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A. General Introduct ion

To keep pace with demands fo r  increasing food supplies to sa t is fy  

the expanding world population, modern agr icu l tu re  has u t i l i z e d  the 

la tes t  s c ie n t i f i c  and technological knowledge available.  Increases in 

crop production through the use o f  growth regulators, f e r t i l i z e r s ,  herb­

ic ides, and insect ic ides have been l i t t l e  short of  phenomenal, and drugs, 

feed addit ives, and h igher-qua l i ty  grain and forage have dramatically 

increased l ivestock production. But, as is usually the case, th is  

progress has been accompanied by problems, one o f  the more serious being 

contamination of  our environment by chemicals. Only in recent years 

have the f u l l  e f fects of  these pol lu tants on the ecological balance of  

nature begun to be understood in a l l  th e i r  in t r icac ies  and implicat ions.

While probably not as g u i l t y  of  a i r  and water po l lu t ion  as are 

urban industr ies,  rural a rg icu l tu re  is doubtless one o f  the major 

contr ibutors to po l lu t ion  of our natural water systems, in large part 

because o f  the widespread use o f  herbicides and pest ic ides. Granting 

that use o f  these chemicals should be continued, of  necessity, to 

maintain and increase present levels o f  food production, the problem 

remains of  how to accomplish th is  with minimum adverse environmental 

e f fec ts .  The ul t imate goal - an increasingly d i f f i c u l t  one in view of 

today's increasingly sensit ive and sophisticated instrumentation - is 

to do so with no detectable destruction of the ecological balance.

With regard to environmental contamination by pesticides and 

herbicides, there are several important questions to be considered:

(1) What are the bio log ical e f fects o f  these chemicals? Are they 

harmful to desirable f lo ra  or fauna, and i f  so, in what way, and in

1
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what quantit ies? (2) What are the s t a b i l i t i e s  of  these compounds?

How quickly do they degrade? This is a c r i t i c a l  consideration fo r  

po ten t ia l ly  harmful substances. (3) What is (are) the mode(s) of  

degradation? How do sunlight,  temperature, and addit ional chemicals 

and substances native to the environment a f fec t  the rates and path­

ways of decomposition? (4) How is the pesticide transported in the 

environment? Will factors ( l ) - ( 3 )  vary with geographical region?

Will the pesticide be transported through the w i l d l i f e  food chain and 

threaten the well-being or even existence of some animal species?

This research project was begun with the goal of  providing 

both qua l i ta t ive  and quant i ta t ive answers to queries (2) and (3) of 

the previous paragraph, fo r  a series of  organophosphorus pesticides. 

These compounds are of importance because of the i r  effectiveness and 

re la t iv e ly  rapid breakdown; the environmental persistence of other 

equally e f fec t ive  types of  chemicals has in many instances caused them 

to be banned from private and commercial use as pesticides. Iden t i ­

f ica t ion  of the individual degradation products and determination of 

the rates of  reaction for  the various pathways under d i f fe ren t  condi­

t ions is necessary i f  the fate of these pesticides in our r ive rs ,  

streams, and lakes is to be completely understood.

Since the i n i t i a l  discovery of the physiological ef fects of  

organophosphorus molecules in 1932, much synthetic and toxicological 

research has been performed on these compounds. Many of the compounds 

f i r s t  developed were extremely toxic  to mammals as well as to insect 

pests; derivatives were la te r  synthesized which had a much higher 

se le c t iv i ty .  The use of organophosphorus pesticides is now widespread
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over 140 phosphorus compounds have been employed as pest icides, with 

the current annual production now more than 60,000 tons in the United 

States alone (1).

All b io log ica l ly  act ive organophosphorus compounds have an 

acid anhydride l inkage, with the general formula

0(or S)ii
R1-P-R3

R?

where R1 and R2 can be a lk y l ,  alkoxy, or amino groups, and R3 can be 

any acid residue (1). The pest ic idal a c t i v i t y  of these species is due 

to in h ib i t io n  of the cholinesterase enzymes, which hydrolyze acety l­

choline to choline and acetate. Acetylcholine is one of several 

important neurotransmitters which transport nerve impulses across the
o

synaptic gap from neuron to neuron. The synaptic gap is 200-300 A in
o

neural synapses and 500-600 A in neuromuscular junct ions.

Normal ce l ls  possess a concentration gradient of K+ and Na+ 

ions, in which the in tracell ular concentration of K+ is larger than 

the extracell ular concentration, and vice versa fo r  Na+. In nerve 

ce l ls ,  th is  produces a Nernstian po ten t ia l ,  the resting po ten t ia l ,  

of the order of 60-70 mV across the membrane, with the inside being 

negative with respect to the outside. The rest ing potential is 

approximately the equi l ibr ium potential of K+. Upon exc i ta t ion ,  the 

membrane's permeabil i ty to Na increases about 500-fold, Na ions pass 

rap id ly in to the cel l  in te r io r ,  and the membrane potential  changes 

quickly from the resting potential  of about -70 mV to about +30 mV, 

approximately the Na+ equi l ibr ium potent ia l .  As the membrane depolar­

izes during formation of the action potential  voltage spike, Na+
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conductiv ity decreases and K+ conductiv ity increases, thus reestab­

l ish ing  the resting po ten t ia l .  The nerve impulse, in the e lec tr ica l  

form of the action po ten t ia l ,  propagates along the axon un t i l  i t  

reaches the nerve ending, where acetylcholine is stored in synaptic 

vesicles. These normally burst in a spontaneous, in te rm it tent  

fashion, releasing small amounts o f  acetylcholine and producing small, 

1-2 mV depolarizing potent ia ls .  However, the a rr iva l  of the action 

potential  at the synapse stimulates the vesicle disruptions and 

induces a rapid increase of  two to three orders of  magnitude in the 

concentration of free acetylcholine, which migrates across the synap­

t i c  gap to bind with receptor s ites on the postsynaptic membrane of 

another neuron (or a muscle c e l l ) .  This binding changes the permeabil­

i t y  of the postsynaptic membrane, increases cation conductance, and 

produces the 10-20 mV end-plate, or postsynaptic, exc i ta t ion po tent ia l ,  

which d ra s t ica l ly  a l te rs  the membrane's Na+ permeabil i ty and tr iggers 

the next action potent ia l .

In normal neural operation, the acetylcholine in the synaptic 

gap and near the receptors of the postsynaptic membrane is hydrolyzed 

by acetylcholinesterase a f te r  the action potential is generated, 

returning the membrane to i t s  normal polarized resting state in 

preparation fo r  the ar r iva l  of  the next burst of chemical nerve impulse 

carr ie rs .  I f  the enzyme is inh ib i ted ,  the acetylcholine remains in 

the synaptic gap, the postsynaptic membrane remains in i t s  excited, 

depolarized state, and transmission of impulses ceases. In e f fec t ,  

the nerves are locked into th e i r  "on" state, which is usually fa ta l  to 

the organism, as acetylcholine is the neurotransmitter fo r  the central
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nervous systems of both insects and vertebrates, as well as the 

neuromuscular and other systems in vertebrates (1).

In the c a ta ly t ic  hydrolysis of  acety lchol ine, the compound 

forms an ES complex with acety lchol inesterase, the acyl group is 

transferred to the enzyme to produce choline, and the unstable 

acetylated enzyme is rap id ly  hydrolyzed to acetic acid and regenerated 

acety lchol inesterase. Organophosphate esters also form ES complexes 

with the enzyme, with a phosphoryl group being transferred to the 

enzyme. However, phosphorylated acetylcholinesterase is about 107 

times less susceptible to hydrolysis than the acetylated enzyme, pre­

venting rapid regeneration of acetylcholinesterase and resu l t ing  in 

i r re ve rs ib le  in h ib i t io n .  The phosphorylation of the enzyme is s im i la r  

in mechanism to the a lka l ine  hydrolysis of organophosphorus esters, 

both featur ing an Ŝ 2 nucleophi l ic  attack on the phosphorus atom, 

which bears a pa r t ia l  pos i t ive  charge. Replacement of the P=S moiety 

by P=0, because of oxygen's greater e lec t ronega t iv i ty ,  increases the 

posit ive charge on phosphorus and favors nucleophi l ic  attack, increas­

ing the rate of a lka l ine  hydrolysis (1-2). As expected by analogy,

P=0 organophosphorus pest icides are several orders of magnitude more 

active than th e i r  P=S counterparts (1-2).

A more comprehensive in troduct ion to the h is to ry ,  synthetic and 

b io logical chemistry, and reactions of organophosphorus compounds and 

pesticides may be found in any of several books on these compounds 

(1-13), the most recent and comprehensive of which is the t rea t ise  by 

Eto (1).
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To realize the goals of th is  pro ject,  31P nmr was chosen as the 

main instrumental technique. I t  is a non-destructive method which 

allows continuous monitoring of the or ig ina l pesticide and a l l  phos­

phorus-containing degradation products. The 31P nucleus, with a spin 

of  V2, 100% natural abundance, re la t iv e ly  high s e n s i t iv i ty  (0.0663, 

re la t ive  to 1H), and large chemical s h i f t  range, has very favorable 

nmr properties. The large 31P chemical s h i f t  range and the occurrence 

of only one phosphorus atom per pesticide molecule resu lt  in re la t ive ly  

uncomplicated spectra, from which id e n t i f i ca t io n  of compounds and 

measurements of indiv idual resonance areas are straightforward. The 

disadvantages of using 31P nmr include i t s  poor detection s e n s i t iv i ty ,  

in comparison to techniques such as gas chromatography and infrared 

or u l t ra v io le t  spectroscopy; the fact that only phosphorus-containing 

species can be monitored; and the l im ited accuracy of k inet ic  measure­

ments because of uncertainties in measured peak areas (5-10% at best), 

low s e n s i t iv i ty ,  and d i f fe re n t ia l  saturation of  resonances due to 

d i f fe ren t  and re la t iv e ly  long relaxation times.

The majority of  nmr studies of organophosphorus pesticides have 

u t i l i z e d  the *13 nucleus (15-28, and references therein).  Use of 31P 

has been less frequent. Muller and Goldensen (29), using 31P nmr, 

determined that a possible ca ta ly t ic  e f fec t  was responsible fo r  the 

intermediacy of  the k inet ics between zero- and f i r s t -o rd e r  for  the iso­

merization of Systox to Isosystox. The thermal decomposition of Baytex 

has been followed by 31P nmr (30). Ross and Biros (31) correlated 31P 

chemical sh i f ts  with structure types fo r  thirty-seven pesticides in 

nine classes of compounds. Gurley and Ritchey (32) analyzed 31P relaxa­

t ion behavior of several pesticides and related compounds in the
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presence of  various re laxat ion reagents. Chemical sh i f t s  and relaxa­

t ion  times have been recorded fo r  both pest ic ides and der iva t ives ,  as 

well as other organophosphorus compounds (33-38, and references 

there in ) .  This survey is by no means e i the r  comprehensive or 

representat ive; the in terested reader should consult the l i t e ra tu re  

fo r  fu r the r  references.

B. Experimental

1. Chemi cals

The fo l low ing reference standards were obtained from the 

Environmental Protection Agency, Perrine, F lor ida: diazinon (93%), 

#2080, lo t  3179; mevinphos (64.5%), #4640, l o t  3285; malathion 

(99.3%), #4260, l o t  3227; methyl parathion (99.9%), #4580, l o t  

3264; ethyl parathion (99.5%), #5245, lo t  3267.

The fo l lowing were obtained from Chemagro, a d iv is ion  of 

Baychem Corporation, Kansas C i ty ,  Missouri: baytex, technical 

grade; guthion, 93%; and dylox, 98%. Diazinon (92.5%) and supra- 

cide (99.6%) were obtained from the Geigy Chemical Corporation, 

Ardsley, New York. Dr. J. P h i l l ip s  of  the Department of Entomology, 

Univers i ty  of Arkansas, F aye t tev i l le ,  provided samples of methyl 

parathion (99+%) and ethyl parathion (99+%), and arranged the pro­

curement of  the other pest ic ides.

Water was do ub le -d is t i l le d  and deionized before use. Spec­

trophotometry grade methanol from Baker Chemical Company was used 

without fu r the r  p u r i f i c a t io n .  Perchloric acid (70%, reagent grade) 

was obtained from A l l ie d  Chemical Company; phosphoric acid (85%,
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technical grade) was procured from Fisher.

Table 1 l i s t s  structures, common and/or trade names, and 

IUPAC names fo r  the organophosphorus pesticides l is ted  above.

2. Sample Preparation

The pesticide samples were prepared by weight in 5 mm th ick-  

walled nmr tubes to give concentrations of 0.16 + 0.01 M. This 

required about 2 mg o f  pesticide per sample. An aqueous solution 

of 1.68 mM Cr3+, as CrCl3- 6H20, was added to methanol to form a 

mixture containing 0.71 + 0.02 mole fract ion methanol, which 

corresponds to 81.0% MeOH (w/w) or 84.5% MeOH (v /v) .  The i n i t i a l  

pH of th is  solut ion was measured and found to be 4.7. A 31P re fe r ­

ence compound, d i lu te  aqueous P(0H)i++ (39), was sealed in cap i l la ry  

tubes. One of these was placed in each of the nmr tubes, which 

were then flame-sealed.

The nmr tubes were then placed in Sargent-Welsh constant 

temperature baths maintained at 60°, 70°, or 90°C, + 0.02°. Oil 

was used as the heating f lu id  fo r  the 90° bath; water was used for 

the other two. Water- f i l led test tubes capped with single-hole 

cork stoppers were immersed in the baths to hold the nmr tubes.

At various time in te rva ls ,  the nmr tubes were removed from the test 

tubes, quenched in ice water before acquisit ion of 31P spectra, 

and afterwards replaced. Assuming a doubling of reaction rate 

fo r  every 10° temperature increase, a small time correction factor 

was added to the to ta l  elapsed bath immersion time to correct for  

the elapsed time in the probe during spectral accumulation.

Compared to rates at the bath temperatures, reaction rates at the
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Table 1. Structu res and Nomenclature f o r  Some Organophosphorus Pestic ides.

S truc tu re Common Names IUPAC Name

methyl parath ion, 
metacide, n i t ro x

0,0-dimethyl p - n i t r o -  
phenyl phosphorothionate

e thy l parath ion, 
para th ion , f o l i d o l ,  
th iophos, E605, 
parafos, rhodiatox

0 ,0 -d ie th y l  p - n i t r o -  
phenyl phosphorothionate

supracide, methida- 
th io n ,  ustrac ide , 
u l t ra c id e

mevinphos, phosdrin

malathion, cy th ion , 
karbofos, pencathion

d iaz inon, basudin, 
s ro lex ,  exodin, 
sarolex

baytex, fen th ion , 
lebaycid, entex, 
t iguvon, S 1752

guth ion, gusathion, 
azinphosmethyl, 
methyl gusathion

0,0-dimethyl S -(2- 
m ethoxy-1 ,3 ,4 - th iad iazo l- 
5 (4H)-ony l-4 -m ethy l) 
phosphorothio lo th ionate

0,0-dimethyl 1-methoxy- 
carbonyl-1 -propene-2- 
y l  phosphate

S-[ 1,2 -d i(e thoxyca rbony l) 
e th y l ]  0,0-dimethyl 
phosphorothio loth ionate

0 ,0 -d ie th y l  2 - isop ropy l-  
6-m ethy l-4 -pyr im id iny l 
phosphorothionate

0,0-dimethyl 3-methyl- 
4-methylthiophenyl 
phosphorothionate

0,0-dimethyl S-(4-oxo- 
1 ,2 ,3 -benzotr iaz in -3(4H)-  
y lmethy l)  phosphorothiolo­
th ionate

dylox, t r i c h lo r fo n ,  0,0-dimethyl 1-hydroxy-
phoschlor, tr ich lo rphon , 2 ,2 ,2 - t r ic h lo ro e th y l  
m etr i fona te , chlorophos, phosphonate 
d ip te rex , neguvon, tugon, 
soldep
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probe temperature are so slow that th is  correction factor could 

have been omitted without introducing appreciable error.

3. Acquisit ion of Spectra

Due to the long relaxation times of 31P, which can be 30s 

or more, paramagnetic Cr3+ was added as a relaxation reagent to 

shorten the T: values and permit more rapid pulsing, without 

loss of signal- to-noise as a resu lt  of saturation. The arb i-  

t r a r i  ly -se l ected amount of added Cr3+ corresponds to a 600:1 

pest ic ide:Cr3+ molar ra t io ;  the i n i t i a l  molar ra t ios of a l l  the 

sample components were Me0H:H20:pest ic ide:Cr3+ = 81000:33000: 

600:1. Adding Cr3+ to water changes the pH due to the hydrolysis 

reaction

Cr3+ + H20 (CrOH)2+ + H+ (1)

The equi l ibr ium constant for  th is  hydrolysis is 1.5 x 10-1+ (40). 

Since the solvent for  the pesticides was aqueous methanol rather 

than water, the pH could not be calculated, so was determined 

em p ir ica l ly .

The data acquis it ion parameters were as fol lows: pulse 

angle, 75°; pulse repe t i t ion  time, 2 s; spectral window, 4 kHz; 

number of frequency-domain data points, 4k; l ine-broadening from 

exponential weighting of  FID, 2.5 Hz; number of transients accu­

mulated, about 1000. The probe temperature was about 24°C. At 

the f ie ld  strength used, 21.14 kG, 31P resonates at about 36.43

MHz.
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The 1H lock signal was provided by the MeOH methyl protons 

o f  the aqueous methanol solvent.  Measurements o f  the resonance 

frequencies o f  85% H3P0i+, of  10% aqueous t r im e thy l  phosphate,

(Me0)3P0, and o f  the d i lu te  sample o f  P(0H)* in a c a p i l la r y  

immersed in a tube o f  the aqueous methanol solvent were made. 

Corrected to a f i e l d  in which the protons o f  TMS resonate at 

exact ly  100 MHz, the frequencies (n/MHz) are 40.480824 fo r  

(Me0)3P0, 40.480718 fo r  P(0H)* in the c a p i l l a r y ,  and 40.480703 

fo r  H3PO4 . The H3P04. value can be compared to tha t  o f  40.480790 

MHz reported by others (41) fo r  h (31P) of 85% H3P04 . These f r e ­

quencies were used to determine the chemical s h i f t s  o f  10% 

aqueous (Me0)3PG, +3.13 ppm, and o f  external P(0H)*, +0.36 ppm, 

with respect to 85% H3PO4 . Posit ive values denote high-frequency 

( lo w - f ie ld )  s h i f t s ,  in accordance with IUPAC convention, the 

reverse of  the t r a d i t i o n  fol lowed in repor t ing  31P s h i f t s  in the 

past. Chemical s h i f t s  were measured with  respect to the external 

P(0H)* signal as secondary reference, and then converted to values 

with respect to the primary reference o f  85% H3PO4. by adding +0.36 

ppm to the measured chemical s h i f t s .  The primary purpose o f  the 

P(0H)* was to serve as a standard in the measurement o f  re la t i v e  

signal areas; a l l  31P integrated peak in te n s i t ie s  were normalized 

to tha t  o f  the phosphonium ion as un i ty .  The areas were measured 

as the average o f  at  least  three integrated signal t races;  errors 

are estimated to be ±5% to ±10%. Spectra were obtained without 

broadband 1H decoupling in order to make id e n t i f i c a t io n  o f  compounds

easier.
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C. Results and Discussion

Representative chemical s h i f t  ranges of various types of 

organophosphorus compounds are given in Table 2. This and more compre­

hensive tabulations (15-16, 29-32, 38) proved invaluable in assigning 

resonances.

1. Ethyl Parathion

Figure 1 shows a selected series of spectra taken during the 

degradation of ethyl parathion. The parent pest ic ide, at +62.15 ppm, 

is f i r s t  hydrolyzed to SP0 (0Et)2 , at +64.0 ppm. A compound, as yet 

not pos i t ive ly  id e n t i f ie d ,  then appears at +53.05 ppm, followed by 

the phosphates OPCKOEt)^, 0P0(0H)(OEt)", and 0P0 (0H)2 at 0 to +4 ppm. 

(The degree of protonation of a l l  hydrolysis products was assumed 

by comparison with the phosphate system, which exists as nearly 100% 

diprotonated monoanion at pH 4.7 (38,42).)  Next to appear is a 

peak at +65.4 ppm, which is probably SPO(OH)(OEt)", from hydroysis 

of an ethoxy group of SP0 (0Et)2 . At 60° and 70°, th is  resonance 

did not appear un t i l  a f te r  about f ive  weeks and three weeks, respec­

t i v e l y ,  had elapsed, consistent with the fact that phosphate dies­

ters are much less inclined to hydrolyze than are monoesters or t r i ­

esters (1). Traces of  compounds with chemical sh i f ts  of  +32.6 ppm 

and +16.4 ppm were also noted, especially at 90°. The +32.6 ppm 

signal is  probably from the phosphorothiolate isomerization product 

0P0(0Et)(SEt)“ , although the chemical s h i f t  is also consistent 

with a phosphonate, such as 0P(Et)(0Et)2. Thiono-thiolo isomeriza­

t ion usually requires temperatures of about 100°C (1). The +16.4 

ppm resonance occurs in the region expected fo r  the phosphonate
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a b
Table 2. 31P Chemical Shif ts  of  Some Phosphorus Compounds. ’

Compound 6(31P)/ppm W X Y Z

Phosphates -2 to +6 0 0 0 0
0P(0H)3 0.0
0P0(0H)2 +0.3 to +0.5
opo2(oh)2" +3.1 to +3.3
0P033” +5.4 to +6.0
0P(0R)3 -2.4 to +2.5 (R = Me,Et)
0P(0Ph)3 +18
0P0(0Et)2" +2.8 to +3.8

Phosphorothi da te s +22 to +32 0 0 S 0
0P(0Me)2(SPrn) +31
0P(0Et)2 (SR) +26.4 to +28.6 (R=Me,Et,Prn ,Bun)
0P(0Et)2(SPh) +22
0P(0Me)(0-^>N02)(SR) +24.0 to +25.2 (R = Me,Et)
0PS(0R)2 +24.0 (R = EtjBu1)
opso23‘ +31.0 to +33.8

Phosphorodithiolates +50 to +62 0 S S 0
OP(OEt)(SEt)2 +53.5
0P0S23" +61 to +62

Phosphorothionates +55 to +70 0 0 0 S
SP(0Me)3 +73
SP(0R)3 +65 to +70 (R=Et,Prn,But )
sp(or)2(o^ o > no2) +62 to +65c (R = Me.Et)
SP(0Ph)3 +53.4

Phosphorodi thionates +85 to +105 0 0 S S
SP(0R)2(SR) +91 to +100 (R=Me,Et,Pr1)
SP(0Me)2(SPh) +90
SP(0R)2(SH) +82 to +86 (R=Et,Pr1,Bun)
SPS(0R)2‘ +107 to +111 (R = Et jPr1)
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Table 2.

Compound 6(31P)/ppm W X Y Z

Phosphorotrithi d a te s +60 to +85 S S S 0
0P(SMe)3 +66 to +67
0P(SR)3 +61 to +63 (R=Et,Prn ,Bun)
0P(SBut ) 3 +85.2
0P(SPh)3 +55.2
ops33‘ +86

Thiophosphates +88 to +98 S S S S
SP(SMe)3 +98
sp(sr) 3 +91 to +93 (R=Et,Prn ,Bun,Ph)
sps33- +87 to +88

Phosphonothionates +80 to +95 0 0 C S
SP(Me)(0Et)2 +94.9
SP(Me)(0Et)(0-^O)-N02) +94.3
SP(Me)(OEt)(OH) +88.8
SP(Et)(OEt)(OH) +94.2
SP(Me)(0Me)2 +80.5
SPO(Me)(OEt)- +76.0

Phosphonates 0 0 C 0
0PR(0R')2 +27 to +33 (R=Me,Et,Bun ; R‘ =Me,Et, 

Pr1, Prn ,Bun)
0P(Me)(0R)2 +21 to +24 (R=But ,Ph)
OP(Ph)(0R)2 +16 to +22 (R=Me,Et,Pr1,Prn)
OP(Ph)(0Ph)2 +11.2

a From references 31 and 38. z
b 11Tetra-coordinate, structures o f  f^W-P-YR3, where R1, R2, and R3 are H,

I

a lk y l ,  and/or aromatic. XR2
c For R=Et, reference 38 inco r rec t ly  l i s t s  +42 ppm.
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FIGURE 1

The degradation of  ethyl parathion as monitored by 31P 

nmr at 36.43 MHz. The f ie ld  strength BQ decreases from 

l e f t  to r ig h t .
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0P(C6Ht+N02) (0Et)2 . The signal at +53.05 ppm is ten ta t ive ly  

assigned to a phosphorodithiolate.

Figures 2-4 show the in tens i ty  changes of the 31P signals 

of ethyl parathion and i t s  degradation products at 60°, 70°, and 

90°, as functions of  the to ta l  elapsed time. Tables 3-5 contain 

the data in numerical form.

2. Methyl Parathion

Selected 31P spectra showing the degradation of  methyl para­

thion are presented in Figure 5. The methyl parathion 31P resonance 

occurs at +65.75 ppm. The f i r s t  product appears at +55.4 ppm, and 

is probably a phosphorodithiolate. Almost simultaneously, two 

peaks at +17.0 and +1.5 ppm appear; the +17.0 ppm peak is l i k e ly  

to be 0P(C6HttN02) (0Me)2 , and the m u l t ip le t  at +1.5 ppm is 0P0(0Me)2 , 

with 3J ( 31P1H) = 11.0 + 0.5 Hz. In some of the spectra a trace of 

a compound, most l i k e l y  the th iono-th io lo  isomerization product 

0P0(0Me)(SMe)~, with a chemical s h i f t  of about +34 ppm is v is ib le .

The time dependences of the 31P signal areas of  methyl para­

thion and i t s  degradation products at 60° and 70° are plotted in 

Figures 6 and 7; the data are also presented in Tables 6- 8 .

3. Supraci de

Spectra of  the pesticide supracide and i t s  decomposition 

products are shown in Figure 8 . The supracide peak at +95.20 ppm 

diminishes as a resonance due to SP(0Me)2 (0H) grows at +65.2 ppm. 

This forms form P-S bond f iss ion  (1) as fol lows:



FIGURE 2

Time course of the degradation o f  ethyl parathion 

(c i rc le s )  at +62.15 ppm and the formation and reaction 

o f  the hydrolysis product PS(OH)(0C2H5)2 (squares) at 

+64.0 ppm. Temperature was 60°C; i n i t i a l  pH was 4.7.
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FIGURE 3

Time course of the degradation of ethyl parathion 

(c i rc les )  at +62.15 ppm and the buildup and decay 

of  products at +64.0 ppm (squares), +53.05 ppm 

(hexagons), and +0.8 to +1.9 ppm ( t r iang les ) ,  at

70°C.
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FIGURE 4

The decomposition of  ethyl parathion (c i rc le s )  at 

+62.15 ppm and the formation and decay of products 

at +64.0 ppm (squares), +53.05 ppm (hexagons), and 

+0.8 to +1.9 ppm ( t r iang les ) ,  at 90°C. I n i t i a l  pH

was 4.7.
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Table 3. R e la t ive  31P Peak Areas o f  Ethyl Parath ion and I t s  Degradation 
Products a t  60°C.

Time/h +62.15 ppm b +64.0 ppm c +53.05 ppm d +0 .9 ,+1.8  ppme

0.00
48.64
80.52

138.15
202.58
230.15 
282.29
436.58 
695.92 
842.26 a

1199.97 f  

2614.15 g

3.140 
2.650 
2.609 
2.446 
2.646 
1.671 
2.749 
1.185 
0.424 
0.767 
0.356

0.160
0.293
0.328
1.272
0.714
0.343
1.226
0.691

0.210
0.343 0.336 
0.289

0.666

a Also a peak a t  +65.4 ppm, r e l a t i v e  area 0.205, probably due to SPO(OH)(OEt) 
and one a t  -0 .6  ppm, r e l a t i v e  area 0.164, from a phosphate.

b Ethyl pa ra th ion ,

c SPO(OEt)2 .

d Probably a p h o s p h o ro d i th io a te .  

e Phosphates.

f  Also a small peak a t  +16.4 ppm, poss ib ly  from a phosphonate.

g Also a weak s ignal a t  +32.6 ppm, poss ib ly  due to OPO(OEt)(SEt)” .
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Table 4. R e la t ive  31P Peak Areas o f  Ethyl Para th ion and I t s  Degrada­
t i o n  Products a t  70°C.

Time/h +62.15 ppm c +64.0 ppm d +53.05 ppm e +0.9 ,+1.8  ppm f

0.00 
30.57 
57.69 
95.61 

143.15 
178.04 
245.89 
502.03 a 
648.83 b 

1009.74 g 
2423.19

2.810 
3.194 
2.950 
2.101 
1.491 
1.814 
1.266 
0.378 
0.257 
0.162

0.268
0.446
0.413
0.537
0.635
0.855
0.806
0.948

0.425
0.375

0.544
0.673
0.476
0.475

0.578
0.368
0.122

0.247 
0.377 
0.538 
0.631 
1.244 
1.018 
4.242

a Also a peak a t  +65.4 ppm, r e la t i v e  area 0.120, probably due to  SPO(OH)(OEt) , 
and a weak s ignal  a t  +32.6 ppm.

Also a +65.4 ppm peak w i th  r e l a t i v e  area 0.263, probably assignable to  
SPO(OH)(OE t ) - , plus a -0 .6  ppm s ig n a l ,  w i th  r e l a t i v e  area 0.542, from a 
phosphate.

C

Ethyl pa ra th ion ,

d SPO(OE t )2 -
0

Probably a p h o s p h o ro d i th io a te .
f

Phosphates.

g Also a phosphate peak a t  -0 .6  ppm, r e l a t i v e  area 0.387.



Table 5. Re la t ive   Peak Areas o f  Ethyl Parathion and I t s  Degradation Products at  90°C.f ’ g

Time/h +62.15 ppm a +64.0 ppm b +53.05 ppm c +0.9 ,+1.8  ppm b +65.4 ppme

0.00 
12.01 

31.15 

72.29 

90.27

96.46 
117.62 

139.96

168.89

217.90 
1812.74

0.00
9.06

16.94
23.36

28.67
38.44
49.33
63.47 
78.40

104.41

129.54

3.195
3.467

2.267

0.815

0.685

0.579

0.346

0.067
0.072
0.421

4.182 

3.937 
2.478 
2.299 

1.833 
1.888 
1.041 
0.842 

0.478 
0.224 

0.133

0.506

0.912

0.867

0.833
0.965

0.841

0.255

0.427
0.674

0.576 

0.822 
0.984 
0.854 
1.071 
0.801 
0.989 
0.693 
0.571 

0.389

0.618

0.258

0.405

0.530
0.490

0.328
0.446

0.376 

0.334 

0.763 

0.630 

0.801 
1.151 

1.260 

1.694

0.249
0.325
0.469
0.311
0.682
0.431

0.808

0.658

0.328

0.277
0.696
0.367
0.237
0.226

0.210

0.087
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Table 5.

a Ethyl parath ion,

27

b SPO(OEt) 2 -
C

Probably a phosphorod i th ioa te .  

b Phosphates. 

e Probably SPO(OH)(OEt)'.
f

A phosphate peak at +4.3 ppm occurred at  the fo l lo w in g  t imes, with the corresponding 
r e la t i v e  areas: 9.06 h, 0.185; 16.94 h, 0.383; 38.44 h, 0.473. A -0 .6  ppm phosphate 
signal was observed a lso: 117.62 h, 0.188; 139.96 h, 0.182; 168.89 h, 0.066; 217.90 h, 
0.633; 1812.74 h, 0.803; 78.40 h, 0.034; 104.41 h, 0.094; 129.54 h, 0.204.

g Also a weak s ign a l ,  poss ib ly  due to OPO(OE t) (S E t ) ” , a t  +32.6 ppm, at  139.96 h, 168.89 h, 
and 217.90 h.
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FIGURE 5

The degradation of methyl parathion as monitored by 

31P nmr at 36.43 MHz. The f ie ld  strength BQ decreases 

from l e f t  to r igh t .
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FIGURE 6

Plot of re la t ive  31P peak areas vs. time fo r  methyl 

parathion (c i rc les )  at +65.75 ppm, and fo r  degrada­

t ion  products at +55.4 ppm (squares), +17.0 ppm 

(hexagons), and +1.5 ppm ( t r iang les) .  Temperature 

was 60°C; i n i t i a l  pH was 4.7.

30



31



 FIGURE 7

Relative 31P peak areas as functions of time for  

methyl parathion (c i rc les )  at +65.75 ppm, and fo r  

degradation products at +55.4 ppm (squares),

+17.0 ppm (hexagons), and +1.5 ppm ( t r iang les ) .  

Temperature was 70°; i n i t i a l  pH was 4.7.
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Table 6. R e la t ive  31P Peak Areas o f  Methyl Parath ion and I t s  Degradation 
Products a t  60°C.e

Time/h +65.75 ppma +55.4 ppmb +17.0 ppmc +1.5 ppmd

0.00
31.90
50.90 
75.10

101.85 
121.76 
142.56 
172.98
198.12
238.12 

280.29 
317.21 

462.73
1517.00

2.695 
2.442 
2.449 
1.952 
1.533 
1.257 
1.208 
1.075 
1.190 
0.560 

0.279 
0.865 

0.189

1.064

0.745
0.438
0.529

0.635 
1.092 
1.328 
1.053 
1.595 
1.847 

0.936 
1.473 

0.651

0.488 
0.829 
0.833 
0.738 
1.659 
1.141 
1.987 

1.559 
2.695

a Methyl pa ra th ion ,

b Probably a p h o s p h o ro d i th io a te .  

c Probably OP(C6H1+N02 ) (OMe)2 .

Phosphates, mostly OPO(OMe)2 .

eIn some spec tra ,  a small peak a t  +34 ppm, poss ib ly  a r i s i n g  from 
OPO(OMe)(SMe)- , was observed.
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Tab le  7. R e l a t i v e  31P Peak Areas o f  Methy l  P a ra th io n  and I t s  Degra­
d a t i o n  P roduc ts  a t  70 °C .e

Time/h +65.75 ppma +55.4 ppmb +17.0  ppmC +1 .5  ppmd

0.00 

11.30 

21.95 

47 .38  

56.76 

69.24 

83.02 

97.59 

114.07 

135.43 

165.80 

188.87 

215.83 

239.36 

278.63 

1303.46

3.091

2 .843

3.463

1.910

1.975

1.477

1.305

1.516

0.754

1.045

0.942

0.466

0 .723

0.885

0.522

0.568

0.713

0.685

0.586

0.352

0.250

1.194 

2.197 

2.432 

1 .938 

1 .564 

2 .108 

1 .398 

1 .258 

0 .872 

0 .504 

0 .613 

0.466 

0 .299

0.976 

1 .706 

1 .078 

1.466 

2 .383 

2 .055 

2 .818 

3 .310 

1 .796 

3 .254 

2 .845 

3.372 

3.005

a Methyl  p a r a t h i o n ,

b P roba b ly  a p h o s p h o r o d i t h i o l a t e .  

c P robab ly  OP(C6HI+NO2 ) ( OMe)2 .

d Phosphates,  m o s t l y  OPO( OMe)2·

e In some s p e c t r a ,  a smal l  peak a t  +34 ppm, p r o b a b ly  a r i s i n g  f rom 
OPO(OMe)(SMe)- , was obse rved .
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T ab le  8.  R e l a t i v e  31P Peak Areas o f  Methy l  P a ra th io n  and I t s  Degra­
d a t i o n  P roduc ts  a t  90 °C .e

Time/h +65.75  ppma +55.4  ppmb +17 .0  ppmc  +1 .5  ppmd

0.00

13.38 

18.47

25.25 

34.63

41 .25

52.38 

66.29 

74.02

103.20

127.89

156.27

200.28 

237.82

1802.48 

0 .00  

3.06 

6 .70  

8.11 

9 .84  

16.11 

21.81

31.89

51 .90  

70.99

84.38 

107.09 

130.47

1720.15

2.805

1 .288

1.216

0 .779

0 .835

0 .650

0.505

0.371

0 .294

0 .328

0 .236

0.286

0 .323

0 .190

2 .653 

1.897 

1.519 

1 .805 

1 .365 

0 .917 

1 .049 

0 .938 

0 .524 

0 .305 

0 .288 

0.231 

0 .370

0.375

0.337

0 .419

0 .379

0 .364

1.077 

1.185 

0 .753 

0 .203

0.884

0.974

0 .906

0.954

0.680

0.383

1.119 

1 .280 

1 .645 

1 .747 

2 .075 

2 .697 

2 .143 

1 .839 

2 .327 

2 .373 

2 .273 

2 .189 

2 .322

1.353

0.495 

0.631 

1 .298 

1 .843

1.354 

2 .113 

1 .445 

1.736 

2.396 

1 .250

a Methyl  p a r a t h i o n ,  

b P ro b a b ly  a p h o s p h o r o d i t h i o l a t e .  

c P roba b ly  PP(C6H4 NO2 ) ( OMe)2 .

d Phosphates ,  m o s t l y  OPO( OMe)2-

e In some s p e c t r a ,  a smal l  peak 
a t  +34 ppm, p r o b a b ly  a r i s i n g  
f rom  OPO(OMe)(SMe)- , was 
o b s e rv e d .



FIGURE 8

The degradation of supracide as monitored by 31P nmr 

at 36.43 MHz. The f ie ld  strength BQ decreases from 

l e f t  to r ig h t .  The supracide peak is folded from the 

high-frequency side of the spectral window.
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The second S uprac ide  p r o d u c t ,  wh ich i s  found a t  +34.2  ppm, i s  

und o u b te d ly  OP(OMe)(OH)(SMe), formed by t h i o n o - t h i o l o  i s o m e r i z a t i o n  

o f  th e  f i r s t  p r o d u c t .  Next t o  appear  a re  th e  phosphates ,  a t  +1.85 

ppm. S ig n a ls  a l s o  appear  a t  +100.0 ppm and, e s p e c i a l l y  a t  9 0 ° ,  

a t  +61 .8  ppm; t h e  fo rm e r  i s  p ro b a b ly  due t o  th e  p h o s p h o r o d i th io n a te  

SP(OMe)2 (SMe) , and th e  l a t t e r  i s  ass igned  t o  SPO(OMe)(OH)- , the  

h y d r o l y s i s  p r o d u c t  o f  the  f i r s t  i n t e r m e d i a t e  fo rmed.  A smal l  s ig n a l  

a t  abou t  +24 .9  ppm appears  in  a few o f  the  s p e c t r a ,  i n d i c a t i v e  o f  

a p h o s p h o r o t h i o l a t e , and und oub ted ly  formed by t h i o n o - t h i o l o  i s o ­

m e r i z a t i o n .

F ig u re s  9 and 10 a re  p l o t s  o f  31P peak areas as a f u n c t i o n  

o f  t im e  f o r  Suprac ide  and i t s  p h o s p h o r u s - c o n ta in in g  p ro d u c ts  a t  

60° and 9 0 ° ,  taken  f rom the  da ta  i n  Tab les  9-11 .

4.  Summary

The h y d r o l y s i s  r e a c t i o n s  a re  expec ted  t o  be second o r d e r ,  

dependent  on t h e  c o n c e n t r a t i o n s  o f  s o l v e n t  and o f  p e s t i c i d e  ( 1 ) .  

However,  s in c e  the  s o l v e n t  c o n c e n t r a t i o n  was much g r e a t e r  than 

t h a t  o f  th e  p e s t i c i d e ,  p s e u d o - f i r s t - o r d e r  k i n e t i c s  were assumed, 

d e s c r ib e d  by th e  r a t e  e q u a t io n

d [ p e s t i c i d e ] / d t  = - k [ p e s t i c i d e ] (3)



FIGURE 9

Time-dependence of the 31P peak areas during the 

degradation of supracide (c i rc les)  at +95.20 ppm 

to products at +65.2 ppm (squares), +34.2 ppm 

(hexagons), and +1.85 ppm ( t r iang les) .  Tempera­

ture was 60°; i n i t i a l  pH was 4.7.
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FIGURE 10

Time dependence o f the 31P peak areas during the 

degradation o f supracide (c irc le s )  at +95.20 ppm 

to products at +65.2 ppm (squares), +34.2 ppm 

(hexagons), and +1.85 ppm ( t r ia n g le s ) .  Tempera­

ture was 90°C; i n i t i a l  pH was 4.7.
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Table 9. Relative 31P Peak Areas of Supracide and Its  Degradation Products at 60°C.g

Time/h +95.20 ppma +65.2 ppmb +34.2 ppmc +1.85 ppmd +100.0 ppme +61.8 ppmf

0.00 1.907
38.12 1.266
78.08 1.004 0.483

104.64 0.878 0.749
124.60 0.730 0.715
154.41 0.467 0.566
170.92 1.152
205.23 0.983 1.052 0.983
239.28 0.332 1.368
278.89 0.195 1.075
309.95 0.287 0.419 1.049
379.46 0.444 1.982

2031.22 2.861

a Supracide, SP(0Me)2SCH2NC(0)SC(0Me)N. 
b SP(OMe)2(OH). 
c Probably OP(OMe)(OH)(SMe). 
b Phosphates.

e Probably SP(0Me)2(SMe). 
f  Probably SPO(OMe)(OH)".
g In some spectra, a weak signal was v is ib le  at 

+24.9 ppm, possibly due to a phosphorothiolate.
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Table 10. Relat ive 31P Peak Areas o f  Supracide and I t s  Degradation Products a t  70°C.g

Time/h +95.20 ppma +65.2 ppmb +34.2 ppmc +1.85 ppmd +100.0 ppme +61.8 ppmf

0.00 2.552

7.50 2.333

21.05 2.144 1.235

41.82 1.165 2.242 0.670 0.472

52.37 0.462 1.363 0.538 1.418

67.79 0.190 1.400 0.755 1.680 0.182

86.16 1.635 0.984 2.405 0.492

138.55 0.899 0.419 2.187 0.231

181.31 0.485 0.642 2.921 0.469
218.55 0.564 0.224 3.086

1828.75 4.734

e Probably SP(0Me)2 (SMe).

f  Probably SPO(OMe)(0H)- .

g In some spectra, a weak signal was v i s i b l e  
a t  +24.9 ppm, poss ib ly  due to a phosphoro- 
t h i o la t e .

a Supracide, SP(0Me)2SCH2NC(0)SC(0Me)N. 

b SP(0Me)2 (OH).

C Probably OP(OMe)(OH)(SMe). 

d Phosphates.
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Table 11. Relat ive 31P Peak Areas o f  Supracide and I t s  Degradation Products a t  90°C.g

Time/h +95.20 ppma +65.2 ppmb +34.2 ppmc +1.85 ppmd +100.0 ppme +61.8 ppmf

0.00 3.254

1.08 2.065

3.39 1.915 0.344 0.654
6.37 1.072 0.884 0.327
8.36 1.219 1.195 0.554 0.554

10.70 0.723 1.120 0.265 0.187
13.08 0.462 1.537 1.170 0.537 0.870
17.21 0.079 0.693 0.369 0.892
32.27 0.657 0.190 1.828
53.91 0.519 0.240 2.883
79.79 2.356

108.44 2.714
181.45 0.365 2.321

a Supracide, SP(0Me)2SCH2NC(0)SC(0Me)N. 
b SP(0Me)2 (0H). 
c Probably OP(OMe)(OH)(SMe). 
d Phosphates.

e Probably SP(0Me)2 (SMe).
f  Probably SPO(OMe)(OH)- .

g In some spectra, a weak signal was v i s i b l e  
a t  +24.9 ppm, poss ib ly  due to a phosphoro- 
t h io la te .
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where k i s  the ra te  constant in u n i ts  o f  re c ip roca l  t ime ,  and the 

brackets  denote con cen t ra t io n .  From t h i s  equat ion ,  the h a l f - l i f e

t 1/2 is  found to be

t1/2 = -0 .693 /k  (4)

A p lo t  o f  l n [ p e s t i c i d e ]  versus t ime should be l i n e a r  w i th  a slope 

o f  -k  i f  the re a c t io n  is  indeed f i r s t  order  w i th  respect  to  the 

p e s t i c id e .  W ith in  the o f ten  s izeab le  experimental e r r o r  l i m i t s ,  

t h i s  appeared to be t ru e  f o r  a l l  three compounds. Because o f  e r ro rs  

inhe ren t  in  analyses using a l i n e a r  f i t  a f t e r  lo g a r i th m ic  t r a n s ­

fo rmat ion  o f  Eq. (3 ) ,  a non l inea r  leas t -squares  f i t  to the data 

in i t s  exponent ia l  form was used (43).  Rate constants  and h a l f -  

l i v e s  so determined are l i s t e d  in  Table 12. The values are est imated 

to  be accurate  w i t h in  +15%. At a l l  temperatures s tud ied ,  e thy l  

para th ion  degrades slower than does methyl para th ion and s i g n i f i ­

c a n t l y  slower than does suprac ide. This i s  reasonable, in  view o f  

the s u s c e p t i b i l i t y  o f  the P-S bond to  h y d ro ly s is ,  and o f  the 

tendency o f  methyl es te rs  to  undergo d e a lk y la t io n  much more r e a d i l y  

than e thy l  es te rs  (1 ) .

From the k i n e t i c  data in Table 12, in fo rm a t ion  about the 

thermodynamics o f  the reac t ions  can be obta ined through use o f  the 

Arrhenius equat ion

k = A exp(-Ea/RT) (5)

A p lo t  o f  1n k versus the re c ip ro ca l  abso lu te  temperature is  shown 

in  Figure 11, f o r  the f re e  p e s t i c id e s .  Table 13 l i s t s  the a c t i ­

va t ion  energies and pre-exponent ia l  fa c to rs  obta ined from the
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Table 12. Rate Constants and H a l f -L iv e s  o f  the Pes t ic ides  as a Function 
o f  Temperature.

P e s t ic id e Temperature/°C k /h -1 t 1/2/d

Ethyl Parath ion 60 2.1 x 10- 3 13.7
70 4.3  x 10- 3 6.7
90 2.5 x 10- 2 1.2

Methyl Parath ion 60 6.4 x 10- 3 4.5

70 1.0 x 10- 2 2.8

90 5.5 x 10- 2 0.53

Supracide 60 7.1 x 10- 3 4.0

70 1 .7 x 10- 2 1.7

90 1.8 x 10- 1 0.16

Table 13. Thermodynamic Data from Arrhen ius P lo ts  o f  K in e t i c  Data.

P e s t ic id e A /h - 1 Ea/k c a l  mole- 1

Ethyl Parath ion 3 x 1010 20.1

Methyl Para th ion 3 x 109 17.7

Supracide 1 x 1015 26.3



FIGURE 11

A r r h e n i u s  p l o t  f o r  d e g ra d a t io n  o f  e t h y l  p a r a t h i o n  

( t r i a n g l e s ) ,  methy l  p a r a t h i o n  ( s q u a r e s ) ,  and 

Sup ra c ide  ( c i r c l e s ) .
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Arrhenius plots.  The values of Ea are certain wi th in  +1.5 kcal 

mole- 1; the values of A are re l iab le  only to the nearest order 

of  magnitude. I t  is known that the re a c t iv i t y  of organophos- 

phorus compounds by hydrolysis decreases in the order phosphoro- 

thiolates>phosphates>phosphorothionates, and that act iva t ion 

energies fo r  the f i r s t  two types of compounds are 11.4 kcal mole- 1 

and 14.9 kcal mole- 1 , respectively (1). The 18-20 kcal mole- 1 

values found fo r  the phosphorothionate parathion pesticides are 

quite reasonable when compared with the numbers fo r  the other 

two compound types in the series.

The k ine t ic  analyses, as has been previously mentioned, 

were made using the s impl i fy ing assumption of pseudo-f irst-order 

k ine t ics ;  however, i t  is possible that consecutive, concurrent, 

and/or back reactions are occurring in some instances. Some of 

the f luc tua t ion  in peak areas reported in Tables 3-11 is due to 

errors caused in determining the area of the P(0H)+4reference peak 

when i t  overlapped phosphate signals. The re la t ive  peak areas 

cannot be used fo r  comparing concentrations o f  the d i f fe ren t  

species, as no T1 measurements were made to determine i f  d i f f e r ­

ent ia l  saturation was occurring. There is evidence that 31P T1's 

are dependent on solvent, pH, concentration, and ions in solut ion, 

among other factors (37). The e f fec t  of various relaxation 

reagents on the 31P s p in - la t t i c e  relaxation times of several kinds 

of  phosphorus compounds has recent ly been published; the results 

are summarized in Table 14.
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D. Future Research

One extremely simple improvement in  experimental procedure fo r  

fu tu re  studies would be the choice o f another peak area and chemical 

s h i f t  reference to replace P(0H)+ 4 which is  sometimes in te rfe red  with 

by phosphate resonances. A log ica l compound would appear to be P406 

(38); i t s  chemical s h i f t  o f +112.5 ppm places i t  well out o f the 

chemical s h i f t  ranges o f nearly a l l  o f the compounds antic ipated to 

occur in these studies (see Table 2).

Table 14. E ffec tive  Relaxation Reagents fo r  31P NMR Observation o f 
Organophosphorus Compounds.a,d

Compound Type Structure Relaxation Reagent

a lky l phosphates (R0)3P=0 F e(III)e thy lene  glycol
a lky l phosphonates (ro)2 (r)p=o b  Fe(III)acac

N i ( I I )
u ( I I )

aryl phosphorothionates (Ph0)3P=S
a lky l phosphorothionates (R0)3P=S Gd(fod)3c
a lky l phosphorodithionates (ro)2 (rs)p=s
aryl phosphates (Ph0)3P=0

a T1 's decreased from 9-21 s to less than 1 s.

b 1:1 re laxa tion  reagent: organophosphorus compound. C u(II) caused 
some broadening o f resonances at these concentrations.

c 100:1 re laxa tion  reagent: organophosphorus compound.

From reference 32.
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I t  is imperative that  the dependence of  T1 on type and amount 

of  relaxation reagent be quan t i ta t ive ly  determined fo r  the d i f fe re n t  

compounds observed, to extend preliminary work in th is  area (32). 

Optimal types and concentrations of such reagents, and optimal pulse 

angles and pulse repe t i t ion  times, can then be chosen to minimize or 

eliminate saturat ion e f fec ts ,  and to obtain correction factors,  as 

necessary, fo r  ca lcu la t ion of  concentrations (44).

Posit ive assignment of peaks would be f a c i l i t a te d  by studies of 

the pH dependence of  the chemical sh i f t s  of a number of known compounds 

in th e i r  various neutral and anionic forms.

Last ly ,  the remainder of the pesticides in stock should be 

studied. Use of 10 mm, rather than 5 mm, tubes would great ly  increase 

s ignal- to-noise and the atta inable accuracy.
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The s p i n - l a t t i c e  r e l a x a t i o n  p r o p e r t i e s  o f  m e t a l  i o n s  

h a v e  b e e n  t h e  s u b j e c t  o f  a n u m b e r  o f  r e c e n t  s t u d i e s .  F o r  

e x a m p l e ,  t h e  s p i n - l a t t i c e  r e l a x a t i o n  t i m e s ,  T 1 , o f  i o n s  s u c h  

as 2 0 7 P b + 2 ( l , 2 ) , 1 1 3 Cd+ 2 ( 3 ) ,  1 3 3 Cs+ ( 4 - 6 ) ,  85Rb+ ( 5 ) ,

8 7Rb+ ( 5 , 6 ) ,  23Na+ ( 5 , 6 )  , 9Be+ 2 ( 7 ) ,  7L i + 1 ( 5 , 6 , 8 - 1 1 )  , 6L i + 1 ( 1 2 ) ,

9 9Hg+ 2 ( 1 3 )  , and  2 05T 1 + ( 1 4 , 1 5 )  h a v e  b e e n  d e t e r m i n e d  and t h e  

m e c h a n i s m s  r e s p o n s i b l e  f o r  t h e  r e l a x a t i o n  b e h a v i o r  e x p l o r e d .  

W i t h  f e w  e x c e p t i o n s  ( e . g .  1 ) ,  t h e  c o n t r i b u t i o n  f r o m  c h e m i c a l  

s h i f t  a n i s o t r o p y  (CSA) t o  t h e  t o t a l  r e l a x a t i o n  t i m e  has  n o t  

b e e n  e x p e r i m e n t a l l y  i n v e s t i g a t e d .  We w i s h  t o  p r e s e n t  a c a s e  

f o r  t h e  i m p o r t a n c e  o f  CSA i n  d e t e r m i n i n g  t h e  r e l a x a t i o n  b e ­

h a v i o r  o f  a m e t a l  i o n .  The T 1 o f  t h e  205T1+  ( s p i n  I  = 1 / 2 ) 

i o n  i n  DMSO h a s  b e e n  f o u n d  t o  h a v e  a s i g n i f i c a n t  d e p e n d e n c e  

on  t r a n s i e n t  a n i s o t r o p i c  c h e m i c a l  s h i e l d i n g  i n t e r a c t i o n s .

The s p i n - l a t t i c e  r e l a x a t i o n  e x p e r i m e n t s  w e r e  p e r f o r m e d  

on a m o d i f i e d  B r u k e r  H F X - 9 0  s p e c t r o m e t e r  i n t e r f a c e d  t o  a 

N i c o l e t  N I C  80 c o m p u t e r  and  o p e r a t i n g  i n  t h e  p u l s e d - F T  mode 

a t  a f i e l d  s t r e n g t h  o f  2 . 1 1 4 T  w i t h  f i e l d  l o c k .  The s p i n -  

l a t t i c e  r e l a x a t i o n  t i m e s  w e r e  o b t a i n e d  b y  u s i n g  t h e  i n v e r s i o n -  

r e c o v e r y  s e q u e n c e  w i t h  p h a s e  i n v e r s i o n  on  a l t e r n a t e  p a i r s  

o f  o b s e r v i n g  p u l s e s .  The i n v e r s i o n - r e c o v e r y  d a t a  w e r e  

a n a l y z e d  u s i n g  a n o n - l i n e a r  l e a s t  - s q u a r e s  c o m p u t e r  p r o g r a m  

t o  o b t a i n  t h e  s p i n - l a t t i c e  r e l a x a t i o n  t i m e s .  The s p i n -  

l a t t i c e  r e l a x a t i o n  t i m e  v a l u e s  p r e s e n t e d  a r e  t h e  a v e r a g e s  o f  

a t  l e a s t  t w o  d i f f e r e n t  m e a s u r e m e n t s  i n  a l l  c a s e s .  The T 1NO3 

and  T 1 C1O4  s a l t s  u s e d  w e r e  r e c r y s t a l l i z e d  f r o m  h i g h  p u r i t y  

w a t e r  a t  l e a s t  t w i c e .  Can ad a  I s o t o p e s ,  M e r c k  C h e m i c a l  D i v -
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i s i o n ,  DMSO-d6 w i t h  a min imum i s o t o p e  p u r i t y  o f  9 9 . 5  a tom % 

d e u t e r i u m  was us e d  w i t h o u t  f u r t h e r  p u r i f i c a t i o n .  The no n -  

d e u t e r i a t e d  DMSO use d  was F i s h e r  r e a g e n t  g r a d e  t h a t  had been 

t r i p l y  d i s t i l l e d .  A l l  s o l u t i o n s  w e r e  p r e p a r e d  i n  a g l o v e  

box  i n  a d r y  a t m o s p h e r e ,  c a r e f u l l y  de g a s s e d  i n  5 mm NMR 

t u b e s  u s i n g  t h e  f r e e z e - t h a w  me thod  ( s i x  o r  seven  c y c l e s )  and 

t h e n  s e a l e d .  The p r o b e  t e m p e r a t u r e  was m a i n t a i n e d  t o  + 0 .5  

d e g r e e s .

I n  s o l u t i o n  t h e  s p h e r i c a l  s ymm et r y  o f  a m o na to m ic  i o n ,  

su ch  as T 1+ , becomes d i s t o r t e d  beca use  o f  i n t e r a c t i o n s  w i t h  

s o l v e n t  m o l e c u l e s ,  c o u n t e r i o n s ,  and i n  v e r y  c o n c e n t r a t e d  

s o l u t i o n s ,  o t h e r  c a t i o n s .  W i t h  i n c r e a s i n g  c o n c e n t r a t i o n ,  

i o n - i o n  i n t e r a c t i o n s  become i m p o r t a n t ,  m a n i f e s t i n g  t h e m ­

s e l v e s  i n  t h e  r e p l a c e m e n t  o f  a d j a c e n t  s o l v e n t  m o l e c u l e s  by  

c o u n t e r i o n s  . The f o r m a t i o n  o f  t r a n s i e n t  i o n - p a i r s  p r o d u c e s  

an e x t r e m e l y  l a r g e  p e r t u r b a t i o n  i n  t h e  e l e c t r o n i c  e n v i r o n m e n t  

o f  t h e  n u c l e u s  o f  i n t e r e s t  ( i . e .  205T 1 + ) .  The e f f e c t  o f  

t r a n s i e n t  c o u n t e r i o n  p e n e t r a t i o n  o f  t h e  s o l v a t i o n  s p h e r e  o f  

an i o n  i s  t h e  p r o d u c t i o n  o f  a f l u c t u a t i n g  e l e c t r o n i c  d i s ­

t r i b u t i o n  a b o u t  t h e  n u c l e u s  ( i . e .  205T1+ ) . The t r a n s i e n t  

f o r m a t i o n  o f  i o n - p a i r s  c r e a t e s  a m o d u l a t i o n  o f  t h e  m a g n i t u d e  

o f  t h e  com pon en t s  and o r i e n t a t i o n  o f  t h e  p r i n c i p a l  axes  o f  

t h e  c h e m i c a l  s h i e l d i n g  t e n s o r ,  as w e l l  as t h e  r e o r i e n t a t i o n  

o f  t h e  s o l v a t e d  i o n  ( T 1 + ) , p r o v i d i n g  a mechan i sm f o r  s p i n -  

l a t t i c e  r e l a x a t i o n .  T h i s  mechan i sm i s  c a l l e d  t r a n s i e n t  

c h e m i c a l  s h i f t  a n i s o t r o p y  (16)  . The c o n t r i b u t i o n  t o  s p i n -
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l a t t i c e  r e l a x a t i o n  f r o m  t r a n s i e n t  CSA i s  p r e d i c t e d  t o  be q u i t e  

l a r g e  f o r  t h e  i o n .  S h i e l d i n g  a n i s o t r o p i e s  f o r  c o ­

v a l e n t l y  b o nde d  a r e  o f  t h e  o r d e r  o f  1 0 0 0 - 3 0 0 0  ppm ( 1 6 ) .

S h i e l d i n g  a n i s o t r o p i e s  o f  i o n - p a i r s  a r e  t h o u g h t  t o  be o f  t h e  

same o r d e r  o f  m a g n i t u d e  ( 1 6 ) .

F i g u r e  1 shows a p l o t  o f  t h e  s p i n - l a t t i c e  r e l a x a t i o n  

t i m e  o f  t h e  205T 1 + i o n  i n  DMSO a t  295K as a f u n c t i o n  o f  t h e  

c o n c e n t r a t i o n  o f  T 1NO3 and T 1 C1O4 s a l t s .  Th ese  r e s u l t s  

i l l u s t r a t e  t h e  c o n c e n t r a t i o n  and c o u n t e r i o n  d e p e n d e n c e  o f  

t h e  s p i n - l a t t i c e  r e l a x a t i o n  t i m e  o f  t h e  205T1+ i o n  i n  DMSO.

The p r e s e n c e  o f  t r a n s i e n t  CSA i s  o b v i o u s .

A q u a l i t a t i v e  a s s e s s m e n t  o f  t h e  m a g n i t u d e  o f  t h e  t r a n ­

s i e n t  CSA m e ch a n is m  c o n t r i b u t i o n  t o  t h e  t o t a l  s p i n - l a t t i c e  

r e l a x a t i o n  t i m e  can  be i n f e r r e d  f r o m  t h e  t e m p e r a t u r e  d e p e n d e n c e  

o f  t h e  T 1 . F i g u r e  2 shows p l o t s  o f  l n T 1 a g a i n s t  t h e  r e c i p ­

r o c a l  o f  t h e  a b s o l u t e  t e m p e r a t u r e  f o r  t h r e e  c o n c e n t r a t i o n s  

o f  T 1C1O4 . F o r  t h e  0 . 1 5  M s o l u t i o n ,  t r a n s i e n t  s p i n  - r o t a t  i o n  

i s  t h e  d o m i n a n t  r e l a x a t i o n  m e ch a n ism  s i n c e  t h e  T 1 d e c r e a s e s  

w i t h  i n c r e a s i n g  t e m p e r a t u r e  ( 1 7 ) ,  a s s u m in g  s c a l a r  c o u p l i n g  

m o d u l a t e d  by  c h e m i c a l  e x c h a n g e  i s  n o t  s i g n i f i c a n t  ( 2 ) .  The 

p r e s e n c e  o f  c o n t r i b u t i o n s  by o t h e r  r e l a x a t i o n  p r o c e s s e s  i s  

e v i d e n c e d  by  t h e  n o n - l i n e a r i t y  o f  t h i s  p l o t .  R e l a x a t i o n  can 

a r i s e  f r o m  l o c a l  f i e l d s  p r o d u c e d  by s p i n - r o t a t i o n .  A m o l e ­

c u l a r  s y s t e m  p o s s e s s i n g  a n g u l a r  v e l o c i t y  c o n s t i t u t e s  a 

r o t a t i n g  c h a r g e  s y s te m  a n d ,  t h e r e f o r e ,  a m a g n e t i c  f i e l d  i s  

p r o d u c e d  and e x p e r i e n c e d  b y  t h e  r e s o n a n t  n u c l e u s .  M o d u l a t i o n
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o f  b o t h  t h e  d i r e c t i o n  and m a g n i t u d e  o f  t h e  a n g u l a r  momentum 

v e c t o r  a s s o c i a t e d  w i t h  t h e  r o t a t i n g  m o l e c u l e  p r o d u c e s  f l u c t u a ­

t i o n s  i n  t h e  m a g n e t i c  f i e l d .  A l t h o u g h  t h e  f i r s t  s o l v a t i o n  

s p h e r e  o f  an i o n  i s  p r o b a b l y  n o t  composed o f  a w e l l  d e f i n e d  

m o l e c u l a r  s p e c i e s ,  i f  one assumes t h e  e x i s t e n c e  o f  t r a n s i e n t  

s p e c i e s  c a p a b l e  o f  r e o r i e n t a t i n g  as a m o l e c u l a r  u n i t  o v e r  

an i n t e r v a l  o f  t h e  o r d e r  o f  10- 1 1  s e c ,  t h e n  t r a n s i e n t  s p i n -  

r o t a t i o n  can s i g n i f i c a n t l y  c o n t r i b u t e  t o  t h e  t o t a l  r e l a x a ­

t i o n  p r o c e s s .  I n  g e n e r a l ,  when one i s  d e a l i n g  w i t h  s m a l l

s y m m e t r i c  m o l e c u l a r  e n t i t i e s  and w i t h  n u c l e i  w h i c h  h a ve  a
2 0 5l a r g e  c h e m i c a l  s h i f t  r a n g e ,  s u c h  as T 1 , one can  a n t i c i ­

p a t e  t h a t  s p i n -r o t a t i o n  w i l l  c o n t r i b u t e  s i g n f i c a n t l y  t o  

t h e  r e l a x a t i o n .  The c o r r e l a t i o n  b e tw e e n  c h e m i c a l  s h i f t  

and  s p i n - r o t a t i o n  i n t e r a c t i o n  a r i s e s  b e c a u s e  b o t h  t h e  chem ­

i c a l  s h i f t  and s p i n - r o t a t i o n  t e n s o r  c o m p o n e n ts  d e p e n d  u p o n  

t h e  e l e c t r o n  d i s t r i b u t i o n  ( 1 7 ,  1 8 ) .

As t h e  c o n c e n t r a t i o n  o f  T 1 C1O4 i n c r e a s e s  t h e  t r a n s i e n t  

CSA c o n t r i b u t i o n  becomes m ore  s i g n i f i c a n t .  F o r  t h e - 0 . 9 9  M 

T 1C1O4 s o l u t i o n  a t  22°C t r a n s i e n t  CSA and SR c o n t r i b u t i o n s  

a r e  a p p r o x i m a t e l y  e q u a l .  F o r  t h e  2 . 9 9  M T 1C1O4 s o l u t i o n  

a t  2 2 ° C ,  t h e  t r a n s i e n t  CSA r e l a x a t i o n  m e c h a n is m  becomes 

dom i n a n t .

The d i r e c t i o n  o f  t h e  s l o p e  o f  t h e  1n T 1 v s .  1 /T  K p l o t

a t  l o w  t e m p e r a t u r e s  f o r  t h e  2 . 9 9  M T 1 C 1 0 4 „  • 4 s o l u t i o n  i s  i n -

d i c a t i v e  n o t  o n l y  o f  t h e  t r a n s i e n t  CSA r e l a x a t i o n  m e c h a n is m  

b u t  a l s o  o f  t h e  d i p o l a r  and  s c a l a r - c o u p l i n g  o f  t h e  s e c o n d  

k i n d  m e c h a n is m s .  The d i p o l a r  r e l a x a t i o n  w o u ld  be assumed
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2 0 5t o  a r i s e  f r o m  i n t e r a c t i o n s  b e tw e e n  t h e  205T1 n u c l e u s  and t h e  

s o l v a t i o n  DMSO p r o t o n s  o r  o x y g e n - 1 7 .  The d i p o l a r  c o n t r i b u ­

t i o n  f r o m  t h e  p r o t o n s  o f  DMSO m o l e c u l e s ,  h o w e v e r ,  was 

d e t e r m i n e d  t o  be i n s i g n i f i c a n t  s i n c e  no change  i n  s p i n -

l a t t i c e  r e l a x a t i o n  t i m e  was o b s e r v e d  when DMSO-d6 was u s e do
1 7as t h e  s o l v e n t .  A d i p o l a r  c o n t r i b u t i o n  f r o m  0 i s  assumed 

t o  a l s o  be n e g l i g i b l e  i n  t h i s  s y s te m  as w e l l  as a s c a l a r  

c o u p l i n g  c o n t r i b u t i o n  ( 1 ,  3 ) .

A c k n o w l e d g m e n t : We w i s h  t o  a c k n o w le d g e  t h e  s u p p o r t  p r o ­

v i d e d  by  t h e  U n i t e d  S t a t e s  D e p a r tm e n t  o f  t h e  I n t e r i o r ,  

O f f i c e  o f  W a t e r  R e s o u rc e s  and T e c h n o l o g y ,  as p r o v i d e d  f o r  

u n d e r  P u b l i c  Law 8 8 -3 7 9  t h r o u g h  a g r a n t  A - 0 3 0 - A r k a n s a s .
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F i g u r e  1.  P l o t s  o f  t h e  o f  t h e  205T l + i o n  as a f u n c t i o n  

o f  c o n c e n t r a t i o n  f o r  t h e  s a l t s  T l NO3 and T l Cl O4 a t  

22 °C .  The e x t r a p o l a t e d  v a l u e  o f  1 .9 2  s e c .  i s  com pared

t o  t h e  p r e v i o u s l y  d e t e r m i n e d  v a l u e  o f  1 . 8  s e c .  f o r  a 

0 . 2  M T l NO3 -DMSO s o l u t i o n  ( 1 9 ) .  The p r e v i o u s l y  r e p o r t e d  

v a l u e  was i n a d v e r t e n t l y  l i s t e d  as 0 . 1 8  s e c .

F i g u r e  2 .  P l o t s  o f  l n T1 a g a i n s t  t h e  r e c i p r o c a l  o f  t h e

a b s o l u t e  t e m p e r a t u r e  f o r  0 .1 5  M, 0 . 9 9  M and 2 . 9 9  M T l Cl O4 

s o l u t i o n s .
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