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Abstract

In our investigation of breakdown waves, we apply
a one-dimensional, three-component, steady-state fluid
model. The wave is considered to be shock fronted
and the electrons are assumed to be the main element
in propagation of the wave. In our fluid model, the
electron gas temperature is assumed to be large enough
to sustain the wave motion. Our set of fluid equations
is composed of the equations of conservation of mass,
momentum and energy plus the Poisson’s equation.

This investigation involves breakdown waves for
which a large current exist in the vicinity of the wave
front. Existence of current behind the wave front alters
the equation of conservation of energy and also the
Poisson’s equation. Therefore, the boundary
conditions at the shock front will change as well. For
current bearing breakdown waves we will derive the
appropriate boundary condition for electron
temperature, and using the new boundary condition, we
will integrate the fluid dynamical equations through the
dynamical transition region of the wave.

Introduction

Paxton and Fowler (1962) considered the luminous
pulses to be of fluid-dynamical nature and at the same
time as Haberstich (1964) from the University of
Maryland proposed a fluid model to describe luminous
pulse propagation. Paxton and Fowler (1962) assumed
the electrical breakdown wave front to be an electron
shock wave and proposed a three-fluid, quasi-steady,
hydro-dynamical model. They considered the electron
gas partial pressure behind the shock front to be the
main cause of the wave propagation. They derived a
set of steady-state equations of conservation of mass,
momentum, and energy transfer for a continuous
medium.

Shelton and Fowler (1968) expanded Paxton’s
(1962) equations by introducing additional terms to the
equations of conservation of momentum and energy.
Also, they derived equations for momentum and
energy loss terms during the electrons’ collisions with
heavy particles. Considering waves propagation into a

neutral media (no magnetic field), and no time
variation in the wave frame, the Maxwell’s equations
reduce to Poisson’s equation alone. Therefore, they
formulated a set of one-dimensional, steady-state,
constant velocity electron fluid dynamical equations
describing breakdown waves propagating into a non-
ionized medium. Shelton and Fowler (1968) proposed
the existence of two distinct regions. Following the
shock front, they proposed existence of a thin
dynamical region in which the electrons come to rest
relative to heavy particles and the net electric field
rapidly falls to a negligible value. They described this
region as the sheath region. The sheath region is
followed by a thicker region in which the ionization
continues and the electron gas cools down to room
temperature. Shelton (1968) referred to this region as
the quasi-neutral region. Using an approximation
method, Shelton and Fowler (1968) solved their set of
electron fluid-dynamical equations for breakdown
waves propagating into a neutral medium.

In 1984, Fowler et al. (1984) made significant
contributions in completing Shelton’s (1968) set of
electron-fluid dynamical equations. They introduced
three additional terms to the equation of conservation
of energy in which the heat conduction term proved to
be the most important one. In their attempt for
numerical solution of the set of equations, they allowed
for a discontinuity in the electron temperature
derivative at the shock front, which significantly
altered the conditions at the shock front. For
breakdown waves propagating into a neutral medium,
using the new set of boundary conditions, they
successfully integrated the set of electron fluid-
dynamical equations through the sheath region of the
wave.

Model

Breakdown waves for which the electric field force
on electrons causes the average drift velocity of the
electrons to be away from the wave front are referred
to as antiforce waves. In the case of antiforce waves,
the electron fluid pressure is considered to be large
enough to provide the driving force and cause the
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propagation of the wave down the tube with observed
velocities.

To analyze breakdown waves, the equations that
were developed by Fowler et al. (1984) and represent a
one-dimensional, steady-state, electron fluid-dynamical
wave propagating into a neutral medium at constant
velocity will be used. These electron fluid-dynamical
equations are the equations of conservation of mass,
momentum, and energy coupled with Poisson’s
equation:
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where eTvn e ,,, and m represent the electron number

density, velocity, temperature, charge, and mass,

respectively, and ,,,,,,,, 0 xKkVEEM and 

represent the neutral particle mass, electric field within
the sheath region, electric field at the wave front, wave
velocity, Boltzmann’s constant, elastic collision
frequency, position within the sheath region, ionization
frequency and ionization potential of the gas.

Reducing the set of electron fluid dynamical
equations to a non-dimensional form requires
introduction of the following dimensionless variables:
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in which ,,,,,   and ξ represent the 

dimensionless net electric field of the applied field plus
the space charge field, electron number density,
electron velocity, electron gas temperature, ionization
rate, and position within the sheath region, while and

 represent wave parameters. These dimensionless
variables are then substituted into equations 1, 2, 3 and
4, yielding
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In solving the antiforce case problem, in which all
quantities including  are positive and  is positive

backward, we will use the set of non-dimensional
variables introduced by Hemmati (1999).
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Also, for antiforce problems for which a large
current exists in the vicinity of the shock front,
Hemmati’s et al. (2011) modified set of fluid-
dynamical equations need to be used. The set of
electron fluid-dynamical equations describing antiforce
waves in non-dimensional form are given as follows:
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Where, , is the dimensionless current and is related to
the current behind the wave front, ,

1
I by the equation,

001 / KEI   .

Early on in the study of breakdown waves, the
ionization rate was considered to be constant
throughout the region in which an electric field is
present. Later, some investigators considered it to be a
function of temperature only. However, in 1983
Fowler (1983) showed that the assumption of a
constant ionization rate was incorrect and therefore
replaced it by a computation that was based on free
trajectory theory. Fowler’s (1983) computation
included ionization from both random and directed
electron motions within the wave. For ionization in a
strong electric field with independent electron drift
velocity, Fowler derived an equation for ionization
rate. In non-dimensional form Fowler’s (1983)
expression for the ionization rate is given by
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where  2/)1( B and  /2C . This

function, which changes from accelerational ionization
at the front of the wave to directed velocity ionization
in the intermediate stages of the wave, to thermal
ionization at the end of the wave, in the case of
breakdown waves moving with a slow speed, does
remain considerably constant at the beginning of the
sheath.

Boundary Conditions

Considering the ion number density and velocity
behind the wave front to be iN and iV , behind the
wave front the current is

.1IenvVeN ii  [14]

Absence of an experimentally observed Doppler
shift indicates lack of appreciable ion and neutral
particle motion in the laboratory frame. Therefore,
considering the ion and neutral particle velocities to be
almost equal )( VVi  , substituting V for iV and
solving equation [14] for iN results in
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For antiforce waves, to find the electron
temperature at the shock front, we use the all particle
(global) momentum equation, which at the wave front
it becomes

iiiiie kTNNkTVNMMNVnkTmnv 
222

.)(
2

00

2

00
22

0
0 kTNVMNEE 


Where, M and N represent the neutral particle mass
and number density, T and iT represent neutral particle
and ion temperatures within the sheath region, 00 ,TN
and 0V represent the neutral particle number density,
temperature and velocity in front of the wave.
Considering that at the wave front

000 ,, EETTTVVV ii  , and also
substituting for the variable values at the shock front,
the above equation becomes
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iMM  in the

above equation, it reduces to
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Where, 1iN is the ion number density at the wave front
and 1n , 1eT and 1v represent the electron number
density, temperature and velocity at the wave front.
Substituting for 1iN from equation [15] in the above
equation reduces it to
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variables for antiforce waves in the above equation,
gives the electron temperature at the shock front

.
)1(

1

11
1








 


 [16]

56

Journal of the Arkansas Academy of Science, Vol. 65 [2011], Art. 11

Published by Arkansas Academy of Science, 2011



Boundary Condition on Electron Temperature for Antiforce Current Bearing Waves

Journal of the Arkansas Academy of Science, Vol. 65, 2011
57

Results and Discussion

Uman and Mclain (1970) derived expressions
relating the stepped leader radiation (electric field
intensity or magnetic field flux density) to the leader
current. By measuring the radiation field from a
distance, they were able to calculate the current by
using the derived expression for the stepped leader
(proforce wave). Their calculated current values were
in the range of 800 to 5000 amperes. However,
measuring currents at the lightning channel base and
with optical observations, Rakov et al. (1998) report a
stepped leader current of 5 kA and a return stroke
(antiforce wave) peak current of 10 kA.

Determining K from experimental curves
(McDaniel 1964) gives 8103/ xPK  for helium and

7108.4/ xPK  for nitrogen at 273 K . At a
temperature of 510 , K will be 9104.2 x for helium and

9109x for nitrogen and applied fields are usually of the
order of mV /105 . Considering that ,,0 KE in our
formulas are scaled with P (the electron gas pressure)
and using the values of KEI ,,, 001  one can estimate
the value of  , which is of the order of one.

In their study of lightning attachment process,
Wang et al. (1999) provided evidence of the
occurrence of upward discharge making contact with
descending leader. They reported that the upward
connecting discharge appears to be much weaker in
light intensity than its associated downward dart
leader. In addition to data on current, Wang et al.
(1999) also provided data for upward connecting
discharge wave speed, discharge length and leader
electric field changes. For upward return stroke, they

reported speeds of approximately ./105.2 8 smx
Using helium-filled screened discharge tubes with

different diameters, Asinovsky et al. (1994) performed
experimental studies and conducted theoretical analysis
of breakdown waves. The theoretical and experimental
dependences they obtained, for both positive and
negative polarity waves, were in good agreement,
indicating the applicability of the ionization drift model
to breakdown waves. They reported breakdown wave
velocities ranging from 107 m/s to 6x107 m/s.

A trial and error method was utilized to integrate
equations 9 through 12.  For a given wave speed, α, a 
set of values for wave constant, κ, electron velocity, 

, and electron number density, ,
1

 at the wave front

were chosen.  The values of κ, , and 1
 were

repeatedly changed in integrating equations 9 through
12 until the process lead to a conclusion in agreement

with the expected conditions at the end of the
dynamical transition region of the wave.

For several current values, we were able to
integrate the electron fluid-dynamical equations
[Equations 9-12] for  value as low as 0.01.

01.0 represents a wave speed of smx /103.0 8

and conforms with the lower experimental speed range
for return stroke lightning. The successful solutions
required the following boundary values

886.0,645.0,3.1,0.0
11
 

88.0,648.0,3.1,25.0
11
 

88.0,6564.0,3.1,7.0
11
 

847.0,674.0,3.1,5.1
11
 

83.0,68.0,3.1,6.2
11
 

Figure 1. Electric field as a function of electron velocity within the
sheath region of current bearing antiforce waves for current values
of 0, 0.25, .7, 1.5, and 2.6.

Figure 1 represents the dimensionless electric field,
η, as a function of dimensionless electron velocity, ψ, 
within the sheath region of the wave. As the graph
confirms, for all current values, the electric field
starting from an initial value at the shock front, initially
increases within the sheath region; however, as
expected by the required boundary conditions, it
reduces to a negligible value at the trailing edge of the
wave. As the current increases, integration of the set
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of equations through the sheath region becomes more
difficult and time consuming.

Figure 2 shows the dimensionless electric field, η, 
as a function of dimensionless position, ξ, within the 
sheath region of the wave for current bearing antiforce
waves.

Applying fluid dynamical techniques to the
passage of ionizing wave counter to strong electric

fields, for wave speed of sm /10 , Sanmann and
Fowler’s (1975) electric field peaked at a distance of
0.04 m behind the wave front and their total sheath
thickness was .07.0 m As our graphs show, for the

wave speed of smx /103 7 , our dimensionless sheath
thickness is 0.5 which represents an actual sheath

thickness of .105.2 2 mx  Measuring electron density
behind shock waves, Fujita et al. (2003) report a wave
thickness of approximately 5 cm.

Figure 3 depicts the dimensionless electron
velocity, ψ, as a function of dimensionless position, ξ, 
within the sheath region of the wave for antifoce
current bearing waves. The graph shows that for all
current values, the electron velocity starting from an
initial value of less than 1, initially increases; however,
for all current values, as expected by the required
boundary conditions, reduces to 1 at the end of the
sheath region.

Figure 4 represents the dimensionless electron
temperature, θ, as a function of dimensionless position, 
ξ, within the sheath region for antiforce current bearing 
waves. For all current values, starting from an initial

value of approximately 20, the dimensionless electron
temperature increases to approximately 67 at the end of
the sheath region.

For ionizing waves propagating counter to strong
electric fields, Sanmann and Fowler (1975) reported
that the electron temperature increases rapidly away
from the wave front until it reaches a peak value of

0.00

1.00

2.00

3.00

4.00

0.00 0.20 0.40 0.60

η

ξ

ι=0

ι=.7

ι=.25

ι=1.5

ι=2.6

Figure 2. Electric field as a function of position with the
sheath region of current bearing antiforce waves for current
values of 0, 0.25, 0.7, 1.5, and 2.6.
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Figure 3. Electric field as a function of position with the sheath
region of current bearing antiforce waves for current values of
0, 0.25, 0.7, .1.5, and 2.6.
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Figure 4. Electron temperature as a function of position
within the sheath region of current bearing antiforce waves
for current values of 0, 0.25, 0.7, 1.5, and 2.6.
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around Kx 71017.3 at a distance of mx 2104.5  behind
the wave front. Our results show that the temperature
increases behind the shock front and it reaches its
maximum dimensionless value of 67 at the trailing
edge of the wave. 67 represents electron gas
temperature of 71088.3 x K .

Figure 5 shows the changes in dimensionless
electron number density as a function of dimensionless
position within the sheath region of the wave. For all
current values, starting from an initial value of less
than one, the electron number density initially
decreases within the sheath; however, it increases as it
approaches the trailing edge of the wave.

Using a fluid model, Brok et al. (2003) study the
mechanisms responsible for the propagation of the first
anode directed ionization wave that occurs in a straight
discharge tube during breakdown. Brok et al. (2003)
reported peak electron number density of 316 /106 mx ,
and an average electron number density of 315 /104 mx .
Our average non-dimensional electron number density
of 0.7 represents an actual electron number density of

315 /107.7 mx within the sheath region of the wave.

Conclusions

For a range of dimensionless current values that
conform with the experimentally measured current
values, using our modified boundary condition on
electron temperature, we have been successful in
integrating our modified set of electron fluid dynamical
equations through the sheath region for antiforce
current bearing breakdown waves. For all current
values, our solutions meet the expected conditions at
the trailing edge of the wave. This is a confirmation of
validity of our modified set of electron fluid dynamical
equations for antiforce current bearing waves and the
set of electron fluid dynamical equations in general.

Providing an accurate mode and an accurate set of
equations for breakdown waves is essential for a better
understanding of lightning. However, there are many
recent applications of breakdown waves in industry
and medical sciences which will benefit immensely.
An accurate model of breakdown waves, a proper set
of equations and solution of the set of equations will be
vital for advances in the new applications.
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