.30</td>
<td>4097</td>
<td>0.0028</td>
<td>2.8</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>15.877</td>
<td>31.77</td>
<td>2430</td>
<td>0.0131</td>
<td>13.1</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>7.477</td>
<td>14.95</td>
<td>1082</td>
<td>0.0138</td>
<td>13.8</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>9.065</td>
<td>18.13</td>
<td>1519</td>
<td>0.0119</td>
<td>11.9</td>
</tr>
<tr>
<td>B1</td>
<td>12-22-75</td>
<td>75</td>
<td>10</td>
<td>11.072</td>
<td>83.04</td>
<td>4490</td>
<td>0.0185</td>
<td>18.5</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>75</td>
<td>10</td>
<td>10.127</td>
<td>75.95</td>
<td>5120</td>
<td>0.0148</td>
<td>14.8</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>5.887</td>
<td>11.77</td>
<td>2824</td>
<td>0.0112</td>
<td>11.2</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>7.380</td>
<td>14.76</td>
<td>1951</td>
<td>0.0076</td>
<td>7.6</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>6.444</td>
<td>12.89</td>
<td>1880</td>
<td>0.0068</td>
<td>6.8</td>
</tr>
<tr>
<td>B1</td>
<td>1-21-76</td>
<td>25</td>
<td>10</td>
<td>12.571</td>
<td>31.43</td>
<td>5204</td>
<td>0.0060</td>
<td>6.0</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>50</td>
<td>10</td>
<td>7.573</td>
<td>37.86</td>
<td>2383</td>
<td>0.0159</td>
<td>15.9</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>50</td>
<td>10</td>
<td>11.895</td>
<td>59.47</td>
<td>2975</td>
<td>0.0200</td>
<td>20.0</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>2.178</td>
<td>4.30</td>
<td>1764</td>
<td>0.0025</td>
<td>2.5</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>1.985</td>
<td>3.97</td>
<td>2189</td>
<td>0.0018</td>
<td>1.8</td>
</tr>
<tr>
<td>Sta. #</td>
<td>Sample date</td>
<td>Vc</td>
<td>Vs</td>
<td>DWs</td>
<td>DWc</td>
<td>K</td>
<td>DW1 mg/l</td>
<td>DW2 ug/l</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>B1</td>
<td>2-18-76</td>
<td>50</td>
<td>10</td>
<td>7.740</td>
<td>38.70</td>
<td>2928</td>
<td>0.0132</td>
<td>13.2</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>50</td>
<td>10</td>
<td>10.120</td>
<td>50.60</td>
<td>2984</td>
<td>0.0170</td>
<td>17.0</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>50</td>
<td>10</td>
<td>13.255</td>
<td>66.27</td>
<td>2526</td>
<td>0.0262</td>
<td>26.2</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>2.650</td>
<td>53.00</td>
<td>1471</td>
<td>0.0036</td>
<td>3.6</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>20</td>
<td>10</td>
<td>2.003</td>
<td>40.06</td>
<td>1101</td>
<td>0.0036</td>
<td>3.6</td>
</tr>
<tr>
<td>B1</td>
<td>3-15-76</td>
<td>75</td>
<td>10</td>
<td>20.190</td>
<td>151.42</td>
<td>5741</td>
<td>0.0243</td>
<td>24.3</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>75</td>
<td>10</td>
<td>19.965</td>
<td>149.74</td>
<td>5205</td>
<td>0.0288</td>
<td>28.8</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>25</td>
<td>10</td>
<td>16.431</td>
<td>41.08</td>
<td>1693</td>
<td>0.0243</td>
<td>24.3</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>25</td>
<td>10</td>
<td>15.006</td>
<td>37.52</td>
<td>2704</td>
<td>0.0139</td>
<td>13.9</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>50</td>
<td>10</td>
<td>9.052</td>
<td>45.26</td>
<td>1867</td>
<td>0.0242</td>
<td>24.2</td>
</tr>
<tr>
<td>B1</td>
<td>4-14-76</td>
<td>200</td>
<td>10</td>
<td>12.078</td>
<td>241.56</td>
<td>3950</td>
<td>0.0611</td>
<td>61.1</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>200</td>
<td>10</td>
<td>11.148</td>
<td>222.96</td>
<td>4120</td>
<td>0.0541</td>
<td>54.1</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>13.406</td>
<td>174.28</td>
<td>1895</td>
<td>0.0920</td>
<td>92.0</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>20.878</td>
<td>271.41</td>
<td>2834</td>
<td>0.0958</td>
<td>95.8</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>14.432</td>
<td>187.62</td>
<td>1832</td>
<td>0.1024</td>
<td>102.4</td>
</tr>
<tr>
<td>B1</td>
<td>5-16-76</td>
<td>200</td>
<td>10</td>
<td>15.574</td>
<td>311.48</td>
<td>4195</td>
<td>0.0742</td>
<td>74.2</td>
</tr>
<tr>
<td>B1</td>
<td>"</td>
<td>200</td>
<td>10</td>
<td>19.256</td>
<td>385.12</td>
<td>4519</td>
<td>0.0852</td>
<td>85.2</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>7.448</td>
<td>96.82</td>
<td>3061</td>
<td>0.0316</td>
<td>31.6</td>
</tr>
<tr>
<td>B5</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>7.726</td>
<td>100.42</td>
<td>2616</td>
<td>0.0384</td>
<td>38.4</td>
</tr>
<tr>
<td>B7</td>
<td>"</td>
<td>130</td>
<td>10</td>
<td>13.728</td>
<td>178.46</td>
<td>1009</td>
<td>0.1769</td>
<td>176.9</td>
</tr>
<tr>
<td>Sample Date</td>
<td>Station</td>
<td>R₁ 0/1</td>
<td>R₂ 0/1</td>
<td>R₁ µg/l</td>
<td>R₂ µg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-14-75</td>
<td>B1</td>
<td>10.72</td>
<td>12.14</td>
<td>14.5</td>
<td>15.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>2.97</td>
<td>2.90</td>
<td>16.6</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>1.86</td>
<td>3.32</td>
<td>12.3</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-12-75</td>
<td>B5</td>
<td>1.13</td>
<td>1.26</td>
<td>7.6</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>0.48</td>
<td>0.75</td>
<td>6.3</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-17-75</td>
<td>B5</td>
<td>2.41</td>
<td>2.42</td>
<td>10.3</td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>3.52</td>
<td>1.80</td>
<td>8.9</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-22-75</td>
<td>B7</td>
<td>25.59</td>
<td>34.62</td>
<td>44.1</td>
<td>27.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-17-75</td>
<td>B1</td>
<td>1.41</td>
<td>1.49</td>
<td>2.3</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>32.90</td>
<td>27.12</td>
<td>13.8</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-22-75</td>
<td>B1</td>
<td>11.35</td>
<td>11.40</td>
<td>18.5</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>3.45</td>
<td>2.25</td>
<td>7.6</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-21-76</td>
<td>B5</td>
<td>18.39</td>
<td>20.02</td>
<td>15.9</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>1.38</td>
<td>0.95</td>
<td>2.5</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-18-76</td>
<td>B1</td>
<td>10.49</td>
<td>12.43</td>
<td>13.2</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>1.81</td>
<td>1.26</td>
<td>3.6</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-15-76</td>
<td>B1</td>
<td>14.84</td>
<td>15.01</td>
<td>26.4</td>
<td>28.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>22.44</td>
<td>14.86</td>
<td>24.3</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-14-76</td>
<td>B1</td>
<td>9.49</td>
<td>9.89</td>
<td>61.1</td>
<td>54.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>62.82</td>
<td>62.86</td>
<td>92.0</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-16-76</td>
<td>B1</td>
<td>11.18</td>
<td>10.87</td>
<td>74.2</td>
<td>85.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>16.42</td>
<td>20.83</td>
<td>31.6</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.0130</td>
<td>0.0127</td>
<td>0.0152</td>
<td>0.0073</td>
<td>0.0050</td>
<td>0.0047</td>
<td>0.0025</td>
</tr>
<tr>
<td>B5</td>
<td>0.0595</td>
<td>------</td>
<td>0.0173</td>
<td>0.0083</td>
<td>0.0106</td>
<td>0.0062</td>
<td>0.0131</td>
</tr>
<tr>
<td>B7</td>
<td>0.0655</td>
<td>------</td>
<td>0.0177</td>
<td>0.0072</td>
<td>0.0122</td>
<td>0.0358</td>
<td>0.0128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.0166</td>
<td>0.0060</td>
<td>0.0151</td>
<td>0.0276</td>
<td>0.0576</td>
<td>0.0797</td>
</tr>
<tr>
<td>B5</td>
<td>0.0112</td>
<td>0.0179</td>
<td>0.0262</td>
<td>0.0191</td>
<td>0.0939</td>
<td>0.0350</td>
</tr>
<tr>
<td>B7</td>
<td>0.0080</td>
<td>0.0028</td>
<td>0.0036</td>
<td>0.0242</td>
<td>0.1024</td>
<td>0.1769</td>
</tr>
</tbody>
</table>
Figure 7

B-1

[Line graph showing changes in mg/liter over months]
<table>
<thead>
<tr>
<th># Weighed</th>
<th>Total Weight</th>
<th>Weight Per Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daphnia parvula (large)</td>
</tr>
<tr>
<td>25</td>
<td>0.100 mg</td>
<td>4.00 µg</td>
</tr>
<tr>
<td>25</td>
<td>0.115 mg</td>
<td>4.60 µg</td>
</tr>
<tr>
<td>25</td>
<td>0.133 mg</td>
<td>5.30 µg</td>
</tr>
<tr>
<td>75</td>
<td>0.337 mg</td>
<td>4.40 µg</td>
</tr>
<tr>
<td>75</td>
<td>0.346 mg</td>
<td>4.60 µg</td>
</tr>
<tr>
<td>75</td>
<td>0.386 mg</td>
<td>5.10 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daphnia parvula (small)</td>
</tr>
<tr>
<td>100</td>
<td>0.216 mg</td>
<td>2.16 µg</td>
</tr>
<tr>
<td>100</td>
<td>0.221 mg</td>
<td>2.21 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bosmina longirostris</td>
</tr>
<tr>
<td>250</td>
<td>0.207 mg</td>
<td>0.83 µg</td>
</tr>
</tbody>
</table>
Figure 10

SESTON, B-1

MG/LITER

% ORGANIC
- IMPROVED PROCEDURE

3/75 4/75 5/75 6/75 7/75 8/75 9/75 10/75 11/75 12/75 1/76 2/76 3/76 4/76 5/76

0 1 2 3 4 5 6 7 8 9 10 11 12
Figure 11

SESTON, B-5

[Graph showing changes in SESTON levels over time with two lines: one for % Organic and one for Improved Procedure.]
Figure 12

SESTON, B-7

MG/LITER

3/75 4/75 5/75 6/75 7/75 8/75 9/75 10/75 11/75 12/75 1/76 2/76 3/76 4/76 5/76

% ORGANIC

IMPROVED PROCEDURE
Figure 13

DISSOLVED SOLIDS, B-1

MG/LITER

% ORGANIC

3/75 4/75 5/75 6/75 7/75 8/75 9/75 10/75 11/75 12/75 1/75 2/75 3/75 4/75 5/75
Figure 14

DISSOLVED SOLIDS, B-5

% ORGANIC

MG/LITER

3/75 4/75 5/75 6/75 7/75 8/75 9/75 10/75 11/75 12/75 1/76 2/76 3/76 4/76 5/76
<table>
<thead>
<tr>
<th></th>
<th>4-9</th>
<th>4-16</th>
<th>4-23</th>
<th>4-30</th>
<th>5-7</th>
<th>5-14</th>
<th>5-21</th>
<th>5-28</th>
<th>6-4</th>
<th>6-11</th>
<th>6-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATORIA</td>
<td></td>
</tr>
<tr>
<td>Asplanchna priodonta</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Brachionus calycifloris</td>
<td>0.01</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collotheca ornata</td>
<td>0.15</td>
<td>0.09</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>TR</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Conochiloides coenobasis</td>
<td>0.01</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.16</td>
<td>0.34</td>
<td>0.42</td>
<td>0.20</td>
</tr>
<tr>
<td>Conochilus unicornis</td>
<td>2.88</td>
<td>0.57</td>
<td>0.32</td>
<td>1.11</td>
<td>1.38</td>
<td>1.82</td>
<td>0.51</td>
<td>0.72</td>
<td>2.44</td>
<td>1.44</td>
<td>1.80</td>
</tr>
<tr>
<td>Epiphanes senta</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Eothinia elongata</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Euchlanis dilatata</td>
<td></td>
</tr>
<tr>
<td>Filinia longiseta</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>TR</td>
<td>0.15</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Hexarthra mira</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kellicottia bostoniensis</td>
<td>0.28</td>
<td>0.49</td>
<td>TR</td>
<td>0.01</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td>TR</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Keratella cochlearis</td>
<td></td>
</tr>
<tr>
<td>Lecane luna</td>
<td></td>
</tr>
<tr>
<td>Macrochaetus longipes</td>
<td></td>
</tr>
<tr>
<td>Monostyla lunaris</td>
<td></td>
</tr>
<tr>
<td>Ploesoma hudsoni</td>
<td></td>
</tr>
<tr>
<td>P. truncatum</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Polyaarthra euryptera</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.10</td>
<td>0.20</td>
<td>0.33</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>0.37</td>
<td>0.33</td>
<td>0.36</td>
<td>0.51</td>
<td>0.60</td>
<td>0.76</td>
<td>0.36</td>
<td>0.88</td>
<td>0.56</td>
<td>1.09</td>
<td>1.28</td>
</tr>
<tr>
<td>Pompholyx sulcata</td>
<td>0.29</td>
<td>TR</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proalinopsis caudata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TR</td>
<td>TR</td>
<td>0.02</td>
</tr>
<tr>
<td>Ptygura libera</td>
<td></td>
</tr>
<tr>
<td>Rotaria neptunia</td>
<td></td>
</tr>
<tr>
<td>Synchaeta stylata</td>
<td>0.56</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocerca capucina</td>
<td>0.01</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. longiseta</td>
<td></td>
</tr>
<tr>
<td>T. porcella</td>
<td></td>
</tr>
<tr>
<td>Total Rotatoria</td>
<td>4.39</td>
<td>2.16</td>
<td>1.42</td>
<td>2.27</td>
<td>2.52</td>
<td>3.30</td>
<td>1.17</td>
<td>1.93</td>
<td>3.56</td>
<td>3.87</td>
<td>5.36</td>
</tr>
</tbody>
</table>
Table 12—con'd

<table>
<thead>
<tr>
<th></th>
<th>4-9</th>
<th>4-16</th>
<th>4-23</th>
<th>4-30</th>
<th>5-7</th>
<th>5-14</th>
<th>5-21</th>
<th>5-28</th>
<th>6-4</th>
<th>6-11</th>
<th>6-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPEPODA</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>0.02</td>
<td>0.07</td>
<td>0.09</td>
<td>0.15</td>
<td>0.12</td>
<td>0.36</td>
<td>0.17</td>
<td>0.11</td>
<td>0.09</td>
<td>0.25</td>
<td>0.38</td>
</tr>
<tr>
<td>Calanoida</td>
<td>0.13</td>
<td>0.33</td>
<td>0.40</td>
<td>0.64</td>
<td>0.54</td>
<td>0.91</td>
<td>0.57</td>
<td>0.76</td>
<td>0.60</td>
<td>0.70</td>
<td>0.67</td>
</tr>
<tr>
<td>Nauplius</td>
<td>1.26</td>
<td>1.61</td>
<td>2.02</td>
<td>2.53</td>
<td>1.70</td>
<td>2.98</td>
<td>1.47</td>
<td>1.19</td>
<td>0.89</td>
<td>1.28</td>
<td>1.09</td>
</tr>
<tr>
<td>Copepodid</td>
<td>0.25</td>
<td>0.52</td>
<td>0.53</td>
<td>0.39</td>
<td>0.23</td>
<td>0.45</td>
<td>0.26</td>
<td>0.21</td>
<td>0.06</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>1.66</td>
<td>2.53</td>
<td>3.03</td>
<td>3.72</td>
<td>2.59</td>
<td>4.69</td>
<td>2.45</td>
<td>2.27</td>
<td>1.44</td>
<td>2.36</td>
<td>2.34</td>
</tr>
<tr>
<td>CLADOSERA</td>
<td></td>
</tr>
<tr>
<td>Alona costata</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>A. quadrangularis</td>
<td>0.02</td>
<td>0.07</td>
<td>0.13</td>
<td>0.23</td>
<td>0.04</td>
<td>0.31</td>
<td>0.33</td>
<td>0.62</td>
<td>0.81</td>
<td>1.75</td>
<td>1.78</td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.11</td>
<td>0.15</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Bosminopsis sp.</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia lacustris</td>
<td>0.01</td>
<td>0.01</td>
<td>TR</td>
<td>0.01</td>
<td>TR</td>
<td>0.01</td>
<td>0.01</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. quadrangula</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Chydomorus barroisi</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>TR</td>
<td>0.01</td>
<td>0.01</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. sphaericus</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Daphnia ambigua</td>
<td>0.03</td>
<td>0.38</td>
<td>0.57</td>
<td>0.79</td>
<td>0.65</td>
<td>1.45</td>
<td>1.43</td>
<td>1.81</td>
<td>0.11</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>D. catawba</td>
<td></td>
</tr>
<tr>
<td>D. galeata</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. middendorffiana</td>
<td>0.03</td>
<td>0.24</td>
<td>0.34</td>
<td>0.21</td>
<td>0.48</td>
<td>0.20</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. parvula</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. Pulex</td>
<td></td>
</tr>
<tr>
<td>D. schodleri</td>
<td>0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.34</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphanosoma leuchtenbergianum</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Holopedium gibberum</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>0.30</td>
<td>0.29</td>
<td>0.55</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Immature Cladocera</td>
<td>0.07</td>
<td>0.12</td>
<td>0.28</td>
<td>0.37</td>
<td>0.57</td>
<td>0.23</td>
<td>0.12</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Total Cladocera</td>
<td>0.07</td>
<td>0.59</td>
<td>1.12</td>
<td>1.76</td>
<td>1.34</td>
<td>3.18</td>
<td>2.67</td>
<td>2.40</td>
<td>1.18</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>Chaoborus punctipennis</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Total Organisms</td>
<td>6.12</td>
<td>5.27</td>
<td>5.58</td>
<td>7.74</td>
<td>6.45</td>
<td>11.17</td>
<td>6.29</td>
<td>6.60</td>
<td>6.18</td>
<td>8.34</td>
<td>10.02</td>
</tr>
</tbody>
</table>
Table 12—con'd

<table>
<thead>
<tr>
<th></th>
<th>6-25</th>
<th>7-2</th>
<th>7-9</th>
<th>7-16</th>
<th>7-22</th>
<th>7-30</th>
<th>8-7</th>
<th>8-14</th>
<th>8-20</th>
<th>8-27</th>
<th>9-3</th>
<th>9-10</th>
<th>9-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATORIA</td>
<td></td>
</tr>
<tr>
<td>Asplanchna p.</td>
<td>0.28</td>
<td>0.15</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachionus c.</td>
<td></td>
</tr>
<tr>
<td>C. ornata</td>
<td>0.11</td>
<td>0.33</td>
<td>0.45</td>
<td>0.56</td>
<td>0.52</td>
<td>0.23</td>
<td>0.04</td>
<td>0.02</td>
<td>0.13</td>
<td>0.04</td>
<td>0.05</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>C. coenobasis</td>
<td>0.18</td>
<td>0.10</td>
<td>0.34</td>
<td>0.25</td>
<td>0.20</td>
<td>0.20</td>
<td>0.03</td>
<td>0.07</td>
<td>0.02</td>
<td>0.04</td>
<td>0.08</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>C. unicornis</td>
<td>2.06</td>
<td>1.92</td>
<td>0.42</td>
<td>2.06</td>
<td>0.62</td>
<td>0.72</td>
<td>0.36</td>
<td>0.22</td>
<td>0.32</td>
<td>0.37</td>
<td>0.28</td>
<td>0.07</td>
<td>0.45</td>
</tr>
<tr>
<td>Epiphantes s.</td>
<td></td>
</tr>
<tr>
<td>E. elongata</td>
<td></td>
</tr>
<tr>
<td>Euchlanis d.</td>
<td></td>
</tr>
<tr>
<td>F. longiseta</td>
<td>0.18</td>
<td>0.10</td>
<td>0.41</td>
<td>0.30</td>
<td>2.66</td>
<td>0.93</td>
<td>0.09</td>
<td>0.04</td>
<td>0.12</td>
<td>0.15</td>
<td>0.28</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Hexarthra m.</td>
<td>1.38</td>
<td>4.33</td>
<td>0.69</td>
<td>0.39</td>
<td>0.12</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.16</td>
<td>0.07</td>
<td>0.06</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>K. bostoniensis</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.22</td>
<td>0.21</td>
<td>0.02</td>
<td>0.02</td>
<td>0.15</td>
<td>0.08</td>
<td>0.06</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Keratella c.</td>
<td>1.69</td>
<td>3.43</td>
<td>0.72</td>
<td>1.35</td>
<td>1.10</td>
<td>0.76</td>
<td>0.32</td>
<td>0.17</td>
<td>0.34</td>
<td>0.31</td>
<td>0.40</td>
<td>0.44</td>
<td>0.41</td>
</tr>
<tr>
<td>Lecane luna</td>
<td></td>
</tr>
<tr>
<td>Macrochaetus l.</td>
<td></td>
</tr>
<tr>
<td>Monostyla l.</td>
<td></td>
</tr>
<tr>
<td>Ploesoma h.</td>
<td></td>
</tr>
<tr>
<td>P. truncatum</td>
<td>0.03</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.02</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>3.54</td>
<td>3.88</td>
<td>1.12</td>
<td>0.97</td>
<td>0.73</td>
<td>1.35</td>
<td>0.34</td>
<td>0.32</td>
<td>0.12</td>
<td>0.10</td>
<td>0.60</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Ptompholyx s.</td>
<td></td>
</tr>
<tr>
<td>Proalinopsis c.</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Ptygura l.</td>
<td>0.54</td>
<td>0.64</td>
<td>1.09</td>
<td>0.80</td>
<td>0.15</td>
<td>0.10</td>
<td>0.21</td>
<td>0.06</td>
<td>0.12</td>
<td>0.05</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotaria n.</td>
<td></td>
</tr>
<tr>
<td>Synchaeta s.</td>
<td>0.86</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Trichocerca c.</td>
<td>0.60</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.08</td>
<td>0.02</td>
<td>0.04</td>
<td>0.18</td>
<td>0.09</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>T. longiseta</td>
<td>1.48</td>
<td>0.25</td>
<td>0.09</td>
<td>0.18</td>
<td>0.08</td>
<td>0.08</td>
<td>0.55</td>
<td>0.29</td>
<td>0.34</td>
<td>0.16</td>
<td>0.36</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>T. porcella</td>
<td></td>
</tr>
<tr>
<td>Total Rotatoria</td>
<td>12.40</td>
<td>14.87</td>
<td>5.31</td>
<td>7.04</td>
<td>8.46</td>
<td>5.68</td>
<td>1.55</td>
<td>1.67</td>
<td>2.73</td>
<td>1.77</td>
<td>1.73</td>
<td>2.46</td>
<td>2.13</td>
</tr>
</tbody>
</table>
Table 12—con'd

<table>
<thead>
<tr>
<th></th>
<th>6-25</th>
<th>7-2</th>
<th>7-9</th>
<th>7-16</th>
<th>7-22</th>
<th>7-30</th>
<th>8-7</th>
<th>8-14</th>
<th>8-20</th>
<th>8-27</th>
<th>9-3</th>
<th>9-10</th>
<th>9-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>0.31</td>
<td>0.23</td>
<td>0.24</td>
<td>0.27</td>
<td>0.59</td>
<td>0.22</td>
<td>0.04</td>
<td>0.09</td>
<td>0.20</td>
<td>0.14</td>
<td>0.05</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>Calanoida</td>
<td>0.46</td>
<td>0.34</td>
<td>0.14</td>
<td>0.18</td>
<td>0.15</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Nauplius</td>
<td>2.23</td>
<td>2.63</td>
<td>1.67</td>
<td>1.10</td>
<td>1.18</td>
<td>0.94</td>
<td>0.40</td>
<td>0.23</td>
<td>0.57</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.29</td>
</tr>
<tr>
<td>Copepodid</td>
<td>0.65</td>
<td>0.27</td>
<td>0.07</td>
<td>0.09</td>
<td>0.23</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.12</td>
<td>0.10</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>3.65</td>
<td>3.47</td>
<td>2.12</td>
<td>1.64</td>
<td>2.16</td>
<td>1.32</td>
<td>0.50</td>
<td>0.38</td>
<td>0.90</td>
<td>0.58</td>
<td>0.33</td>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
</tr>
<tr>
<td>A. costata</td>
<td></td>
</tr>
<tr>
<td>A. rectangula</td>
<td></td>
</tr>
<tr>
<td>A. quadrangularis</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>1.57</td>
<td>0.61</td>
<td>0.20</td>
<td>0.15</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.10</td>
<td>0.21</td>
<td>0.29</td>
<td>0.15</td>
<td>0.34</td>
<td>0.71</td>
</tr>
<tr>
<td>Bosminopsis sp.</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia lacustris</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>C. quadrangula</td>
<td></td>
</tr>
<tr>
<td>Chydorus barroisi</td>
<td></td>
</tr>
<tr>
<td>C. sphaericus</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Daphnia ambiguа</td>
<td></td>
</tr>
<tr>
<td>D. catawba</td>
<td></td>
</tr>
<tr>
<td>D. galeata</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>D. middendorffianum</td>
<td></td>
</tr>
<tr>
<td>D. parvula</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>D. pulex</td>
<td></td>
</tr>
<tr>
<td>D. schaedleri</td>
<td></td>
</tr>
<tr>
<td>Diaphanosoma leuchtenbergianum</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Holopedium gibberum</td>
<td></td>
</tr>
<tr>
<td>Immature Cladocera</td>
<td>0.13</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Total Cladocera</td>
<td>2.76</td>
<td>1.00</td>
<td>0.26</td>
<td>0.18</td>
<td>0.08</td>
<td>0.05</td>
<td>0.06</td>
<td>0.18</td>
<td>0.27</td>
<td>0.41</td>
<td>0.22</td>
<td>0.40</td>
<td>0.85</td>
</tr>
<tr>
<td>Chaoborus punctipennis</td>
<td></td>
</tr>
<tr>
<td>Total Organisms</td>
<td>18.82</td>
<td>19.35</td>
<td>7.69</td>
<td>8.86</td>
<td>10.69</td>
<td>7.05</td>
<td>2.11</td>
<td>2.27</td>
<td>3.91</td>
<td>2.76</td>
<td>2.28</td>
<td>3.31</td>
<td>3.55</td>
</tr>
</tbody>
</table>
Table 12—con'd

<table>
<thead>
<tr>
<th></th>
<th>9-24</th>
<th>10-8</th>
<th>10-15</th>
<th>10-22</th>
<th>10-30</th>
<th>11-5</th>
<th>11-12</th>
<th>11-19</th>
<th>12-3</th>
<th>12-10</th>
<th>12-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATORIA</td>
<td></td>
</tr>
<tr>
<td>Asplanchna priodonta</td>
<td></td>
</tr>
<tr>
<td>Brachionus calyciifloris</td>
<td></td>
</tr>
<tr>
<td>Collotheca ornata</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.09</td>
<td>0.07</td>
<td>0.24</td>
<td>0.18</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Conochiloides coenobasis</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conochilus unicornis</td>
<td>0.10</td>
<td>1.98</td>
<td>0.48</td>
<td>0.23</td>
<td>0.56</td>
<td>0.28</td>
<td>0.62</td>
<td>0.37</td>
<td>0.02</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>Epiphanes senta</td>
<td></td>
</tr>
<tr>
<td>Eothinia elongata</td>
<td></td>
</tr>
<tr>
<td>Euchlanis dilatata</td>
<td></td>
</tr>
<tr>
<td>Flinia longiseta</td>
<td>0.06</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.73</td>
</tr>
<tr>
<td>Hexarthra mira</td>
<td>0.05</td>
<td>TR</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kellicottia bostoniensis</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Keratella cochlearis</td>
<td>0.40</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Lecane luna</td>
<td></td>
</tr>
<tr>
<td>Macrochaetus longipes</td>
<td></td>
</tr>
<tr>
<td>Monostyla lunaris</td>
<td></td>
</tr>
<tr>
<td>Ploesoma hudsoni</td>
<td></td>
</tr>
<tr>
<td>P. truncatum</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>P. vulgatus</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.21</td>
<td>0.10</td>
<td>0.26</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Polynycha euryptera</td>
<td>0.04</td>
<td>0.08</td>
<td>0.15</td>
<td>0.17</td>
<td>1.96</td>
<td>0.78</td>
<td>1.84</td>
<td>0.73</td>
<td>0.23</td>
<td>1.85</td>
<td>0.81</td>
</tr>
<tr>
<td>Pompholyx sulcata</td>
<td></td>
</tr>
<tr>
<td>Proalinopsis caudata</td>
<td></td>
</tr>
<tr>
<td>Pygmaea libera</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Rotaria neptunia</td>
<td></td>
</tr>
<tr>
<td>Synchaeta stylata</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocerca capucina</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. longiseta</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.10</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>T. procella</td>
<td></td>
</tr>
<tr>
<td>Total Rotatoria</td>
<td>1.38</td>
<td>2.23</td>
<td>0.78</td>
<td>0.52</td>
<td>3.05</td>
<td>1.33</td>
<td>3.24</td>
<td>1.55</td>
<td>0.39</td>
<td>3.08</td>
<td>4.13</td>
</tr>
</tbody>
</table>
Table 12—con’d

<table>
<thead>
<tr>
<th></th>
<th>9-24</th>
<th>10-8</th>
<th>10-15</th>
<th>10-22</th>
<th>10-30</th>
<th>11-5</th>
<th>11-12</th>
<th>11-19</th>
<th>12-3</th>
<th>12-10</th>
<th>12-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPEPODA</td>
<td></td>
</tr>
<tr>
<td>Cyclopoida</td>
<td>0.06</td>
<td>0.07</td>
<td>0.23</td>
<td>0.06</td>
<td>0.15</td>
<td>0.08</td>
<td>0.43</td>
<td>0.16</td>
<td>0.09</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Calanoida</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.15</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Nauplius</td>
<td>0.10</td>
<td>0.35</td>
<td>0.16</td>
<td>0.07</td>
<td>0.38</td>
<td>0.19</td>
<td>0.73</td>
<td>0.32</td>
<td>0.06</td>
<td>0.33</td>
<td>0.73</td>
</tr>
<tr>
<td>Copepodid</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.12</td>
<td>0.06</td>
<td>0.22</td>
<td>0.05</td>
<td>0.01</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Total Copepoda</td>
<td>0.24</td>
<td>0.53</td>
<td>0.48</td>
<td>0.18</td>
<td>0.68</td>
<td>0.35</td>
<td>1.52</td>
<td>0.59</td>
<td>0.19</td>
<td>0.58</td>
<td>1.22</td>
</tr>
<tr>
<td>CLADOCERA</td>
<td></td>
</tr>
<tr>
<td>Alona costata</td>
<td></td>
</tr>
<tr>
<td>A. rectangula</td>
<td></td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>0.16</td>
<td>0.48</td>
<td>0.27</td>
<td>0.04</td>
<td>0.12</td>
<td>0.04</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Bosminopsis sp.</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia lacustris</td>
<td>0.02</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. quadrangula</td>
<td></td>
</tr>
<tr>
<td>Chydorus barroisi</td>
<td></td>
</tr>
<tr>
<td>C. sphaericus</td>
<td></td>
</tr>
<tr>
<td>Daphnia ambigua</td>
<td></td>
</tr>
<tr>
<td>D. catawba</td>
<td></td>
</tr>
<tr>
<td>D. galeata</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. middendorffiana</td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>D. parvula</td>
<td>0.02</td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. pulex</td>
<td></td>
</tr>
<tr>
<td>D. schodleri</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Diaphanosoma leuchtenbergianum</td>
<td>0.04</td>
<td>0.02</td>
<td>0.13</td>
<td>0.06</td>
<td>0.80</td>
<td>0.33</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holopedium gibberum</td>
<td>0.05</td>
<td>0.29</td>
<td>0.04</td>
<td>0.12</td>
<td>0.05</td>
<td>0.08</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immature Cladocera</td>
<td>0.04</td>
<td>0.01</td>
<td>0.07</td>
<td></td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cladocera</td>
<td>0.18</td>
<td>0.63</td>
<td>0.59</td>
<td>0.09</td>
<td>0.48</td>
<td>0.18</td>
<td>1.11</td>
<td>0.52</td>
<td>0.34</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Chaoborus punctipennis</td>
<td></td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organisms</td>
<td>1.81</td>
<td>3.39</td>
<td>18.37</td>
<td>0.78</td>
<td>4.21</td>
<td>1.85</td>
<td>5.86</td>
<td>2.65</td>
<td>0.92</td>
<td>3.96</td>
<td>5.65</td>
</tr>
</tbody>
</table>
Figure 16

DEGRAY LAKE

- TOTAL COPEPODA
- TOTAL CLADOCERA
- TOTAL ROTATORIA
- GRAND TOTAL

ORGANISMS PER LITER

Figure 16—con'd

DEGRAY LAKE

- TOTAL COPEPODA
- TOTAL CLADOCERA
- TOTAL ROTATORIA
- GRAND TOTAL

ORGANISMS PER LITER

9/24 10/8 10/15 10/22 10/29 11/5 11/12 11/19 12/3 12/10 12/17
<table>
<thead>
<tr>
<th>Total Fraction (A)</th>
<th>Date of Sample (B)</th>
<th>Station & Depth</th>
<th>Vc</th>
<th>Vs</th>
<th>DWs</th>
<th>DWC</th>
<th>K</th>
<th>DW1</th>
<th>DW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4/16/75 1-50-0</td>
<td>100 11</td>
<td>13.6 123.6</td>
<td>13,662.9</td>
<td>0.009</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 4/16/75 1-50-0</td>
<td>100 11</td>
<td>0.7 6.4</td>
<td>13,662.9</td>
<td>0.005</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 4/23/75 1-50-0</td>
<td>100 11</td>
<td>15.6 141.8</td>
<td>13,662.9</td>
<td>0.010</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 4/23/75 1-50-0</td>
<td>100 11</td>
<td>11.8 107.3</td>
<td>13,662.9</td>
<td>0.007</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 4/30/75 1-50-0</td>
<td>100 11</td>
<td>16.4 149.1</td>
<td>13,662.9</td>
<td>0.010</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 4/30/75 1-50-0</td>
<td>100 11</td>
<td>9.1 82.7</td>
<td>13,662.9</td>
<td>0.006</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 5/ 7/75 1-50-0</td>
<td>100 11</td>
<td>22.3 202.7</td>
<td>13,662.9</td>
<td>0.014</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5/ 7/75 1-50-0</td>
<td>100 11</td>
<td>17.3 157.3</td>
<td>13,662.9</td>
<td>0.011</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 5/14/75 1-50-0</td>
<td>100 11</td>
<td>16.8 152.7</td>
<td>13,662.9</td>
<td>0.012</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5/14/75 1-50-0</td>
<td>100 11</td>
<td>6.1 55.5</td>
<td>13,662.9</td>
<td>0.004</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 5/21/75 1-20-0</td>
<td>100 11</td>
<td>5.1 46.4</td>
<td>2,732.6</td>
<td>0.018</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5/21/75 1-20-0</td>
<td>100 11</td>
<td>5.1 46.4</td>
<td>2,732.6</td>
<td>0.017</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 5/21/75 R2</td>
<td>1-5-0</td>
<td>4.1 42.7</td>
<td>1,004.7</td>
<td>0.017</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5/21/75 R2</td>
<td>1-5-0</td>
<td>4.1 42.7</td>
<td>1,004.7</td>
<td>0.017</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 5/27/75 R2</td>
<td>1-5-0</td>
<td>2.7 24.5</td>
<td>1,004.7</td>
<td>0.024</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5/27/75 R2</td>
<td>1-5-0</td>
<td>2.7 24.5</td>
<td>1,004.7</td>
<td>0.024</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 6/ 4/75 R1</td>
<td>1-5-0</td>
<td>2.4 21.8</td>
<td>1,004.7</td>
<td>0.023</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6/ 4/75 R1</td>
<td>1-5-0</td>
<td>2.4 21.8</td>
<td>1,004.7</td>
<td>0.023</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 6/ 4/75 R2</td>
<td>1-5-0</td>
<td>8.8 17.6</td>
<td>1,004.7</td>
<td>0.017</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6/ 4/75 R2</td>
<td>1-5-0</td>
<td>8.8 17.6</td>
<td>1,004.7</td>
<td>0.017</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 6/11/75 1-10-0</td>
<td>100 11</td>
<td>10.6 96.4</td>
<td>1,004.7</td>
<td>0.094</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6/11/75 1-10-0</td>
<td>100 11</td>
<td>8.0 16.0</td>
<td>2,732.6</td>
<td>0.059</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 6/18/75 1-10-0</td>
<td>20 10</td>
<td>6.8 13.6</td>
<td>2,732.6</td>
<td>0.050</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6/18/75 1-10-0</td>
<td>20 10</td>
<td>29.0 58.0</td>
<td>2,732.6</td>
<td>0.021</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 6/25/75 1-5-0</td>
<td>30 11</td>
<td>11.4 31.1</td>
<td>341.6</td>
<td>0.0910</td>
<td>91.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6/25/75 1-5-0</td>
<td>30 11</td>
<td>2.8 7.6</td>
<td>341.6</td>
<td>0.0224</td>
<td>22.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 7/ 2/75 1-5-0</td>
<td>20 10</td>
<td>20.6 41.2</td>
<td>2,732.6</td>
<td>0.0151</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7/ 2/75 1-5-0</td>
<td>20 10</td>
<td>5.1 10.2</td>
<td>2,732.6</td>
<td>0.0037</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 7/ 9/75 1-10-0</td>
<td>20 10</td>
<td>11.7 23.4</td>
<td>3,415.7</td>
<td>0.0069</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7/ 9/75 1-10-0</td>
<td>20 10</td>
<td>2128 4256</td>
<td>3,415.7</td>
<td>0.0012</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 7/16/75 1-10-0</td>
<td>20 10</td>
<td>11836 23672</td>
<td>3,415.7</td>
<td>0.0069</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7/16/75 1-10-0</td>
<td>20 10</td>
<td>2464 4928</td>
<td>3,415.7</td>
<td>0.0014</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 7/22/75 1-10-0</td>
<td>30 11</td>
<td>5.197 14.174</td>
<td>2,732.6</td>
<td>0.0052</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7/22/75 1-10-0</td>
<td>30 11</td>
<td>1.917 5.228</td>
<td>2,732.8</td>
<td>0.0019</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 7/30/75 1-10-0</td>
<td>20 10</td>
<td>9.436 18.872</td>
<td>3,415.7</td>
<td>0.0055</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 7/30/75 1-10-0</td>
<td>20 10</td>
<td>5.704 11.408</td>
<td>3,415.7</td>
<td>0.0033</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 8/ 6/75 1-10-0</td>
<td>20 10</td>
<td>6.782 13.564</td>
<td>2,732.8</td>
<td>0.0050</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 8/ 6/75 1-10-0</td>
<td>20 10</td>
<td>6.885 13.770</td>
<td>2,732.8</td>
<td>0.0050</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 8/14/75 1-10-0</td>
<td>20 10</td>
<td>3.886 7.772</td>
<td>2,732.8</td>
<td>0.0028</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 8/14/75 1-10-0</td>
<td>20 10</td>
<td>2.490 4.980</td>
<td>2,732.8</td>
<td>0.0018</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 8/27/75 1-10-0</td>
<td>20 10</td>
<td>6.038 12.076</td>
<td>2,732.8</td>
<td>0.0044</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 8/27/75 1-10-0</td>
<td>20 10</td>
<td>5.410 10.820</td>
<td>2,732.8</td>
<td>0.0040</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 9/ 3/75 1-10-0</td>
<td>20 10</td>
<td>5.914 11.828</td>
<td>2,732.8</td>
<td>0.0043</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 9/ 3/75 1-10-0</td>
<td>20 10</td>
<td>4.940 9.880</td>
<td>2,732.8</td>
<td>0.0036</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 9/10/75 1-10-0</td>
<td>20 10</td>
<td>7.869 15.739</td>
<td>2,732.8</td>
<td>0.0058</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 9/10/75 1-10-0</td>
<td>20 10</td>
<td>4.068 8.136</td>
<td>2,732.8</td>
<td>0.0030</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13—con'd

<table>
<thead>
<tr>
<th>Fraction (B)</th>
<th>Date of Sample</th>
<th>Station & Depth</th>
<th>Vc</th>
<th>Vs</th>
<th>DW_s</th>
<th>DW_c</th>
<th>K</th>
<th>DW1</th>
<th>DW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9/17/75</td>
<td>1-10-0</td>
<td>20</td>
<td>10</td>
<td>7.442</td>
<td>14.884</td>
<td>2,732.8</td>
<td>0.0054</td>
<td>5.4</td>
</tr>
<tr>
<td>B</td>
<td>9/17/75</td>
<td>1-10-0</td>
<td>20</td>
<td>10</td>
<td>7.122</td>
<td>14.244</td>
<td>2,732.8</td>
<td>0.0052</td>
<td>5.2</td>
</tr>
<tr>
<td>A</td>
<td>9/24/75</td>
<td>1-10-0</td>
<td>20</td>
<td>10</td>
<td>7.316</td>
<td>14.632</td>
<td>2,732.8</td>
<td>0.0054</td>
<td>5.4</td>
</tr>
<tr>
<td>B</td>
<td>9/24/75</td>
<td>1-10-0</td>
<td>20</td>
<td>10</td>
<td>3.763</td>
<td>7.526</td>
<td>2,732.8</td>
<td>0.0028</td>
<td>2.8</td>
</tr>
<tr>
<td>A</td>
<td>10/8/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*1.780</td>
<td>16.182</td>
<td>2,732.8</td>
<td>0.0059</td>
<td>*5.9</td>
</tr>
<tr>
<td>B</td>
<td>10/8/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*3.015</td>
<td>27.409</td>
<td>2,732.8</td>
<td>0.0100</td>
<td>*10.0</td>
</tr>
<tr>
<td>A</td>
<td>10/15/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*3.251</td>
<td>29.555</td>
<td>2,732.8</td>
<td>0.0108</td>
<td>*10.8</td>
</tr>
<tr>
<td>B</td>
<td>10/15/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*3.645</td>
<td>33.136</td>
<td>2,732.8</td>
<td>0.0121</td>
<td>*12.1</td>
</tr>
<tr>
<td>A</td>
<td>10/22/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>2.693</td>
<td>29.378</td>
<td>2,732.8</td>
<td>0.0108</td>
<td>10.8</td>
</tr>
<tr>
<td>B</td>
<td>10/22/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>1.044</td>
<td>11.389</td>
<td>2,732.8</td>
<td>0.0042</td>
<td>4.2</td>
</tr>
<tr>
<td>A</td>
<td>10/30/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>8.110</td>
<td>88.472</td>
<td>2,732.8</td>
<td>0.0324</td>
<td>32.4</td>
</tr>
<tr>
<td>B</td>
<td>10/30/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>5.457</td>
<td>59.531</td>
<td>2,732.8</td>
<td>0.0218</td>
<td>21.8</td>
</tr>
<tr>
<td>A</td>
<td>11/5/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>*4.571</td>
<td>49.866</td>
<td>2,732.8</td>
<td>0.0182</td>
<td>*18.2</td>
</tr>
<tr>
<td>B</td>
<td>11/5/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>*5.608</td>
<td>61.178</td>
<td>2,732.8</td>
<td>0.0224</td>
<td>*22.4</td>
</tr>
<tr>
<td>A</td>
<td>11/12/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>10.907</td>
<td>118.986</td>
<td>2,732.8</td>
<td>0.0435</td>
<td>43.5</td>
</tr>
<tr>
<td>B</td>
<td>11/12/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>1.462</td>
<td>15.949</td>
<td>2,732.8</td>
<td>0.0058</td>
<td>5.8</td>
</tr>
<tr>
<td>A</td>
<td>11/19/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>11.446</td>
<td>124.866</td>
<td>2,732.8</td>
<td>0.0457</td>
<td>45.7</td>
</tr>
<tr>
<td>B</td>
<td>11/19/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>2.768</td>
<td>30.196</td>
<td>2,732.8</td>
<td>0.0110</td>
<td>11.0</td>
</tr>
<tr>
<td>A</td>
<td>12/3/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>8.833</td>
<td>96.906</td>
<td>2,732.8</td>
<td>0.0355</td>
<td>35.5</td>
</tr>
<tr>
<td>B</td>
<td>12/3/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>1.152</td>
<td>12.567</td>
<td>2,732.8</td>
<td>0.0046</td>
<td>4.6</td>
</tr>
<tr>
<td>A</td>
<td>12/10/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>8.054</td>
<td>87.862</td>
<td>2,732.8</td>
<td>0.0322</td>
<td>32.2</td>
</tr>
<tr>
<td>B</td>
<td>12/10/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>1.178</td>
<td>12.851</td>
<td>2,732.8</td>
<td>0.0047</td>
<td>4.7</td>
</tr>
<tr>
<td>A</td>
<td>12/17/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>4.757</td>
<td>51.895</td>
<td>2,732.8</td>
<td>0.0190</td>
<td>19.9</td>
</tr>
<tr>
<td>B</td>
<td>12/17/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>1.504</td>
<td>16.407</td>
<td>2,732.8</td>
<td>0.0060</td>
<td>6.0</td>
</tr>
</tbody>
</table>

*Error; i.e., F > T

Replications where F > T:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/8/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*1.123</td>
<td>10.209</td>
<td>2,732.8</td>
<td>0.0037</td>
<td>3.7</td>
</tr>
<tr>
<td>B</td>
<td>10/8/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*1.861</td>
<td>16.918</td>
<td>2,732.8</td>
<td>0.0061</td>
<td>6.2</td>
</tr>
<tr>
<td>A</td>
<td>10/15/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*1.982</td>
<td>18.018</td>
<td>2,732.8</td>
<td>0.0066</td>
<td>6.6</td>
</tr>
<tr>
<td>B</td>
<td>10/15/75</td>
<td>1-10-0</td>
<td>100</td>
<td>11</td>
<td>*3.108</td>
<td>28.255</td>
<td>2,732.8</td>
<td>0.0103</td>
<td>10.3</td>
</tr>
<tr>
<td>A</td>
<td>11/5/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>4.696</td>
<td>51.229</td>
<td>2,732.8</td>
<td>0.0187</td>
<td>18.7</td>
</tr>
<tr>
<td>B</td>
<td>11/5/75</td>
<td>1-10-0</td>
<td>120</td>
<td>11</td>
<td>0.921</td>
<td>10.047</td>
<td>2,732.8</td>
<td>0.0037</td>
<td>3.7</td>
</tr>
</tbody>
</table>

*Continued error in replicate run; i.e., F > T
Figure 17

DEGRAY BIOMASS (MORS) - SEASONAL, STATION 1, 1975

- TOTAL NET SESTON
- ZOOPLANKTON FRACTION

MG/LITER x 10^3

1. $\sqrt[3]{\text{MG/LITER} \times 10^3}$ = DW$_2$ OR $\bar{x}(\text{DW}_2)$ WHICHEVER APPLICABLE
2. MEAN OF 20-0 M AND 5-0 M SAMPLES
3. MEAN OF REPLICATED 5-0 M SAMPLES
4. MEAN OF REPLICATED 5-0 M SAMPLES

DEGRAY BIOMASS (MORS) - SEASONAL, STATION 1, 1975

○ = TOTAL NET SESTON
○ = ZOOPLANKTON FRACTION

\[\n\frac{1}{2} \text{MG/LITER} \times 10^3 = \text{DW}_2 \text{ OR } \bar{x}(\text{DW}_2) \text{ WHICHEVER APPLICABLE} \]
DEGRAY BIOMASS (MGRS) - SEASONAL, STATION 1, 1975

\[\text{\# = TOTAL NET SESTON} \]
\[\text{\# = ZOOPLANKTON FRACTION} \]

\[\text{MG/LITER} \times 10^3 = \text{DW}_2 \text{ OR } \bar{x} |\text{DW}_2| \text{ WHICHEVER APPLICABLE} \]

\[\text{MEAN OF 10-0 M REPLICATE SAMPLE RUNS WHERE } F > T \]

Figure 1? -- cont'd
Figure 18

DEGRAY BIOMASS (MORS) – MONTHLY MEANS, STATION 1, 1975

□ = TOTAL NET SESTON
❖ = ZOOPLANKTON FRACTION

\[\hat{\mathbf{M}} \text{G/LITER} \times 10^3 = \text{DW}_2 \text{ OR } \hat{x}(\text{DW}_2) \text{ WHICHEVER APPLICABLE} \]