
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2012

Insider Threat Mitigation Models Based on
Thresholds and Dependencies
Harini Ragavan
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Databases and Information Systems Commons, and the Information Security
Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Ragavan, Harini, "Insider Threat Mitigation Models Based on Thresholds and Dependencies" (2012). Theses and Dissertations. 313.
http://scholarworks.uark.edu/etd/313

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/313?utm_source=scholarworks.uark.edu%2Fetd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

INSIDER THREAT MITIGATION MODELS BASED ON THRESHOLDS AND
DEPENDENCIES

INSIDER THREAT MITIGATION MODELS BASED ON THRESHOLDS AND
DEPENDENCIES

A thesis submitted in partial fulfillment

 of the requirements for the degree of

Master of Science in Computer Science

By

Harini Ragavan

Government College of Technology

Bachelor of Technology, Information Technology, 2010

May 2012

University of Arkansas

ABSTRACT

Insider threat causes great damage to data in any organization and is considered a serious issue.

In spite of the presence of threat prevention mechanisms, sophisticated insiders still continue to

attack a database with new techniques. One such technique which remains an advantage for

insiders to attack databases is the dependency relationship among data items. This thesis

investigates the ways by which an authorized insider detects dependencies in order to perform

malicious write operations. The goal is to monitor malicious write operations performed by an

insider by taking advantage of dependencies. A term called ‘threshold’ is associated with every

data item, which defines the limit and constraints to which changes could be made to a data item

by a write operation. Having threshold as the key factor, the thesis proposes two different attack

prevention systems which involve log and dependency graphs that aid in monitoring malicious

activities and ultimately secure the data items in a database. The proposed systems continuously

monitors all the data items to prevent malicious operations, but the priority is to secure the most

sensitive data items first, since any damage to them can hinder the functions of critical

applications that use the database. By prioritizing the data items, delay in the transaction

execution time is reduced in addition to mitigating insider threats arising from write operations.

The developed algorithms have been implemented on a simulated database and the results show

that the models mitigate insider threats arising from write operations effectively.

This thesis is approved for recommendation

to the Graduate Council.

Thesis Director:

Dr. Brajendra Panda

Thesis Committee:

Dr. Gordon M. Beavers

Dr. Dale R. Thompson

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for

research and/or scholarship.

Agreed __

 HARINI RAGAVAN

Refused __

 HARINI RAGAVAN

ACKNOWLEDGEMENTS

It is my honor to express my deep and sincere gratitude to my advisor, Dr. Brajendra Panda. His

wide knowledge, logical thinking and encouragement have been of great help throughout my

Master’s program. I am also grateful to my committee member, Dr. Gordon M. Beavers, for his

valuable guidance, constructive comments and for his support throughout this work. I owe my

deepest gratitude to Dr. Dale R. Thompson, for being in my Master’s committee.

I would like to extend my sincere gratitude to my brother for all the support and

encouragement. Finally, I would like to thank all my friends at the University of Arkansas for

giving me a home away from home.

TABLE OF CONTENTS

1. INTRODUCTION…………………………………………………………………1

2. BACKGROUND AND RELATED WORK……………………………………..4

3. THE ATTACK PREVENTION SYSTEM ………………………………………7

 3.1 Direct Access……………………………………………………………......7

 3.1.1 Online Shopping Example……………………………………......... 7

3.1.2 Administrators Example…………………………………………… 7

3.2 Indirect Access…………………………………………………………….. 8

 3.2.1 DOB Example……………………………………………………… 8

 3.2.2 Employee Database Example……………………………………… 8

 3.3 Working of the Models…………………………………………………….. 9

 3.4 Definitions…………………………………………………………………10

 3.4.1 University Example………………………………………………..12

 3.4.2 Grades Example……………………………………………………13

 3.4.3 Numerical Examples……………………………………………….14

 3.4.4 A Non-Numerical Example………………………………………...15

4. LOG BASED MODEL…………………………………………………………...19

 4.1 Identifying threats………………………………………………………….19

 4.2 Flowchart of the System……………………………………………………20

 4.3 Example Log Entries ……………………………………………………...21

 4.4 The Model in terms of Algorithm………………………………………….22

 4.5 Pros and Cons of the model………………………………………………..24

5. DEPENDENCY GRAPH BASED MODEL……………………………………25

 5.1 Actions Performed…………………………………………………………25

 5.2 Types of Write Operations………………………………………...26

 5.3 Example Scenarios………………………………………………...26

 5.4 Flowchart of the model……………………………………………………28

 5.5 Algorithm of the model……………………………………………………28

5.6 Advantages and Disadvantages……………………………………………29

6. SIMULATION & ANALYSIS OF RESULTS…………………………………31

 6.1 Factors influencing the performance………………………………………31

 6.2 Key terms in the Legend…………………………………………………..31

 6.3 Data items validated Vs. Number of data items…………………………...32

 6.4 Data items traversed Vs. Number of data items…………………………...33

 6.4.1 Dependency Graph model…………………………………………...33

 6.4.2 Log model……………………………………………………………34

 6.5 Data items validated Vs. Percentage of CDIs ……………………………..35

 6.6 Data items validated Vs. Percentage of dependencies…………………….36

 6.7 Plot of validated data items against time…………………………………..36

 6.7.1 Different amounts of CDIs and dependencies…………………….37

 6.7.2 More number of dependencies…………………………………….38

 6.7.3 Equal number of CDIs and dependencies…………………………38

 6.7.4 Other results………………………………………………………..39

 6.7.5 Summary of the results……………………………………………..41

7 A COMPARISON OF THE DEVELOPED TWO MODELS………………....43

 7.1 Speed………………………………………………………………………. 43

 7.2 Complexity…………………………………………………………………. 43

 7.3 Accuracy…………………………………………………………………… 43

 7.4 Efficiency………………………………………………………………….. 43

 7.5 Simulation Perspective…………………………………………………….. 44

8 CONCLUSIONS AND FUTURE WORK……………………………… ……... 46

REFERENCES……………………………………………………………………………47

PAPERS PUBLISHED IN CONFERENCES…………………………………………. 49

LIST OF FIGURES

Figure 1. An Example dependency graph ………………………………………… 11

Figure 2. An Example dependency graph ………………………………………... 11

Figure 3. Flowchart of the Log model ……………………………………………. 20

Figure 4. Flowchart of the Dependency Graph model ……………………………. 28

Figure 5. Validated Data items …………………………………………………… 32

Figure 6. Data Items traversed by Dependency Graph model ……………………. 33

Figure 7. Data Items traversed by Log model ……………………………………. 34

Figure 8. Variation of CDI ………………………………………………………... 35

Figure 9. Variation of Dependencies ……………………………………………... 36

Figure 10. Variation in CDIs and Dependencies …………………………………. 37

Figure 11. Higher Dependencies …………………………………………………. 38

Figure 12. Equal number of CDIs and Dependencies ……………………………. 39

Figure 13. Output for more number of CDIs ……………………………………... 40

Figure 14. Results for equal number of CDIs and Dependencies ………………… 40

Figure 15. Graphs for higher dependency percentage ……………………………. 41

1

1 INTRODUCTION

Technology is rapidly advancing every day and as a result organizations are shifting from the use

of paper based documents to online digital documents. These provide ease of access, and thus

computer systems are increasingly used to store, process and distribute information regarding an

organization’s day to day activities. It is therefore essential for every organization to maintain

high levels of security since failure of security could lead to unauthorized disclosure,

modification, or interruption of information. Research and Cyber Security studies show that

among the threats that arise in an organization, insider threats are significant. Even though

attacks such as hacking, viruses etc. arise from the outside and cause heavy damage, insiders

pose a significantly higher level of risk than outsiders do [1].

Threats from outsiders are classified as “external threats”, where an outsider attempts to

compromise or gain access to the systems. There are many approaches that automatically detect

external threats, but very few exist for the prevention of insider threats. Insider threats cause

irreversible financial and security damages to an organization. Insider threats are difficult to

detect as the perpetrators are trusted persons which makes it very difficult to draw a clear line

between legitimate and malicious actions. They have knowledge of the information systems they

use and the services used in the organization. They also have knowledge about the security

measures that have been taken to protect valuable information. Since they are aware of these

measures and policies, they have the ability to violate or go around them. Thus certain attacks

would go undetected for some time.

Investigations on security have discovered that a major proportion of the security

breaches in an organization are caused by the employees. The professional services provider’s

Data Loss Barometer report has investigated and found out that the frequency of insider threats

2

has increased from 4% in 2007 to 21% in 2010 [2]. Also, CERT studies show that most of the

insiders attacked the organization for financial gain. They get hired and motivated by outsiders to

commit crimes in order to gain money. The average damages due to an insider attack as shown

by the reports exceed $3M with few cases losing around $50M [3]. Thus it becomes essential for

every organization to protect their data from insider attacks.

This thesis investigates the problem of insider threat in database systems. In spite of the

existence of various threat prevention techniques, many databases are still being compromised

by insiders. There are mechanisms which prevent insiders from attacking a database by gaining

knowledge about the data items. They are prevented from accessing a combination of data items

in a database through which they can gain knowledge about an important target data item. To

complement those mechanisms, an attack prevention system has been proposed in this thesis

which mainly deals with the threats posed by insiders who have authority to change and modify

information in the database. Generally, insiders with write permissions can input any data into

the database which at times becomes a serious threat for the organization.

The proposed attack prevention systems catch those malicious write operations by

associating a term called ‘threshold’ with every data item in the database. Threshold defines the

limit to which a data item could be modified and the values are dynamic so that they can be

changed as and when necessary. One may argue that an insider with the knowledge of a

threshold for a data item can modify the data item maliciously by keeping the changes within the

threshold. However, the thresholds are determined in such a way that, any value within the

threshold is within acceptable risk and causes no problem to the system. The efficiency of the

models depends on the effectiveness of the threshold values and so they should be chosen in such

a way that the data item remains secure.

3

The rest of the thesis is organized as follows. Chapter 2 addresses the background and

related work. The terms introduced in the thesis are explained in Chapter 3. Chapters 4 and 5

contain the algorithms and models. Experiments and results are discussed in Chapter 6 followed

by Chapter 7 which compares and contrasts the developed models. Chapter 8 presents

conclusions and future work.

4

2 BACKGROUND AND RELATED WORK

Nowadays, firewalls and other network security mechanisms help organizations in preventing

outsider threats. But, in spite of several intrusion detection systems, insider threat still remains a

problem. Different researchers and scholars have put forward various definitions for the term

‘insider’, which is discussed in this chapter.

In [4], the authors define an insider as “someone with legitimate access to an

organization’s computers and networks. For instance, an insider might be a contractor, auditor,

ex-employee, temporary business partner, or more”. In [5], Bishop and Gates address an insider

as “a trusted entity that is given the power to violate one or more rules in a given security

policy... the insider threat occurs when a trusted entity abuses that power.” In [6], an insider is

defined as, “Anyone with access, privilege, or knowledge of information systems and services”.

Also, numerous methods to prevent insider threats have been introduced till date. In a paper by

Spitzner [7], honeypots have been used to detect insider threat. He discusses the ways of

indicating insider threats by combining honeypots with honeytokens and honeynets. Apart from

this, various mechanisms like attack graphs and trees have been proposed in many papers. One

such paper [8] uses attack trees as a framework to monitor the activities of users and also to catch

them if their target node is found along the tree. Adding to this, in [9] use of attack

decomposition trees and attack vs. defense matrices for insider threat defense is discussed.

[10] discusses how different orders of accessing data items poses different levels of

threat. They propose threat mitigation models which organize the sequence of how data items

could be accessed, so that threat becomes minimal. A paper by Yaseen and Panda [11] discusses

how an unauthorized insider can acquire knowledge about a relational database by detecting the

dependencies between objects. Sufficient amount of work has been performed in preventing

5

insiders, who build their knowledge by exploring dependencies in order to access sensitive

information. The proposed model also deals with dependencies, but in contrast to previous work,

it deals with malicious write operations. Similar work has been done in paper [12] which

discusses methods to predict malicious activities by insiders who combine object dependencies

and their knowledge gained in order to launch an attack. In [13], the authors proposed a model

called a key challenge graph, which describes various paths an insider could take to reach the

target node. They say that every time a node is compromised, additional information is gained

which helps in continuing the attack.

Since dependencies remain to be a major issue in insider threat mitigation, many

researchers have discussed it extensively in [14] [15] [16] [17]. In [14][15], the authors talk

about the problem of combining non-sensitive data to derive sensitive data. They present a

survey of the current and emerging research works in data inference controls. In [16] and [17],

the authors investigate the problem of inference channels which arises when one combines non

sensitive data to get sensitive information. An integrated architecture to detect various types of

insiders was proposed by Maybury et al. in [18]. This paper summarizes few works that have

been carried out for counter attacks on insiders. Bradford and Hu [19] combined intrusion

detection mechanisms with forensics tools to detect insiders in a layered approach. They have

employed intrusion detection systems to drive the forensic tools. Morgenstern [20] formulated a

function to compute the amount of knowledge an insider could attain by detecting dependencies.

In [21], the authors advocate a model called the Capability Acquisition Graph (CAG)

which analyzes the individual actions of users to evaluate their cumulative effects and detect

possible violations. To complement these existing works, the proposed models aim at preventing

6

malicious write operations. The following Chapter describes the attack prevention system and

explains few key terms used in the thesis.

7

3 THE ATTACK PREVENTION SYSTEM

Insiders are trusted entities of an organization who have the authority to perform various

operations, and when they take advantage of their permissions and violate rules, it turns out to be

a threat. As mentioned earlier, a good amount of work exists in preventing malicious read

operations; so this thesis focuses on preventing malicious write operations in databases. A write

operation can modify a data item by one of the following ways:

 Direct access

 Modifying some data item which will trigger an indirect update.[Indirect access]

3.1 Direct access

Here, an insider will have write permissions on the data item he/she is trying to modify. So as an

authorized user, he will be trusted and he can make modifications directly on the object.

3.1.1 Online Shopping Example

Let us assume that someone orders an item online and money gets deducted from their account

twice for the same item by mistake. To notify this, one might inform the concerned person and

they will take necessary actions. The vendor who is responsible for this will have to manually

deal with this situation.

3.1.2 Administrator Example

System administrators in a university would have permissions to reset passwords of students

upon request. Here admins are trusted insiders since they can make direct modifications to the

data item.

8

So, in cases like these where actions have to be directly taken, insiders will be given

permissions and would be trusted. These are examples of insiders having direct access to data

items.

3.2 Indirect access

 In this case, an insider might not have direct permissions to modify the data item as such, but he

can still work on it by figuring out its dependencies. This means, when the dependent data item

is changed, it makes a change in the target item or might change few intermediate data items

which get reflected in the target node. Thus, changing one value can produce a transitive change

in the data items.

3.2.1 DOB Example

A simple example to understand an indirect access would be to consider three attributes namely

Date of Birth (DOB), Age and Vote. Vote denotes if the person has the right to vote (varies

depending on the country). When there is a change in the DOB, it gets reflected in the age as

well as the vote column. This is an indirect change, e.g. change in one data item produces a

change in the other one too. In cases like this, the insider may be prohibited from modifying

DOB.

3.2.2 Employee Database Example

Let us assume that in an employee database, salary is automatically calculated by multiplying

number of hours an employee worked and pay per hour. If someone modifies the number of

hours or pay per hour data, then it automatically triggers a change in the salary data. This is an

indirect change, i.e. change in one data item produces a change in the other one too. This is a

simple situation; however there may be complex situations where the dependencies may not be

9

so obvious but clever insiders take advantage of the relationships to attack the database

However, there may be complex situations that may not make the dependencies so obvious and

insiders can take advantage of that.

3.3 Working of the Models

With these classifications in mind, the attack prevention system has been modeled to forbid

malicious writes specifically in two scenarios.

 Prevent malicious writes using log entries.

 Prevent malicious writes using dependency graphs.

 A term called ‘threshold’ is introduced in the thesis which sets the limit to which a data

item can be modified. Every data item in the database is associated with a ‘threshold’. When a

change crosses the threshold, it signals a threat and a check is made verify the validity of the

write operation. Generally logs maintain a record of all activities in a database and thus to verify

the validity of an operation, one could analyze the log. There might be cases where one would

need more information about the write operation in order to proceed with the investigation. So,

to get a clear picture of the write operation, the log is thoroughly examined to determine the

complete set of data items that were accessed during that entire transaction. By doing so, one can

pull out the corrupt data items and fix the malicious operations.

Tracing the entire log to identify a malicious update would cause significant delay when

there are numerous transactions getting recorded. So, an alternate approach which works faster

by employing ‘dependency graphs’ is proposed as the next model in the thesis. Here, the process

begins by developing a graph called the ‘dependency’ graph, whose nodes are various data

objects of the database. An edge between two nodes means that there is a dependency

10

relationship between the two data items. This means that the write operation performed on one

data item might affect the other in some way.

The system works by monitoring every write operation on nodes and when the changes

go beyond the threshold, necessary security checks are performed. The main difference between

log and the dependency graph is that, a log is a collection of all the transactions and it is tedious

to determine the sequence of an operation. But, the dependency graph gets built as and when a

transaction proceeds and it is easy to trace back and detect the malicious data item when a threat

occurs. Also, when write operations begin, the dependency graph model keeps track of the

dependency relationships (explained in next Chapter) through which it prevents threats arising

from insiders who plan their attack based on the relationships among data items. In the following

Chapter each term introduced in the thesis is defined with suitable examples.

3.4 Definitions

Definition 1: In a database, the data items which are very sensitive and whose changes are to be

highly monitored are addressed as Critical Data Items (CDI).

For example, in a healthcare database, the report of a patient is a CDI. In a university

database the grade of a student is a CDI. Malicious changes to these data items will cause a

major damage to the database, and so they have to be monitored with high security.

Definition 2: A Regular Data Item (RDI) in a database is a non-sensitive data item and changes

to such data items do not cause an immediate problem.

Few data items like address, gender etc. in a company or university database may not

matter much to the organization as compared to the CDI’s. So changes to these might affect the

database little without any serious damage.

11

Definition 3: A dependency between two data items x and y (denoted as x y) can be defined as

a relationship such that, changes to x might influence the value of y; i.e., y is calculated using the

value of x.

 Figure 1 Figure 2

 Example Dependency Graphs

The above figures are examples of dependency graphs. The dependency graph is defined

as {V, E} where the vertices V are various data items and edges E between two vertices convey a

dependency relationship. The data item next to the arrow head in the figures denote the one

getting modified as a result of a change initiated by the other data item.

In fig. 1, the data item x is dependent on two data items a and b. Similarly a and b are

dependent on c and d, e respectively. For example, when any changes are made to either data

item d or e, data item b might get affected immediately or subsequently. So one could modify b

by changing d or e. The dependency graph is built when a transaction modifies a data item.

Before the changes get committed, appropriate security checks are performed to verify the

validity of write operations and also to ensure the security of data items. If they are valid, then

execution of such operations is allowed. Similarly, in figure 2, the data items c and d are

dependent on f. Likewise, a is dependent on f and d which means that any changes to f or d

triggers an automatic or subsequent update in a. Also, a dependency also exists between d, e and

a

c

b

e d

x a b

c
d e

f

12

b. To understand how the dependency graph is built, let us consider a scenario where the pay of

an employee is calculated by multiplying the number of hours he worked per week with pay per

hour. When his number of hours is entered into the database every week, a node corresponding

to it gets added to the graph. At the end of the month when his pay is calculated from the number

of hours and pay per hour, both the nodes are appended to the graph. The graph simply shows

that pay is dependent on the both the nodes and if some threat is encountered with pay, the other

two nodes also have to be investigated. Here are few examples that clarify the concept of

dependency.

3.4.1 University Example

Table 1. A University Database with attendance of students

NAME ATTENDANCE ASSIGNMENT GRADE

Alisa 90% 98% A

Jack 92% 88% A

Jim 80% 85% B

A University database which maintains the academic information of a student may contain

fields like the ones listed above. Here the grade of a student depends both on his attendance as

well as his assignments. He gets an A grade when his assignments are between 89% and 100%.

Also, an extra credit is given for the attendance in such a way that if his grade is along the

border of A (88% is a B) from the assignments and he holds more than 90% in attendance, then a

credit gets added and he gets an A. This simply means that both attendance and assignment play

an important role in the value of grade. So, attendance and assignment are two data items which

are the dependencies of grade.

13

3.4.2 Grades Example

Table 2: A University Database with individual scores

Let us consider the same university database as shown above with a little difference in the type

of information they store. Here the grade of a student is calculated from his score in two courses

denoted as score1 and score2 as shown in Table 2. If the value in any course gets changed, it

affects the grade too. This means that the value of the data item grade depends on the values of

score1 and score2. This is an example which shows that a dependency exists between scores and

grades data items.

A CDI can be dependent on another CDI or an RDI. So changing an RDI can also affect a

CDI which is the main concern of the thesis. As long as these dependencies exist, it will be easier

for insiders to attack a CDI by working on RDIs. In spite of preventing insiders from accessing

CDIs without authorization, they can alter other data items and achieve their goal.

Definition 4: The term Δi denotes the amount of change (in numerals) that is made to a data item

‘i’ by a write operation.

To understand it better, let us take the bank balance as a data item. When we deposit,

withdraw or transfer money, the value of the balance changes. The difference between the initial

value and the value after the change (new value) is defined as Δbalance.

NAME

SCORE1

SCORE2

GRADE

Tim

90%

98%

A

Joseph

92%

88%

A

Ken

80%

85%

B

14

Similarly, let us consider the income attribute in a retail store database. Every day the

value of the income data item keeps changing as people keep purchasing things. Thus, the

difference between the value that was initially in the income field and the new value is denoted

as Δincome.

Definition 5: Every data item ‘i’ in the dependency graph is associated with a Threshold

denoted as Ti. It can be defined as a numerical value that sets the limit to which a data item

could be modified without causing a threat. Threshold for a data item can be either single or

multi-valued.

Threshold may take different kinds of values depending on the data item to which it is

related. If Ti=0, changes to i are highly critical to the database and if Ti=∞, the changes are

trivial. It does not mean that the changes to data items with Ti=∞ are immaterial, but they cause

less damage than the CDIs. Thus, every data item acquires a threshold value that ranges between

0 and ∞ (inclusive). These values can be changed by security personnel as required. The

verifications might also involve manual tasks as and when needed. Every data item will be

subject and on proper analysis of its risk level, a threshold could be associated to prevent the

changes from exceeding the threat level.

 Here are few numerical examples:-

3.4.3 Numerical Examples

1. For a company database, salary of employees is very sensitive and the threshold takes a

value in such a way that, any change to the salary till it crosses the threshold is trivial. For

example, a + or - $10 change to the salary may not make much harm whereas when one

figures more than $1000 change it has to be investigated. So, depending upon the risk the

15

company is willing to take, in the described situation, the threshold value can be set between

$10 and $1000.

2. Let us consider a database which stores the SSN of people. It is highly sensitive and the

threshold for SSN will monitor the number of times it gets altered. So, in this case threshold

is not a mere number, it also tracks the changes.

3. In a bank database, the balance of the account holder is a CDI and situations where

withdrawal or deposit takes place many times a month which is unusual, might be a threat.

Thus the number of times a data item changes can also be chosen as a threshold.

3.4.4 A Non-Numerical Example

Threshold for data items that are not numeric will have to be defined in a different manner than

the numeric ones. It is easy to note the changes in numbers, but when the data items have values

that are in alphabets, it is inefficient to monitor every single letter for a change. In those cases,

initially a predefined set contains all the values a data item could take. Then a ∆ value is

associated with changes from one value to the other in the set. If they cross the threshold then it

is considered as a violation of security. Here is an example to make it clearer.

Table 3. A University Database with details of employees

NAME

JOB TITLE

YEARS OF EXP.

SALARY

Tom

Associate Prof.

5

80k

Kelly

Professor

7

150k

John

Teaching Assistant

2

30k

Consider a university database as shown in Table 3. An insider might target the job title

and could try to change the designation. The threshold for job title is complicated and a numeric

16

threshold cannot help catching the malicious change. So, for data items like this which are non-

numeric, a predefined set is employed which holds the possible values the data item could take.

In this case, job title would have a set with values such as {Professor, Associate professor,

Assistant Professor, Office Staff, Teaching Assistant}. A shift from one position to another takes

a unique ∆ value which helps us in identifying threats. An immediate change from Teaching

Assistant to Associate Professor is not acceptable; since one cannot become a Professor from

being an Office Staff. Thus, for each combination a ∆ value is attached accordingly. For

example, for the position of a Teaching Assistant, the change could be defined as (Assistant

Professor, Associate Professor, Professor) in that sequence. If the ∆ is made as 1 for a shift to the

next position, then anything greater than 1 is considered to be invalid in this example. So the

threshold for job title can have the condition as ∆ greater than 1 and any changes that has ∆ more

than 1 will go for verification.

Another example to understand it better would be to consider a company database where

one could hold positions like {Engineer, Senior Engineer, Team Lead, Manager} in the defined

hierarchy. An insider might target the job title and could try to change one’s designation. The

threshold for job title is complicated since a numeric threshold cannot help catch the malicious

changes. Thus the threshold is defined based on the amount of changes the job title takes. A shift

from one position to another takes a unique ∆ value which helps us in identifying threats. An

immediate change from Engineer to Team lead or manager is unacceptable and signifies threat.

Thus ∆ value is attached for every combination of change. If the ∆ is 1 for a shift from one

position to its immediate next position, then any change that is greater than 1 is considered to be

invalid for this example. So the threshold for job title can take the condition as “∆ greater than 1”

and any changes that have ∆ more than 1 require verification.

17

Listing out all the possibilities a data item would take is little tedious. This information

could be taken from the domain defined for every data item while building the database. This

method helps in identifying threats associated with any type of data item, especially those that

are non-numeric. The set is dynamic and have to be updated whenever the domain of a data item

changes. For example, a university initially might decide that a student above 90% will get an A,

but later they can change it to 89%. This case the set of values that determine an A grade

changes.

In practical terms, threshold can be defined for an entire table, for an attribute or for

every data item. As mentioned, a threshold value 0 signifies that the data item is highly sensitive

and every change made to it has to be monitored. For example, consider SSN again. It very rarely

gets changed and so even a one-time change has to be validated, thus it takes a threshold of 0.

Similarly a data item with threshold infinity denotes that it can take any number of changes and

the changes do not constitute a risk. Assigning proper threshold to the data items is a very

important task. The selection of threshold should be judicious and must cover all the possible

scenarios by which a data item could be attacked. It should also be dynamic so that if the risk

level of the data item increases or decreases, the threshold must also change accordingly. For

simplicity, this thesis considers only threshold values that operate on numeric data items.

 Definition 6: Every time a transaction operates on a data item ‘i' and makes a change, the Δ

value gets collected in a variable called ‘unverified Δ’ denoted as Δu. denoted as Δui for data

item ‘i’.

If the changes are below ‘threshold’, they get added to the existing values in the variable

and the point at which ∆u exceeds Ti signifies a threat. A value of 0 to ∆u denotes that the data

18

item is secure and there are no unchecked write operations. Initially when the database is built,

the ∆u values of all the data items are initialized to 0.

To understand it better, let us consider the balance attribute of a bank database. Initially

let’s assume that the ∆balance has a value 100. When there is a deposit or withdrawal of 50 dollars,

∆balance becomes 150 or 50, respectively. Thus, the amount of change made to a data item gets

summed up in the variable. As already mentioned, the threshold for balance can limit the amount

that could be either deposited or withdrawn. ‘Threshold’ can also keep track of the number of

times the balance data item gets changed. In this case, the threshold is multi-valued. The main

goal of the developed idea is to keep ∆u = 0 most of the times so that, the data items remain

secure.

Irrespective of the sensitivity, changes made to every data item in a database has to be

monitored. But, checking every single write operation introduces delay in the whole process and

slows down the system. Thus, as CDIs are the most important data items, they are investigated

every time they change. It is not claimed that changes to RDIs are immaterial, but validating

every operation will slow down system performance significantly. So, the priority is to safeguard

the critical data items first, and then periodically track the RDIs to assure they are free from

threats.

When security checks are made to verify a transaction, manual verification might be

required. For example, if there is a vast change in a bank account, then during the check one

needs to manually affirm that the change was valid. This checking is real time and might involve

some delay in the process, but eventually it satisfies the goal of securing data items. When

security is a top priority, delays are small prices one must be willing to pay. The two attack

prevention models and their algorithms are explained in the following chapters.

19

4 LOG BASED MODEL

A log file keeps record of each operation and the data items accessed during every transaction

that gets executed. Although traditional logs do not store read operations, this model requires

storing them. Furthermore, it is also required to record the type as well as the amount of changes

(Δu) made to each data item during a transaction. With all these information in hand, one can

trace the log to figure the sequence of data items involved during a transaction.

4.1 Identifying Threats

The log model works in such a way that, when a write operation makes changes that go beyond

the threshold, the system sends an alert. As mentioned earlier, modifications done on a CDI will

immediately be verified. There might be scenarios where the current operation might remain

correct after verification, which signifies that one or more of the past operations that contributed

to the present one might have been malicious. Hence all the past operations have to be

investigated to fix the threat. According to the model, there are two scenarios during which a log

would be examined.

 The change exceeds threshold.

 Sum of values in Δu exceed threshold.

20

4.2 Flowchart of the System

Figure 3. Flowchart of the Log model

 Is i a

CDI?

YES

NO

NO

NO

YES

YES

Check every write

operation

 Check

Proceed the write

Δui=Δui+Δi

Δui>Ti

Is Δi

valid?

Is j

empty?

i=j

Δu of all processed

data items=0

NO

YES

For each item in {j}, set

of dependents

21

Whenever the write operation makes changes that exceed the threshold, the associated

transaction is verified and if it requires more information for validation, then the log is examined.

After making sure that the write is legitimate, the operation is allowed to make changes.

Also, every time the changes occur they are accumulated in Δu and checked against

threshold. When the sum of values in Δu exceeds the threshold, verifications are based in the

similar way as mentioned for the previous case. Below is an example.

4.3 Example log entries

Table 4. Modified Log

Table 4 shows some example log entries used in this model. It has fields which show the data

item under operation, and the type of action performed on the data item by a transaction. The

value field contains the unverified changes for every item and it gets updated once they are

verified.

In the table, initially, a transaction t1 performed a write operation on data item a, which

gets recorded as a
2

in the action field, after which the value of a was read by t2. Following this, t2

updated the value of b by making cube of b and then adding a to it. Then a transaction t3 read the

updated value of b and modified c as c+ b
2
.

Data item a b c

Actions written by t1: (a
2
)

 read by t2 written by t2:

(a+b
3
)

 read by t3 written by t3:

(c+b
2
)

Value Δua Δub Δuc

22

Now, if the change made to c crosses the threshold, verification is triggered. If the write

made by t3 appears to be valid, then other data items which contributed to the change in value of

c might be wrong. By tracing the log, it is easy to figure out which data items were involved in

the modification of c. The Δu value for every data item shows the amount of change and the write

operations that are still unverified.

By validating the changes for a and b, one could figure out which update was wrong.

This shows the strength of dependencies. Even though the changes made to a and b did not cross

their thresholds, they indirectly affected c which signifies that the write operation on one data

item might make another data item malicious. After checking is performed, the Δu values of all

the data items involved could be set to 0, which means there are no pending changes to be

verified and the data items are out of threats so that the forthcoming transactions can avoid

checking the same data items.

The log modeled in the thesis considers only committed transactions and avoids the ones

which are aborted. The corresponding algorithm is provided below.

4.4 The Model in terms of Algorithm

Algorithm 1. Preventing malicious writes using Logs

Input: Δi, Δui, Data item i, Threshold Ti

Output: Allow only valid write transactions

1. For each write operation on a data item i

2. Δui=Δui+Δi

3. If i a CDI

23

4. Check the validity of the write operation

5. Else

6. If Δi > Ti or Δui > Ti

7. If Δi valid

8. For the set of data items {j} that affected i

9. If j is empty

10. Set Δu of parent and children to zero

11. If Δuj=0 then

12. Remove j; goto step 8

13. Else assign j as the parent node(i); goto step 7

14. Else Check the current transaction

15. Assign Δui=0

16. End for

Comments: Every change made on a data item gets added to its ‘unverified write’ in Step 2.

Step 6 checks if the Δu value of a data item exceeds its threshold. Step 7 determines if the current

write operation is valid or not followed by Step 8 which reads the log and pulls out all the read

dependencies into a subset {j} where j denotes a dependent data item. A recursive search starts in

Step 8 by assigning the child node as the parent node. This way the log model recursively traces

back to find the previous operations which affected the current operation.

24

4.5 Pros and Cons of the Model

This method introduces some delay since one has to back track a substantial portion of

the log and find the transaction which was malicious. Because of the absence of an appropriate

sequence of operations and the dependencies, it becomes time consuming to catch a threat. To

overcome this delay, dependency graph model has been developed which is discussed in the next

chapter.

25

5 DEPENDENCY GRAPH BASED MODEL

A database contains several data items where dependencies might exist among few data items,

which prevails to be an advantage for insiders. Insiders who are not authorized to access the

critical data items tend to use dependencies as a means of attacking CDIs. They try to guess the

dependency between regular data items and the critical data items, as a result of which they can

successfully modify the CDIs by modifying the RDIs.

Considering the dependencies among data items in a database, the dependency graphs are

built immediately after a transaction starts its operations. Every time a transaction generates a

write operation, the changes (Δ) get added to its Δu. Then, based on the type of the data item

under modification, certain actions are performed to ensure its security. There are three cases as

discussed below.

5.1 Actions Performed

 Data item is a CDI.

 Data item is an RDI.

 Data item is a CDI or an RDI, affecting a CDI immediately.

If a write operation is performed on a CDI, then irrespective of its Δ, security checks are

made. This serves the purpose of prioritizing the security of CDIs in a database. Some

information like SSN and medical reports are highly confidential and have to be under

supervision continuously. Next, when a RDI is modified, the changes gets accumulated in its Δu

and is checked against its threshold to make sure the changes are acceptable. The moment they

exceed the threshold, security checks are triggered. Lastly, if a RDI or CDI which is getting

modified is found to impact another CDI then as per the idea of the attack prevention system,

checks are immediately made to keep the CDIs free from threat. Dependency graphs are built

26

whenever a transaction begins, but the process depends on few other conditions as explained

below.

5.2 Types of Write Operations

 Write operation on a data item immediately affecting the dependents.

 Write operation on a data item subsequently affecting the dependents.

5.3 Example Scenarios

The first scenario addresses write operations which modify a data item that in turn

automatically changes few other data items. As a consequence, all the data items getting

involved in the write are added as nodes to the graph with corresponding edges denoting the

manner in which the data items affect each other. This tells us that there is a dependency between

them. An example to consider would be few data items like DOB (Date Of Birth), age and vote.

Let us assume that the vote data item is a CDI. When DOB is changed, all the three nodes are

added to the graph since they get affected automatically. Since vote is a CDI, the write operation

on DOB is immediately verified. Instead, when vote is an RDI, changes to DOB add all the three

data items to the graph but does not trigger any security checks. This is because there is no CDI

involved in the change and so the changes would be verified only when they exceed threshold.

The next scenario considers write operations on data items which may affect other items,

but not immediately. Since the dependents are not altered immediately, only the data item

currently getting modified is added to the graph. To make it clearer, let us assume that the

monthly pay of an employee depends on the number hours he worked every week (which may

vary) and pay per hour. Thus his pay will not be calculated until the end of the month. So, even

though pay is dependent on pay per hour and the number of hours worked, a change will be done

to the pay node only at the end of the month. So here, when a value gets entered every week for

27

the number of hours, only that node gets added to the graph. Finally pay gets calculated from all

the existing values and the corresponding node will be appended to the graph. If there are any

issues encountered, then the graph is traced to find which week carries a wrong value for the pay.

Another scenario for data items getting affected subsequently would be to consider that

the grade of a student depends on the scores of four tests. The grade will not be calculated until

all the four test scores are received. So, even though grade is dependent on various data items, a

change will be done to it only when all the test scores have received a value. So here, every time

a value is entered for a test score, only that corresponding node gets added to the graph. Finally

while calculating grade, a grade node will be appended to the graph and if there are any issues

encountered, then the graph is traced to find which test score carries a wrong value. The entire

idea is that, when a data item is found to be invalid, then all its dependents are also checked and

cleared. This will leave the data items in the database free from malicious activities. The graph

model is explained in terms of a flowchart and an algorithm below.

28

5.4 Flowchart of the Model

Figure 4. Flowchart of the Dependency Graph model

5.5 Algorithm of the Model

Algorithm 2. Preventing malicious writes with Dependency graph

Input: Δi, Δui, Data item i, Threshold Ti

Output: Allow only valid transactions

Is ‘i’ a

CDI?

Check the validity of

the write operation

Is

Δuj=0?

Δui=0, Δuj=0

Proceed check with the

next dependent data

item of i

YES
NO

YES

NO

Is Δui>Ti

Is Δ

valid?

Proceed check with j

and its dependents

Is {j}

empty

?

Proceed the write

operation
YES

YES NO

Check Δ and dependents

(if needed)

Δui=Δui+Δi

NO

YES NO

29

1. For each write operation on a data item i

2. ∆ui =∆ui +∆i

3. If i a CDI OR any CDI dependent on i OR ∆i >Ti,

4. Check the validity of the write operation

5. If valid

6. Check the dependents of i

7. Set ∆u of data items in the sequence to 0

8. Else proceed with the transaction

9. End for

Comments: Step 4 checks the validity of the current write operation. If valid, then Step 6 figures

out the dependencies from the graph built and checks them also. In step 7, ∆u values of the

checked data items are re-initialized to 0 which means they are perfect.

5.6 Advantages and Disadvantages

Anytime a check is triggered for a data item, it terminates by making its ∆u= 0. This is to

indicate that the data items are secure. Every transaction accesses its own set of data items and

thus it starts building its own dependency graph. The graphs might require separate data

structures like linked lists or trees to build them. The dependency graphs may be disjoint for each

transaction since each might have different sequence and the data items may not be related. But

once a dependency is figured between two data items in two different graphs, the graphs will be

30

merged by delineating an edge between the nodes. This model is time consuming as it tracks all

the operations in a database. It is a little complex to build and maintain. The following chapter

explains the simulation methodologies and discusses the results obtained.

31

6 SIMULATION & ANALYSIS OF RESULTS

The proposed algorithms were implemented on a simulated database and various test cases were

executed and studied. The goal of simulation was to compare both the models and to visualize

how one model performs better than the other in keeping the database secured. Experiments were

carried out by varying the number of transactions, number of data items and also by taking

different percentages of CDIs and dependent data items. The number of CDIs was calculated as a

percentage of the total number of data items. The dependent data items were picked from the rest

of the data items, excluding those already chosen as CDIs. The important factors considered to

prove the effectiveness of the algorithms are as shown below:

6.1 Factors influencing the performance

 How frequently were the data items validated?

 How much work was needed to identify a threat?

Whenever a threat occurred, both the models started verifications on transactions and data items

in order to fix the threat. If the ‘unverified write’ of a data item remained 0, then the data item

was skipped since it is already cleaned and is out of threat. Thus, the models backtrack and

search for the malicious data items recursively and ultimately fix them. In addition to that, the

counts of the number of data items that are being traversed to catch the malicious data items

were also observed. Graphs have been plotted depicting the mentioned factors for both the log

and dependency graph model.

6.2 Key terms in the Legend

The terms used in the legend are defined as follows.

 L – Log model

32

 D – Dependency graph model

 T – Transactions

 DI – Data Items

The results of the simulation are summarized below.

6.3 Data items validated Vs. Number of data items

Figure 5 shows the number of data items checked by both the log and the dependency graph

model with a variation in the number of data items (1000-5000). The letters L and D in the

legend stand for log and dependency graph respectively. The numbers in the legend specify the

number of transactions considered for the simulation. The percentage of CDI and the dependent

data items were both taken as 10% for the experiment.

Figure 5. Validated Data Items

The graph clearly shows that for every combination of input values, dependency graphs validate

data items than the log. This is because the graph model considers dependencies and thus secures

0

10

20

30

40

50

60

70

80

90

1000 2000 3000 4000 5000

N
u

m
b

er
 o

f
d

a
ta

 i
te

m
s

ch
ec

k
ed

Data items

L50

D50

L100

D100

L150

D150

L200

D200

33

data items from insiders who try to launch an attack by guessing dependencies between data

items. Also, an increase in the number of data items does not signify an increase in the threat

which explains the rise and fall of a line in the graph.

6.4 Data items traversed Vs. Number of data items

The following graphs show the number of data items traversed by both the models whenever a

threat occurred. The letter T and a number in the legend indicate the number of transactions

considered. Since any threat detection mechanism requires tracing the past events, this thesis

considers the number of items needed to be crossed as a factor of proving the effectiveness of the

models.

6.4.1 Dependency graph model

Figure 6. Data Items Traversed by Dependency Graph Model

Figure 6 depicts the number of data items that the dependency graph model traverses to fix a

threat. With an increase in the number of data items, a transaction has more flexibility to choose

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000

N
u

m
b

er
 o

f
d

a
ta

 i
te

m
s

tr
a

v
er

se
d

Data items

T50

T100

T150

T200

34

data items for its operation. This means that there will be more disjoint graphs since the

frequency of transactions picking the same data item will be less. As indicated by Figure 6, for

larger numbers of data items and transactions, the traversal count remains larger than when

compared to smaller number of transactions and data items. Thus, the dependency graph model

requires fewer data items to be traversed than the log model and fixes the malicious data items

faster.

6.4.2 Log model

Figure 7. Data Items Traversed by Log Model

Figure 7 demonstrates the number of data items traversed by a log to identify the threat. By

comparing Figure 6 and Figure 7, one could infer that there is a vast difference in the number of

data items traversed by the dependency graph and the log. Since dependency graphs keep track

of the sequence of operations and also consider dependencies, it validates the data items more

frequently and faster than the logs. This can also be deduced from Figure 1. Log model could be

0

50000

100000

150000

200000

250000

300000

350000

1000 2000 3000 4000 5000

N
u

m
b

er
 o

f
d

a
ta

 i
te

m
s

tr
a

v
er

se
d

Data items

T50

T100

T150

T200

35

time consuming than the dependency graph model but both the models solve the issue of

preventing threats.

6.5 Data items validated Vs. Percentage of CDIs

The graph shows the number of data items checked for different percentages of CDIs.

Figure 8. Variation of CDI

The legend shows the number of data items considered by both the models. When the number of

CDIs increase in a database, more number of checks is made since the ultimate goal of both the

models is to secure the CDIs irrespective of their ∆ values. Since dependency graphs consider

dependencies among data items also, they perform more frequent checks than the logs and thus

the count remains higher than for logs.

0

5

10

15

20

25

30

35

40

10 20 30 40 50

N
u

m
b

er
 o

f
d

a
ta

 i
te

m
s

ch
ec

k
ed

Percentage of CDIs

L1000

D1000

L2000

D2000

L3000

D3000

T=50

36

6.6 Data items validated Vs. Percentage of dependencies

Figure 9 shows the number of data items validated for different percentages of RDIs affecting

CDIs. When the number of dependencies in database increases, checks made also increases since

the priority is to secure CDIs. As the log model does not consider dependencies during write

operations, the number of checks made is lesser than the dependency graph model.

Figure 9: Variation of Dependencies

6.7 Plot of validated data items against time

The efficiency of the developed attack prevention models could be best proved by looking at the

number of data items that stay validated as and when transactions proceed. Graphs were plotted

for various combinations of input values and the results are discussed below.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50

N
u

m
b

er
 o

f
d

a
ta

 i
te

m
s

ch
ec

k
ed

Percentage of RDIs influencing CDIs

L1000

D1000

L2000

D2000

L3000

D3000

37

6.7.1 Different amounts of CDIs and dependencies

Figure 10 is a plot of the number of data items that remain clean in a database w.r.t set of

transactions that take place within a span of time.

Figure 10. Variation in CDIs and Dependencies

The first number depicted in the legend denotes the percentage of CDIs and the second number

signifies the percentage of dependency in the database. Dependency graph model has higher

number of validated data items than the log model since they make checks more often and also

prevent write operations on a CDI originating from a dependent RDI.

As depicted by the figure, the log model has more validated data items at a point in time

for 60% CDIs than when the database has 10% CDIs. This proves that the model prioritizes the

security of CDIs. Similarly, with an increase in the dependency percentage, more number of data

items remain checked which explains the lines in figure 10.

30

35

40

45

50

55

60
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

D
a

ta
 i

te
m

s

Iterations

10,50-L

10,50-D

60,10-L

60,10-D

T=50,DI=100

38

6.7.2 More number of dependencies

Figure 11: Higher Dependencies

The figure above depicts the number of data items that remain secured for different simulation

values. The percentage of CDIs and dependency for the experiment were taken to be 10 and 70

respectively. Since the dependency percentage is way higher than the number of CDIs,

dependency graphs maintain many validated data items. This is because the chance of

transactions picking data items that are in the dependency relationship is higher.

 Even though the models have few invalidated data items at a point, they get verified in

the future which is explained by the rise in the lines.

6.7.3 Equal number of CDIs and dependencies

Figure 12 represents the count of validated data items when the percentages of CDIs and

dependencies are same (depicted in the legend).

20

40

60

80

100

120

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

D
a

ta
 i

te
m

s

Iterations

T200-L

T200-D

T300-L

T300-D

DI=100

39

Figure 12: Equal Number of CDIs and Dependencies

In this case, the number of validated data items remains almost same for both the models since

only 10% of data items are CDIs and dependents which is less as compared to the previous

outputs. The reason as to why the line corresponding to dependency graph model stays higher is

because they also consider the 10% dependent data items during write operations. Since 10% is

very low, the number of secured data items by both the models does not differ by a large number.

6.7.4 Other Results

The following graphs are the results obtained by considering different values of transactions,

data items, CDIs and dependent data items.

Figure 13 considers 10% of CDIs and 50% dependencies in the database with transactions and

data items count as shown in the legend. Since there are many dependent data items, the count of

validated data items remain higher in case of the dependency graph model.

30

35

40

45

50

55

60

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

D
a

ta
 i

te
m

s

Iterations

10,10-L

10,10-D

T=100,DI=50

40

Figure 13. Output for higher number of CDIs

Figure 14. Results for equal number of CDIs and dependencies

Figure 14 represents a graph with 50% CDIs and 10% dependencies. Since there are many CDIs,

as per the algorithm, log model also makes checks every time a CDI is written. This makes the

91

92

93

94

95

96

97

98

99

100

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

D
a

ta
 i

te
m

s

Iterations

L

D

T=200,DI=100

42

43

44

45

46

47

48

49

50

51

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

D
a

ta
 i

te
m

s

Iterations

L

D

T=100, DI=50

41

number of validated data items by the log model almost same as the dependency graph model.

This can be observed from the fact that both the lines are almost near each other in the figure.

Figure 15. Graphs for higher dependency percentage

Figure 15 considers equal numbers of CDIs and dependencies which is 10%. It can be

inferred from the figure that the lines corresponding to both the models rise and fall in the same

pattern. The difference between the lines is because, the dependency graph model considers 10%

dependencies which are not done by the log model.

6.7.5 Summary of the results

The experiments show that dependency graph model keeps more data items validated by

making frequent checks. It also reduces delay since the sequence of operations is known.

Similarly, the log model also validates data items, but because of the absence of proper sequence

of operations, they consume more time in fixing a threat. Dependency graphs are more complex

82

84

86

88

90

92

94

96

98

100

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

D
a

ta
 i

te
m

s

Iterations

L

D

T=200,DI=100

42

than the logs since it is extra work to figure out dependencies and to construct and maintain the

graphs.

43

7 A COMPARISON OF THE TWO DEVELOPED MODELS

As discussed earlier, both the models aim at securing databases from malicious write operations.

But some factors make one model better than the other. Some of them are speed, complexity,

accuracy and efficiency.

7.1 Speed

Considering speed, the log model is time consuming since a log records numerous transactions

every day and it is hard to pull out a particular sequence of interest. Dependency graphs simplify

the work done by logs by automatically constructing the transaction tree as and when operations

proceed. Even though log method cause delay, it maintains all the information we need. So, one

can be confident about catching the malicious operations by recursively tracing through the log.

7.2 Complexity

Adding to speed, dependency graphs are less complex than logs in figuring out threats, but

are more difficult to build when the database is huge and has numerous dependencies. Certain

organizations might refrain from building graphs since it requires extra data structures and effort,

but it is certainly an improvement over the logs in many aspects.

7.3 Accuracy

Both the models are accurate in figuring out threats but few factors make one more efficient than

the other. The graph model gives faster results since they consider dependency which is the main

focus of this thesis.

7.4 Efficiency

In terms of the simulation and experiments conducted, dependency graphs catch threats more

efficiently than the logs do mainly because of two reasons. One is the existence of the sequence

of operations. Whenever a transaction begins, the graphs start their work in parallel by keeping

44

track of the type of operation and the set of data items accessed by a transaction. Whenever a

CDI or any RDI affecting a CDI is modified, the model immediately verifies it. Also, when any

suspicious operation is encountered, the graph aids in back-tracking the sequence and finding the

threat quickly since they already have them built.

Due to the availability of all information to spot a threat, dependency graph model works

faster than the log model. However, as seen from the figures, the model makes checks more

frequently which might slow down the system performance. Though it keeps most of the data

items validated, verifying write operation more often introduces delay in the subsequent

transactions. Also, it requires additional work to build, relate and maintain the graphs which

makes it more complex than the log model. In spite of its complexity, it ensures that more data

items remain secure.

7.5 Simulation Perspective

The simulation results obtained show that the log model takes more time in catching the threat as

it traverses more number of data items to figure out the malicious operation. It also keeps less

validated data items as compared to the dependency graph model at a point of time, since it fails

to keep track of the dependencies and the sequence of operations.

Thus, it can be inferred from the output graphs that both the models successfully identify

threats but some factors make one better than the other. If organizations find it difficult to

maintain the graphs, the log model would be an alternate threat prevention mechanism. In

summary, the dependency graph model makes more checks which might reduce the system

performance since it keeps validating most of the write operations. Whereas, the log model

makes less frequent checks which might not affect the system performance as much, but when a

validation is triggered, it consumes more time in traversing a large set of data items. In spite of

45

these variations, both the models secure data items successfully which is the ultimate goal of the

attack prevention system.

46

8 CONCLUSIONS AND FUTURE WORK

According to various studies, insider threat is a problem which often goes unnoticed due to the

lack of proper tools and mechanisms. Adding to this, dependencies among data items enable

insiders to make use of them to change other data items indirectly, thus they successfully evade

the detection tools and contaminate data in a database. Thus appropriate techniques need to be

established to enhance and create a secured database. Various insider threat prevention

mechanisms exist; to complement those, an attack mitigation model concentrating mainly on

write operations has been discussed in this thesis.

To summarize, this thesis explains the developed insider threat prevention algorithms,

their working and implementation results. A new concept of threshold was introduced to limit

the amount of changes a write operation could make without requiring validation. For systems

that do not intend to employ dependency graphs, the log model was discussed to be a

counterpart. The developed algorithms were implemented on a simulated database by varying

several parameters like the number of transactions, number of data items, CDIs and

dependencies. The efficiency of the algorithms was determined by observing the frequency of

validation performed as well as the amount of time taken by the models to fix a threat. The

results were analyzed and compared, and it was made evident that both the developed models

minimize threats originating from write operations.

As future work, the algorithms would be implemented on a developed database rather

than a simulated one in order to monitor the activities and catch threats in real time.

47

REFERENCES

[1] E.E. Schultz, A framework for understanding and predicting insider attacks, Computers

& Security, vol. 21, no. 6, pp. 526 – 531, 2002.

[2] D. Shane, Information Age, Insider threat growing, study reveals, 20 December 2010.

Link: http://www.information-age.com/channels/security-and-continuity/perspectives-and-

trends/1307633/insider-threat-growing-study-reveals.thtml

[3] C. King, “Spotlight On: Malicious Insiders and Organized Crime Activity”, CERT

Insider Threat Center, Carnegie Mellon University, January 2012.

[4] J. Predd, S.L. Pfleeger, J. Hunker, C. Bulford, Insiders Behaving Badly, Security &

Privacy, IEEE , vol.6, no.4, pp.66-70, July-Aug. 2008.

[5] M. Bishop, C. Gates, Defining the Insider Threat. In: Proceedings of the 4th Annual

Workshop on Cyber Security and Information Intelligence Research, Vol. 288.Tennessee, 2008.

[6] R. Brackney and R. Anderson, Understanding the insider threat. In: Proceedings of a

March 2004 workshop. Technical report, RAND Corporation, Santa Monica, CA, 2004.

[7] L. Spitzner, Honeypots: Catching the Insider Threat. In: Proceedings of the 19th Annual

Computer Security Applications Conference. Washington, 2003.

[8] Ray, N. Poolsappasit, Using attack trees to identify malicious attacks from authorized

insiders. In Proceedings of the 10
th

 European Symposium on Research in Computer Security

(ESORICS’05), 2005.

[9] V. Franqueira and P. van Eck, Defense against Insider Threat: A Framework for

Gathering Goal-based Requirements. In Proceedings of the 12th International Workshop on

Exploring Modeling Methods in Systems Analysis and Design (EMMSAD 2007), Trondheim,

Norway. June 2007.

[10] Q. Yaseen, B. Panda, Enhanced Insider Threat Detection Model that Increases Data

Availability. In: Proceedings of the 7
th

 International Conference on Distributed Computing and

Internet Technology, ICDCIT 2011, India, February 2011.

[11] Q. Yaseen, B. Panda, Knowledge Acquisition and Insider Threat Prediction in Relational

Database Systems. In: Proceedings of the International Workshop on Software Security

Processes, pp.450-455. Vancouver, Canada, 2009.

[12] Q. Althebyan, B. Panda, A knowledge-base model for insider threat prediction. In:

Proceedings of the IEEE Workshop on Information Assurance and Security, pp. 239-246. West

Point, NY, 2007.

http://www.information-age.com/channels/security-and-continuity/perspectives-and-trends/1307633/insider-threat-growing-study-reveals.thtml
http://www.information-age.com/channels/security-and-continuity/perspectives-and-trends/1307633/insider-threat-growing-study-reveals.thtml

48

[13] R. Chinchani, A. Iyer, H.Q. Ngo and S. Upadhyaya, Towards a Theory of Insider Threat

Assessment. In: Proceedings of the International Conference on Dependable Systems and

Networks (DSN), pages 108-117, June 28-July 1, 2005.

[14] C. Farkas, S. Jajodia, The Inference Problem: A Survey. ACM SIGKDD Explorations,

Vol. 4, pp. 6 – 11, 2002.

[15] C. Farkas, T. Toland, C. Eastman, The Inference Problem and Updates in Relational

Databases. In: Proceedings of the 15th IFIP WG11.3 Working Conference on Database and

Application Security, pp.181-194, 2001.

[16] Brodsky, C. Farkas, S. Jajodia, Secure Databases: Constraints, Inference Channels and

Monitoring Disclosures. In: Proceedings of the IEEE Trans. on Knowledge and Data

Engineering, Vol. 12, pp. 900-919, 2000.

[17] R. Yip and K. Levitt, Data Level Inference Detection in Database Systems. In:

Proceedings of the 11th Computer Security Foundations Workshop, Rockport, MA, pp.179-189,

1998.

[18] M. Maybury, P. Chase, B. Cheikes, D. Brackney, S. Matznera, T. Hetherington, B.

Wood, C. Sibley, J. Marin and T. Longstaff, “Analysis and Detection of Malicious Insiders”, In:

Proceedings of the International Conference on Intelligence Analysis, Mclean, VA, 2005.

[19] P. Bradford and N. Hu, A Layered Approach to Insider Threat Detection and Proactive

forensics. In: Proceedings of the Twenty-First Annual Computer Security Applications

Conference, Tucson, AZ, December 2005.

[20] M. Morgenstern, Security and Inference in Multilevel Database and Knowledge-Base

Systems, ACM SIGMOD Record. New York, USA, pp.357–373, 1987.

[21] S. Mathew, S. Upadhyaya, D. Ha, H.Q. Ngo, Insider abuse comprehension through

capability acquisition graphs. In: Proceedings of 11th IEEE International Conference on

Information Fusion, pp. 1-8, 2008.

49

PAPERS PUBLISHED IN CONFERENCES

Harini Ragavan and Brajendra Panda, "Mitigation of Malicious Modifications by Insiders in

Databases", In Proceedings of the 7th International Conference on Information Systems Security

(ICISS 2011), Kolkata, India, December 15-19, 2011.

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2012

	Insider Threat Mitigation Models Based on Thresholds and Dependencies
	Harini Ragavan
	Recommended Citation

	tmp.1468350726.pdf.wjlB0

