University of Arkansas, Fayetteville

ScholarWorks@UARK

Patents Granted

9-18-2018

Method for improved rate and control of beverage carbonation with automatic shut-off

Gregory S. Osborn University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/pat

Citation

Osborn, G. S. (2018). Method for improved rate and control of beverage carbonation with automatic shut-off. *Patents Granted*. Retrieved from https://scholarworks.uark.edu/pat/343

This Patent is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Patents Granted by an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, uarepos@uark.edu.

(12) United States Patent Osborn

US 10,077,418 B2 (10) Patent No.:

(45) Date of Patent:

Sep. 18, 2018

(54) METHOD FOR IMPROVED RATE AND CONTROL OF BEVERAGE CARBONATION WITH AUTOMATIC SHUT-OFF

(71) Applicant: Gregory Scott Osborn, Fayetteville,

AR (US)

Gregory Scott Osborn, Fayetteville, (72)Inventor:

AR (US)

Assignee: Board of Trustees of the University of

Arkansas, Little Rock, AR (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 196 days.

(21) Appl. No.: 15/130,262

(22)Filed: Apr. 15, 2016

Prior Publication Data (65)

> US 2016/0304820 A1 Oct. 20, 2016

Related U.S. Application Data

- (60)Provisional application No. 62/147,660, filed on Apr. 15, 2015.
- (51) Int. Cl. C12C 11/11 (2006.01)B01F 15/00 (2006.01)(Continued)

(52) U.S. Cl.

CPC C12C 11/11 (2013.01); B01F 3/04737 (2013.01); B01F 3/04808 (2013.01); B01F 3/04815 (2013.01); B01F 5/106 (2013.01)

Field of Classification Search

CPC .. C12C 11/11; B01F 3/04737; B01F 3/04808; B01F 3/04815; B01F 5/106

See application file for complete search history.

(56)References Cited

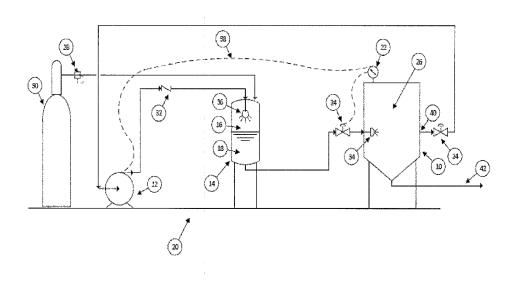
U.S. PATENT DOCUMENTS

2/1972 Speece 11/1973 Othmer 3,643,403 A 3,772,187 A (Continued)

FOREIGN PATENT DOCUMENTS

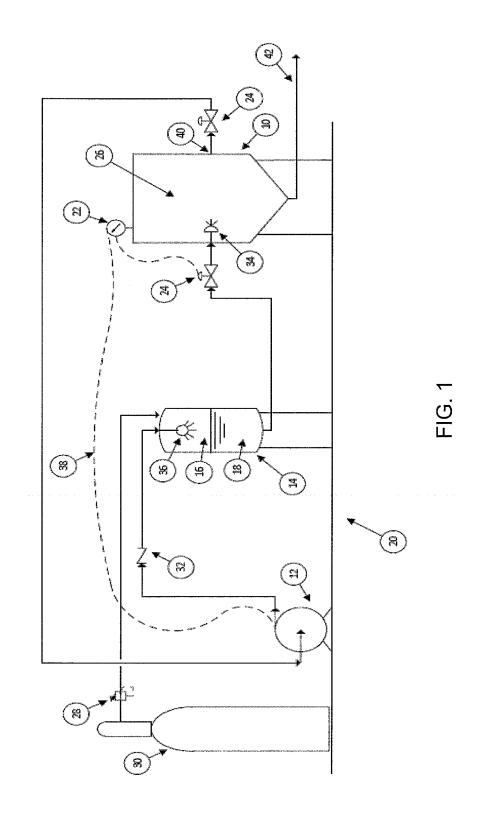
3501175 A1 DE JP 08132094 A 5/1996 (Continued)

OTHER PUBLICATIONS


Extended European Search Report; European Patent Office; European Patent Application No. 06771268.7 (dated Oct. 23, 2012). (Continued)

Primary Examiner — Anthony Weier (74) Attorney, Agent, or Firm — Richard Blakely Glasgow

ABSTRACT (57)


A system and method for carbonating a beverage is shown. The system includes a saturation tank having a gas head space of CO₂, a carbonation tank, and a beverage supply system to pass the beverage between the saturation tank and the carbonation tank. A beverage supersaturated with CO₂ from the head space is formed in the saturation tank. The supersaturated beverage is passed from the saturation tank to the carbonation tank. Once the amount of CO₂ added to the beverage exceeds saturation, some of the CO₂ escapes from solution from the beverage and the pressure in the carbonation tank increases. Once the pressure within the carbonation tank reaches a pre-defined pressure for the desired volume CO2/volume beverage, a pump supplying the beverage to the saturation tank is shut-off and the inlet and outlet valves of the carbonation tank are closed.

10 Claims, 7 Drawing Sheets

US 10,077,418 B2 Page 2

(51)	Int. Cl.			6,983,929 B2	1/2006	Shane
,	B01F 3/04		(2006.01)	7,008,535 B1		Spears et al.
	B01F 5/10		(2006.01)	7,255,332 B2		Osborn et al.
			,	7,294,278 B2 7,566,397 B2		Spears et al. Speece
(56)		Referen	ces Cited	7,622,036 B2	11/2009	
. /				7,695,622 B2		Fabiyi et al.
	U.S.	PATENT	DOCUMENTS	7,833,410 B2	11/2010	
				8,276,888 B2		Osborn et al.
	3,856,671 A		Lee et al.	8,919,743 B2		Osborn et al.
	3,932,282 A	1/1976		9,248,415 B2		Osborn et al.
	3,960,066 A 4,086,152 A		LaRocca et al. Rich et al.	9,266,668 B2* 2002/0134736 A1		Rasmussen B65D 81/2053 Burris et al.
	4,132,637 A		Key et al.	2002/0154750 A1 2002/0158012 A1		Christodoulatos
	4,163,712 A	8/1979		2003/0071372 A1		Scherzinger et al.
	4,256,574 A		Bhargava	2003/0183584 A1		Galatro et al.
	4,317,731 A		Roberts, Jr. et al.	2003/0209502 A1		Lacasse et al.
	4,461,426 A		Christopher	2005/0040548 A1		Lee et al.
	4,501,664 A		Heil et al. Edwards	2008/0017590 A1 2009/0101572 A1		Suchak et al. Sullivan
	4,652,382 A 4,735,750 A		Damann	2012/0228396 A1		Osborn et al.
	4,863,643 A		Cochran	2012/0325741 A1		Osborn et al.
	4,981,582 A		Yoon et al.	2013/0026110 A1		Osborn
	5,275,742 A		Satchell, Jr. et al.	2013/0056423 A1	3/2013	Linguist et al.
	5,376,265 A	12/1994		2015/0314247 A1	11/2015	Milligan et al.
	5,382,358 A	1/1995				
	5,451,349 A		Kingsley	FOREIC	3N PATE	NT DOCUMENTS
	5,487,835 A 5,514,264 A	1/1996 5/1996				1.5 (5.0.0.1
	5,569,180 A *		Spears A23L 2/54		7146 A	12/2001
	-,,		128/898	JP 200418 WO 021	1870 A2	8/2005 2/2002
	5,637,231 A	6/1997	Hill et al.	WO 021	.10/U AZ	2/2002
	5,647,977 A		Arnaud			
	5,674,312 A	10/1997		OI	HER PU	BLICATIONS
	5,735,934 A	4/1998		E ' D ' '	. 11 70	N
	5,766,484 A 5,865,995 A		Petit et al. Nelson	•		atent Application No. 200649808,
	5,885,467 A		Zelenak	Australian Patent Offi		•
	5,904,851 A		Taylor et al.			ese Patent Application No. 2008-
	5,911,870 A	6/1999	Hough			(dated Feb. 1, 2011) (English).
	5,951,921 A	9/1999	Koganezawa et al.			nd Patent Application No. 563542,
	5,968,421 A		Schattney et al.	New Zealand Patent		
	5,979,363 A 6,076,808 A	11/1999 6/2000				am Super-Saturation, http://www.
	6,090,294 A		Teran et al.			logies/hydropowerenhancements.
	6,153,111 A		Conrad et al.	html (last visited May		
	6,193,893 B1		Mazzei et al.	Japanese Decision of	Final Reje	ection: Japanese Patent Application
	6,279,882 B1		Littman et al.		anese Pate	nt Office (dated Feb. 7, 2012)(Eng-
	6,280,633 B1		Conrad et al.	lish).	a e i	2 4 4 4 1' 4' N. 2 600 020
	RE37,379 E *	9/2001	Spears A23L 2/54			Patent Application No. 2,609,030,
	6,284,138 B1	9/2001	261/101 Mast			Office (dated Jan. 15, 2013).
	6,315,893 B1		Sawada	European Patent Office		ent Application No. 06 771 268.7,
	6,344,489 B1*	2/2002	Spears A23L 2/54			3/415,402 (dated Aug. 24, 2015).
	*		261/107			ent Application No. 06 771 268.7,
	6,372,131 B1		Mirowsky	European Patent Office		
	6,474,627 B2	11/2002				ent Application No. 06 771 268.7,
	6,485,003 B2	11/2002	Nelson et al.	European Patent Office		
	6,488,271 B1 6,503,403 B2		Green et al.	Office Action, U.S. A	ppl. No. 1	3/601,124 (dated May 19, 2015).
	6,530,895 B1	3/2003		Japanese Decision of	Final Reje	ction: Japanese Patent Application
	6,555,059 B1		Myrick et al.	No. 2008-513750, Jap	anese Pate	nt Office (dated Feb. 7, 2012)(Japa-
	6,565,807 B1		Patterson	nese).		
	6,568,661 B1	5/2003				3/600,859 (dated Jul. 15, 2013).
	6,637,731 B2	10/2003				3/600,859 (dated May 19, 2014).
	6,730,214 B2		Mazzei Shane			3/600,859 (dated Nov. 7, 2013).
	6,767,008 B2 6,817,541 B2	7/2004 11/2004	Sands et al.			3/415,402 (dated Mar. 24, 2015).
	6,840,983 B2		McNulty			3/415,539 (dated Apr. 1, 2015).
	6,848,258 B1		Speece			3/600,950 (dated Feb. 10, 2015).
	6,855,291 B2	2/2005	Patterson et al.			ese Patent Application No. 2008-
	6,877,726 B1		Rindt et al.			(dated Feb. 1, 2011) (Japanese). 3/415,402 (dated Dec. 29, 2015).
	6,936,179 B2		DeWald	Omce Action, U.S. A	ррт. 110. Т	5/715,402 (dated Dec. 29, 2013).
	6,962,654 B2 6,964,738 B1	11/2005 11/2005		* cited by examine	r	
	0,70 1 ,736 B1	11/2003	Silen	ched by chamme	1	

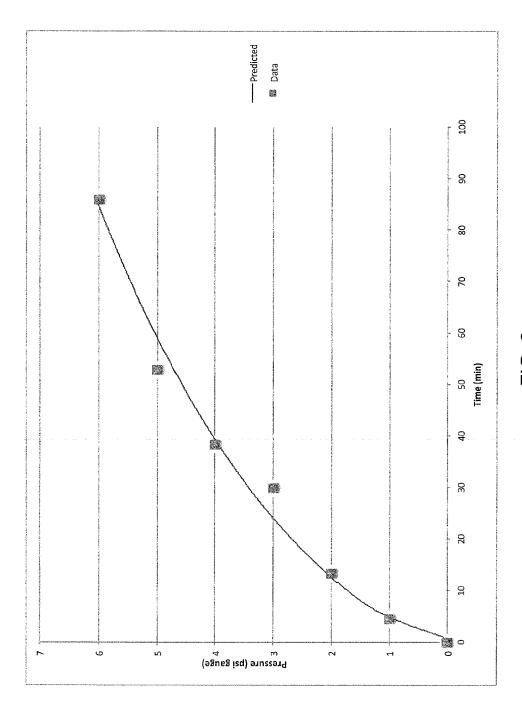


FIG. 2

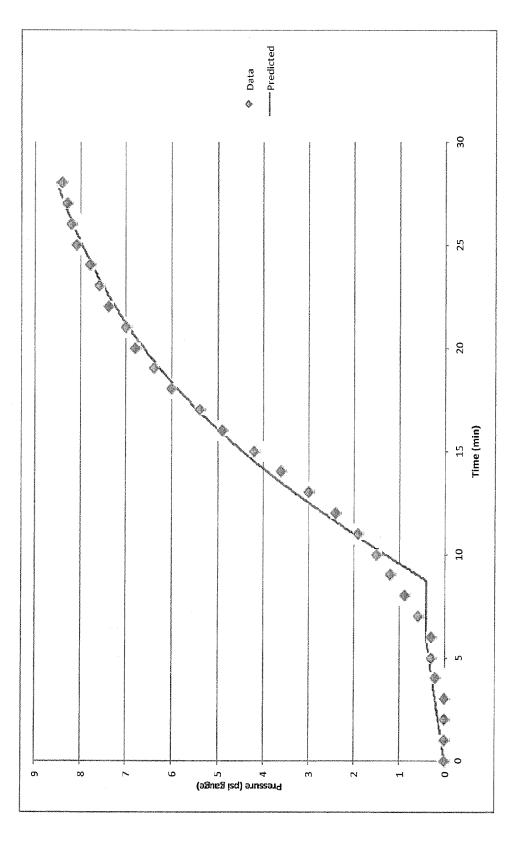


FIG. 3

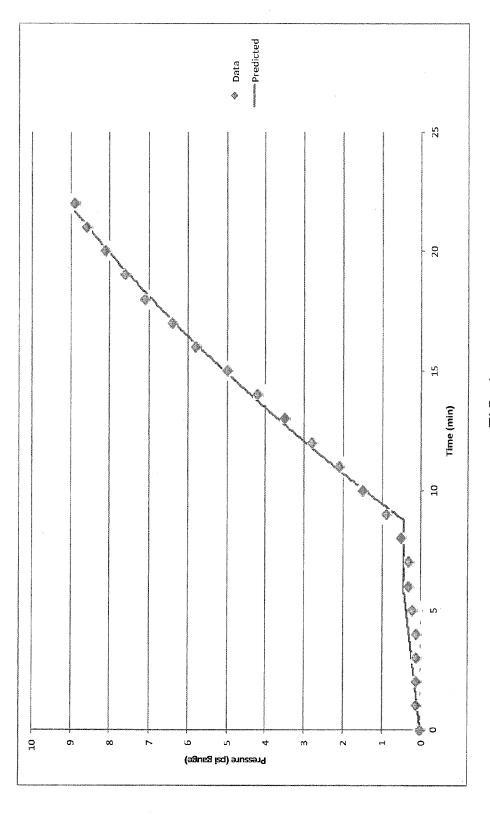


FIG. 4

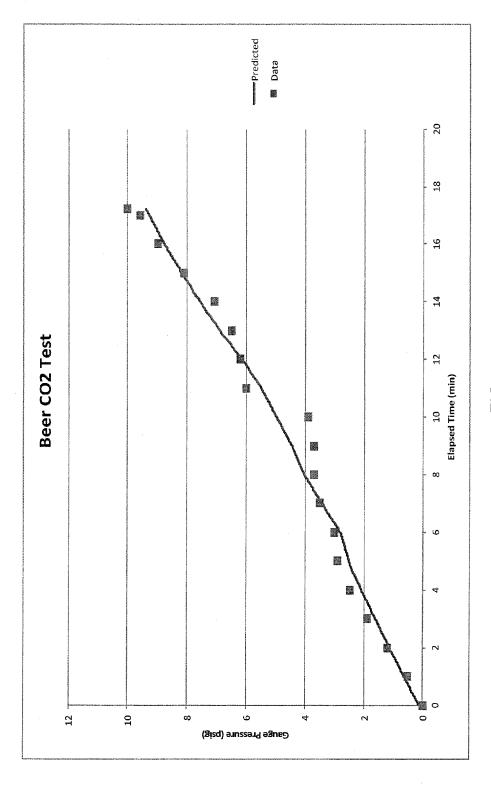


FIG. 5

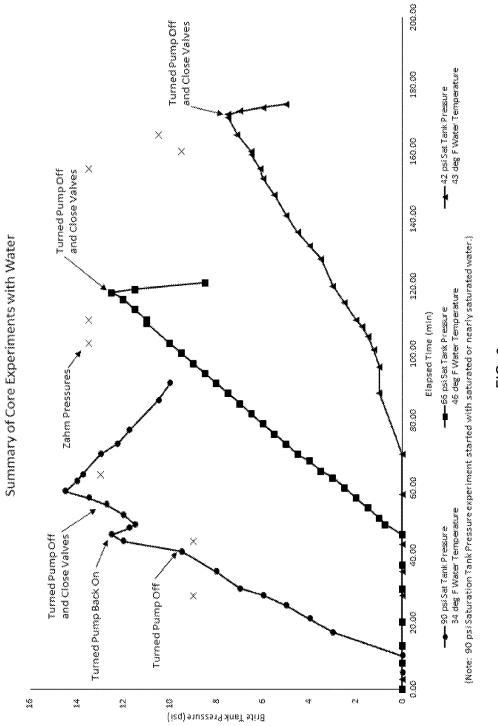
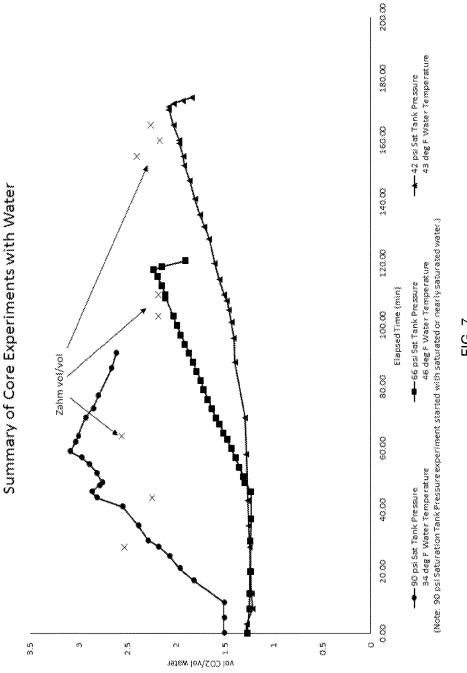



FIG. 6

-IG. 7

METHOD FOR IMPROVED RATE AND CONTROL OF BEVERAGE CARBONATION WITH AUTOMATIC SHUT-OFF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/147,660, entitled "Apparatus and Method for Improved Rate and Control of Beverage Carbonation with Automatic Shut-Off" and filed on Apr. 15, 2015. The complete disclosure of said provisional application is hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

BACKGROUND OF THE INVENTION

The current method for dissolving carbon dioxide (CO₂) into beer is to place diffusers at the bottom of a pressurized carbonation tank and bubble CO₂ gas through the diffusers into the beer. The gas dissolves into the beer as the bubbles rise through the beer. A gas headspace is maintained at the top of the carbonation tank above the beer to collect and vent undissolved CO₂. The source of the CO₂ is typically commercially purchased storage dewars containing liquid CO₂. The CO₂ is vaporized into a gas and pressurized. Approximately half or more of the gas passing through the beer does not dissolve and is vented to the air outside the carbonation 30 tank. When CO₂ gas is added to the carbonation tank, the CO2 that is dissolved does not add volume to the tank and therefore does not increase pressure inside the carbonation tank. CO₂ gas that is not dissolved will add volume to the tank and will increase pressure in the tank if not vented. 35 Therefore, when using the current carbonation method, the carbonation tank must be continually vented to maintain the desired pressure. The pressure in the carbonation tank is used to control the final, saturated dissolved CO₂ content of the beer. As the pressure of the gas and beer is increased, the $_{40}$ beer can hold more dissolved CO₂. Dissolved CO₂ content is an important quality parameter for beer to provide the fizz, proper mouth feel, and flavor. Typical carbonation tank pressures range from 10 to 15 psi gauge and this allows the beer to increase CO₂ concentration from typically 1 vol CO_2 /volume beer to 2.5 to 3 vol CO_2 /volume beer (vol/vol). Undissolved CO₂ exiting the carbonation tank is a wasted cost, can increase the CO₂ concentration in the building which creates a health hazard and requires additional cost for ventilation, and also adds to the greenhouse gas carbon footprint of the process. Also, the gas headspace at the top $\,^{50}$ of the carbonation tank can allow oxygen from air into the tank upon initially filling the carbonation tank with beer. This oxygen can have detrimental effects on beer quality and reduce shelf life of packaged beer. The rate that the CO₂ dissolves into the beer depends on the CO₂ gas transferring 55 from the bubble to the beer and varies greatly with the type of beer being carbonated, bubble size, pressure, and desired final CO₂ content. These parameters can change from batch

It would therefore be desirable to develop an apparatus 60 and method of carbonating beverages that overcomes these drawbacks.

BRIEF SUMMARY OF THE INVENTION

The present invention is directed to an improved method and apparatus for carbonating beverages that improves 2

operational efficiency by providing a consistent and faster carbonation, and includes an automatic shut-off and alert once carbonation has reached the desired level. The carbonation process may be completely automated for reduced operator input, improved operational efficiency, and consistent quality of the final product. The present invention also utilizes far less carbon dioxide gas than existing methods, which reduces operating costs and the amount of carbon dioxide released into the atmosphere, thereby lowering the carbon footprint of the user. The present apparatus and method was developed for carbonation of beer and is discussed in the context of beer carbonation below, however, it can also be used for carbonating, nitrogenating, or oxygenating a beverage, or in any other process for adding a 15 dissolved gas to a beverage. This invention could also be used to add dissolved gases such as oxygen, nitrogen, ozone, chlorine, carbon dioxide, argon, carbon monoxide to other liquids such as drinking water, wastewater, environmental water, gasoline and other liquid petroleum products, water containing cells and other organisms for bioprocessing applications such as production of enzymes, proteins, and other products of suspended organisms, food liquids and emulsions.

These and other features, objects and advantages of the present invention will become better understood from a consideration of the following detailed description of the preferred embodiments in conjunction with the drawings as described following:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of the apparatus of the present invention.

FIG. 2 is a graph showing brite tank pressure versus time for dissolving oxygen in water as predicted by a mathematical model and as calculated during testing of a prototype system of the present invention.

FIG. 3 is a graph showing brite tank pressure versus time for dissolving carbon dioxide in water as predicted by a mathematical model and as calculated during testing of a prototype system of the present invention.

FIG. 4 is a graph showing brite tank pressure versus time for dissolving carbon dioxide in water as predicted by a mathematical model and as calculated during testing of a prototype system of the present invention.

FIG. 5 is a graph showing brite tank pressure versus time for dissolving carbon dioxide in beer as predicted by a mathematical model and as calculated during testing of a prototype system of the present invention.

FIG. 6 is a graph showing measured brite tank pressure versus time for dissolving carbon dioxide in water at different saturation tank pressures and water temperatures during testing of a prototype system of the present invention.

FIG. 7 is a graph showing measured dissolved carbon dioxide in water in units of vol/vol versus time at different saturation tank pressures and water temperatures during testing of a prototype system of the present invention

DETAILED DESCRIPTION OF THE INVENTION

With reference to FIGS. 1-7, the preferred embodiments of the present invention may be described. This invention is directed to a system 20 that connects to the sampling or other port 40 of a carbonation tank for portable use or can be permanently installed into a carbonation tank. The carbonation process begins with the operator setting the desired

final carbonation value in volume CO2 per volume beer and the beer temperature. Brewers commonly know and can measure these values. This vol/vol setpoint is then used to automatically determine the pressure setpoint in the carbonation tank by using an equation developed by the inventor for converting standard beer saturation tables into an algorithm for use by any typical Programmable Logic Controller (PLC) that monitors process information and uses computer algorithms to activate equipment to control the process. To start the process, the PLC activates valves and pumps to completely fill the carbonation tank 10 (also referred to as a brite tank) with beer with little or no gas headspace. This process also can perform the following steps to control the carbonation process if the carbonation tank is filled such that a headspace is present, but the advantage of not allowing oxygen into the carbonation tank and beer may be lost. This process can be completed manually by determining the pressure set point from the equation or tables and manually filling the carbonation tank with beer. The carbonation 20 apparatus of the present invention is then activated and a pump or similar liquid moving device extracts a stream of beer from the carbonation tank port 40 and passes it through a process to dissolve carbon dioxide gas into the beer at the desired concentration, which is in excess of the CO₂ con- 25 centration in the beer in the carbonation tank, without remaining bubbles contained in the beer. As one example, the pump or similar liquid moving device 12 may pass the stream of beer into a pressure chamber 14 (also referred to as a saturation tank) filled with CO₂ gas. As a result, the beer 30 stream is contacted by the pressurized CO₂ to supersaturate the beer to the desired concentration far in excess of the CO₂ concentration in the beer in the carbonation tank.

In alternative embodiments, other methods to yield beer with supersaturated CO2 in the saturation tank are utilized 35 instead of relying on a gas headspace in the saturation tank. One example of a method for adding liquid with supersaturated CO₂ to the carbonation tank is to pass the beer through a downbubble contactor where the beer is pumped vertically down under pressure and CO₂ gas is injected into the 40 downward flowing beer. The velocity of the downward flowing beer is controlled to be the same as the rising velocity of the CO₂ gas bubbles such that the bubbles remain at the same location in the flowing beer until they dissolve. The beer flowing downward then passes through a saturation 45 tank 14 containing a gas headspace 16 to remove any remaining bubbles and the bubble free beer is then transferred into the carbonation tank 10. The pressure in the downward flowing beer and CO₂ gas are controlled to be greater than atmospheric to produce beer supersaturated 50 with dissolved CO_2 gas 18. Another method for dissolving CO₂ gas into a beer such that a supersaturated beer stream can be added to the carbonation tank is to use a Venturi-type injector to create a negative pressure within the flowing beer to draw in CO2 gas from the source and create bubbles. 55 Pressurized CO2 gas can also be injected into the flowing beer within a pipe. The gas/beer mixture is then circulated within a pipe to allow much of the gas to dissolve over time and at controlled pressure to create beer supersaturated with dissolved CO2 gas. The CO2 gas/beer mixture can be trans- 60 ported into a saturation tank 14 to allow any remaining undissolved gas to exit the solution and become part of a gas headspace 16 above the supersaturated beer 18. The lower portion of the pressurized tank will then contain beer with no gas bubbles and can be transferred into the carbonation tank 10. Beer supersaturated with dissolved CO₂ gas can also be created by bubbling the CO₂ gas into the beer under pressure

4

allowing the beer to become supersaturated with dissolved ${\rm CO_2}$ gas and then transferring the supersaturated beer into the carbonation tank.

Once the supersaturated beer 18 with insignificant bubbles is created, it is then injected back into the carbonation tank 10 in a manner such that the supersaturated beer stream will mix with the subsaturated beer in the carbonation tank 10 and prevent off gassing of the CO₂. The system 20 continually circulates beer into and out of the carbonation tank 10 at the same rate. As predissolved CO₂ in beer is added to the carbonation tank 10, no undissolved gas is present in the carbonation tank 10. Since this carbonation method does not rely on bubbles to dissolve gas into the beer, there is no requirement for a gas headspace above the beer in the carbonation tank, which prevents the introduction of oxygen into the carbonation tank. Since there is no undissolved gas being added to the tank using this system 20, the pressure within the carbonation tank 10 will not increase during treatment because no volume is added as the incompressible liquid entering the tank is at the same rate as is being removed. The CO₂ will remain dissolved in the beer until the beer becomes saturated with CO₂ at the pressure in the carbonation tank 10 (atmospheric pressure 0 gauge). Once the beer is saturated, as more dissolved CO₂ is added to the beer, the beer can no longer hold the gas being added and will create an increase in pressure inside the carbonation tank 10 as the beer begins to off gas CO_2 . As the pressure inside the carbonation tank 10 increases, the pressure of the beer increases and it is able to hold more CO2 gas. Therefore, the resulting pressure inside the carbonation tank 10 corresponds to the concentration of dissolved CO₂ in the beer, and corresponds to the saturation tables for beer and equation (1) developed in this invention. This phenomenon allows for a key step in the present method.

Once the beer in the carbonation tank 10 reaches the preset pressure in the carbonation tank, the CO₂ gas is dissolved in the beer to the vol/vol concentration desired as established in the initial set point. Once this pressure is reached, a pressure sensor 22 tied to a valve 24 shuts-off the flow of supersaturated beer into the carbonation tank and closes all inlets and outlets as the beer has reached the desired CO₂ concentration. The pressure sensor 22 is also in communication with the pump 12 through, for example, a signal wire 38. The carbonated beer 26 is now held in the sealed carbonation tank 10 and will maintain the dissolved CO₂ concentration as long as beer temperature is maintained. The carbonated beer 26 may be removed from the carbonation tank 10 and the present system 20 through outlet 42. Beer temperature in the carbonation tank 10 can be controlled using circulating coolant surrounding the tank as is typical in beverage processing tanks. The beer can be held at this condition for an extended period of time (provided the temperature does not increase) as may be required before further processing occurs because of timing, or to allow further development of carbonation to complete steady-state conditions, or to allow for development of flavor chemistry characteristics. Once the pressure set point is reached, the operator is alerted for further manual processing. A pressure relief valve set to the desired set point as previously established is preferably installed in the carbonation tank 10 to allow some CO₂ gas to escape to ensure any existing oxygen in the beer is driven out of solution or to prevent overpressurization of the carbonation tank and beer if there is a lag between the pressure indicated in the carbonation tank and steady-state tank pressure that may be greater as CO2 gas continues to escape solution after liquid flow into the carbonation tank ceases. This lag time may be caused when

the flow rate of supersaturated beer 18 into the carbonation tank 10 is relatively high compared to the volume of the carbonation tank such that the total amount of CO₂ in the carbonation tank is more than that required to saturate the beer at the desired pressure set point. The operation may also 5 be automatically controlled by PLC to move the beer from the carbonation tank onto the next process stage.

5

The equation to relate the desired final steady-state carbonation level in volume CO₂ to volume beer is:

$$P=(C*0.0013493*T^2+C*0.094214*T+C*4.81904)-14.7,$$
 (1)

where P is pressure of beer in the carbonation tank when saturated with carbon dioxide at desired vol/vol in pounds per square inch gauge, C is desired concentration of carbon 15 dioxide in volume CO₂ per volume beer, and T is temperature of beer in carbonation tank degrees F. This equation accurately predicts data from "Methods of Analysis" American Society of Brewing Chemists. 5th Edition, 1949 and can be programmed into a typical PLC.

One preferred embodiment of the present invention is illustrated in FIG. 1. Beer is drawn from the carbonation tank 10 (i.e. a brite tank) into a pump 12. The pump 12 pressurizes the beer, passes the beer through a pipe, and injects it into a saturation tank 14. The saturation tank 14 is 25 maintained at a controlled pressure via a pressure regulator 28 on the outlet of the gas source 30. A check valve 32 prevents contents of the saturation tank from flowing backwards into the pump 12 when the pump 12 is turned off or fails. Gas flows from the source 30, typically a dewar or gas 30 cylinder, and passes through a pressure regulator 28 that controls the CO₂ gas pressure to the desired set point of the saturation tank $\overline{14}$. The source 30 for the CO_2 gas can also be captured from the fermentation (brewing) process offgas, where the gas is cleaned and either stored in liquid form 35 through a cryogenic process or compressed gas form or used directly from the fermentation process into the carbonation process.

The pressure controlled gas then passes into the gas headspace 16 of the saturation tank 14. Liquid beer is 40 injected through nozzle 36 into the saturation tank 14 in such a manner as to cause the beer to become nearly saturated with CO₂ gas in equilibrium with the gas pressure in the saturation tank. The pressure in the saturation tank is typically elevated above pressure in the carbonation tank 10, 45 thereby creating beer that is supersaturated with gas at the pressure in the carbonation tank. The saturation tank is designed such that the supersaturated beer exiting the tank will not contain significant gas bubbles and will be in a near pure liquid state.

The supersaturated liquid beer 18 exits the saturation tank 14, passes through a pipe, and is injected into the carbonation tank through a sized orifice 34 that allows the proper back pressure of the saturation tank 14 to be maintained saturation tank 14 to the carbonation tank 18. This will allow no significant pressure loss as the beer is transferred thereby preventing any gas from exiting solution prior to passing through the sized orifice. The supersaturated beer **18** passes through the sized orifice and into the larger volume of beer 60 in the carbonation tank 10 being carbonated. Since the beer entering the carbonation tank 10 is supersaturated with gas, the injection pattern is designed such that the liquid supersaturated beer will distribute throughout the beer at subsaturated conditions in the carbonation tank prior to any gas having the required time to nucleate and exit solution as bubbles. The pressure in the carbonation tank 10 is initially

6

at or very near atmospheric pressure. The pressure inside the carbonation tank 10 is maintained at initial conditions near atmospheric as the rate of liquid beer removed from the carbonation tank 10 by the pump 12 is the same rate as the beer being added to the carbonation tank 10 from the saturation tank 14, and CO_2 gas added to the beer remains in dissolved form as the beer in the carbonation tank is not saturated and is able to hold the dissolved gas. The dissolved gas does not add volume to the liquid beer and since the volume flow rate of beer entering the carbonation tank is the same as the volume flow rate of beer exiting the tank, the volume of the contents of the carbonation tank remains constant thereby allowing the pressure to remain constant inside the carbonation tank. However, as the amount of dissolved gas in the beer within the carbonation tank increases with time as dissolved gas is added, the amount of dissolved gas contained within the beer will eventually exceed saturation conditions (as quantified by equation 1) and the liquid beer in the carbonation tank will no longer be ²⁰ able to contain the dissolved CO₂ being added. Once the amount of CO₂ gas added to the beer exceeds saturation, then gas will escape solution from the beer in the carbonation tank. This escaped gas will add to the volume of the carbonation tank and will therefore increase the pressure in the rigid-walled carbonation tank. As the pressure of the beer in the carbonation tank increases, the beer is able to increase the amount of CO2 it can hold because an increase in pressure concentrates the CO₂ gas and allows more to dissolve into the beer, which results in an increase in the vol CO₂/vol beer. Therefore, once the pressure within the carbonation tank exceeds atmospheric pressure, the beer is saturated with CO₂ and the pressure measured within the carbonation tank directly indicates the vol CO₂/vol beer as quantified by equation 1. A pressure sensor 22 will monitor the pressure in the carbonation tank and when the appropriate pressure is reached indicated by equation (1), the pressure sensor will signal a controller to shut-off power to the pump 12, and close the solenoid valves 24 feeding liquid to the carbonation tank and removing liquid from the carbonation tank. This operation thereby automatically carbonates the beer to the desired level without requiring the operator to monitor the process.

By adding supersatured beer 18 to the carbonation tank 10 rather than bubbles, the speed of carbonation can be increased dramatically. Since the gas is not bubbled anywhere in the process, no undissolved gas exits the carbonation tank and is wasted, thus greatly reducing the input costs, and the gas lost to the atmosphere is eliminated, thereby reducing the carbon footprint of the process and reducing greenhouse gas emissions.

EXAMPLE

A prototype system was constructed and tested using a throughout the liquid conduit carrying the beer from the 55 190 liter volume plastic barrel to represent the brite (carbonation) tank 10. A mathematical model was constructed to predict the pressure in the brite tank at any time during the process based on equation 1 for solubility of CO₂ in water or beer along with mass balance of the gas and liquid entering and exiting the brite tank. The concentration of dissolved CO2 in the beer exiting the saturation tank was determined using equation 1 for solubility of CO₂ in the liquid at saturation at known temperature and pressure and then fitting the observed data by adjusting the percent saturation attained by mixing in the saturation tank. This dissolved gas concentration along with the known liquid flow rate allowed a mass balance of gas entering the car-

bonation tank to be known. The volume of liquid in the carbonation tank remains constant, so the concentration of dissolved gas in the liquid in the carbonation tank can be calculated by adding the amount of incoming gas from the saturation tank to the volume in the carbonation tank while 5 simultaneously subtracting the amount of gas exiting the carbonation tank assuming the tank was well mixed. Solving these equations over time allow the dissolved concentration of CO₂ in the liquid to be calculated at any time. Knowing the dissolved CO₂ concentration at any time along with 10 equation 1 allows calculation of carbonation tank pressure or CO₂ concentration in units of vol/vol to be determined at any time. The model was compared to data collected for brite tank pressure measured over time. Brite tank expansion was taken into account by measuring the change in volume of the 15 tank with increased pressure in separate experiments. Gas leaks could not be prevented with the prototype equipment, so leak rates were measured in separate experiments and included in the mathematical model. Using industry standard equipment, leaks can be prevented easily during com- 20 mercial operation. The prototype tests were conducted using water as the beverage and both oxygen (one test) and carbon dioxide (five tests) as the gas to be dissolved into the beverage. Different gases were used because of different Henry's Law solubility behavior between oxygen and car- 25 bon dioxide. Carbon dioxide is far more soluble in water than oxygen. Testing these two gases provided a broad range of operating conditions to test the operation of the prototype and the accuracy of the mathematical model. This broad range resulted in a more robust proof of concept test.

Once the tests using water were successfully completed, a test using CO2 and beer from a fermentation tank was conducted and the final pressure from the brite tank entered into the prediction equation for vol/vol of carbon dioxide in beer and this value was compared to that actually measured 35 using the standard equipment from the brewery. All tests were successful and reasonably well predicted using the developed mathematical model. Since the model was based on mathematical relationships describing the proposed physics of the operation, the results indicate that the proposed 40 function of the prototype measures as expected. The model was then used to estimate the performance of a scaled up prototype including economics. Further testing using a larger scale stainless steel brite tank (475 liters) with capabilities to monitor beverage temperature, pressure, and vol/ 45 vol carbonation levels was also utilized. Tests were conducted using water as the beverage and CO₂ as the gas to be dissolved. An industry standard Zahm and Nagel CO2 volume meter was used to measure vol/vol for comparison to brite tank pressure readings. Three tests were conducted 50 using water and CO₂. The data was similar to that expected from the mathematical model scaleup and showed the same operational behavior as expected and as shown in the smaller scale testing. Results of the vol/vol measurements using the Zahm and Nagel ${\rm CO_2}$ volume meter were similar 55 to those determined using the pressure indicator on the brite tank and the equation developed as part of this invention. However, the vol/vol results from the brite tank pressure gage and equation seemed to be far more consistent than the Zahm and Nagel readings. This may indicate another advan- 60 tage of this technology: vol/vol measurements are more consistent leading to tighter control over final vol/vol conditons of the beer prior to packaging. This improvement could result in further savings in CO2 use as well as better quality control over the final product reaching the consumer. 65

Test 1—Dissolving Oxygen in Water: Tests were performed with the following operational data:

8

Water Temperature (deg C.)	23.1
Water Flow Rate (gallons per minute)	1.27
Nozzle pressure drop (psig)	33.25
Saturator Pressure (psig)	49.3
Percent Saturation in Saturator (%)	38.6

Water temperature, flow rate, nozzle pressure drop, and saturator pressure were directly measured. Percent saturation of water with dissolved oxygen in saturation tank was fitted to the data based on a previously developed equation for estimating percent saturation from nozzle type and pressure drop. The results are shown in FIG. 2.

Oxygen gas is relatively insoluble in water meaning that the water does not possess much "room" to hold oxygen molecules. The water contained in the brite tank prior to initiating the invention was nearly saturated with dissolved oxygen. Therefore, once the invention was activated, the water in the brite tank quickly become saturated and began to exert a vapor pressure of oxygen gas within the brite tank. This is indicated by the nearly immediate increase in measured pressure of the brite tank. The rate of increase in pressure is non linear because of the expansion of the plastic tank and oxygen gas leaks. The mathematical model was able to capture this behavior and accurately predict the increase in pressure over time. The relative insolubility of oxygen in water is also shown in the relatively long period of time required to reach 6 psi tank pressure of 90 minutes.

Regarding the percent saturation number fitted by the model, the percent saturation of oxygen gas in water in the saturation tank in the prototype (38%) was consistent with prior measurements from previous work. This number indicates that the actual concentration of dissolved oxygen exiting the saturation tank from the invention and entering the brite tank is 38% of the solubility predicted by Henry's Law. The Henry's Law solubility is the steady-state concentration of oxygen dissolved in water at a known water temperature and gas pressure. The magnitude of this value will depend on how quickly the water spray absorbs oxygen gas in the saturation tank headspace. This depends on the size of the spray particles, retention time of spray in the headspace, and mixing of gas bubbles with water within the saturation tank. This depends on the type of spray nozzle used and pressure drop across the nozzle as well as volume and shape of the saturation tank. The relative level of water and gas in the saturation tank also affect this value. These parameters are all design decisions that can be used to control the percent saturation exiting the tank. A general rule is that the greater the percent saturation, the higher the cost of the unit. Therefore, it is not necessarily optimal regarding overall cost to produce a high percent saturation. The spray nozzle used in this prototype resulted in lower than typical percent saturation values.

Test 2—Dissolving Carbon Dioxide in Water: Tests were performed with the following operational data:

Water Temperature (deg C.)	23.5
Water Flow Rate (gallons per minute)	1.79
Nozzle pressure drop (psig)	17.6
Saturator Pressure (psig)	70.5
Percent Saturation in Saturator (%)	53.4

The results are shown in FIG. 3. Test 2 differed from Test 1 because carbon dioxide gas was used rather than oxygen. Carbon dioxide gas is far more soluble in water than oxygen gas in water. This is indicated by the lag time required for the pressure of the brite tank to begin to increase. The initial

concentration of carbon dioxide gas in the water in the brite tank was nearly zero. The data in FIG. 3 indicates that 5 to 10 minutes were required to saturate the water with carbon dioxide gas before the water began to exert a pressure from carbon dioxide. Once the water was saturated, the brite tank 5 pressure began to consistently increase with a non-linear shape because of leaks and tank expansion. The mathematical model was able to accurately predict the observed behavior. The brite tank reached peak pressure much more quickly in Test 2 than Test 1 for oxygen because of insolubility of oxygen in water as well as an increase in water flow rate and saturation tank pressure.

The prototype system was improved between Tests 1 and 2 by changing pumps and producing a greater water flow rate. The saturation tank of the prototype was also improved 15 to allow greater pressure and increasing the concentration of dissolved gas in the water exiting the saturation chamber and entering the brite tank. Leaks were also repaired, but not completely stopped.

This data indicates that some of the potential problems of 20 this invention are not present. If the carbon dioxide gas was not dissolving completely into the water, then gas bubbles would be added to the water in the brite tank thereby adding volume and increasing pressure immediately. The lag in pressure indicates that the proposed behavior of the invention appears to be correct. Once the prototype operation was stopped, the increase in observed pressure in the brite tank also stopped indicating that there was not a lag between the vol/vol of the gas and the pressure indicated on the brite

Test 3, 4, 5, and 6—Dissolving Carbon Dioxide Gas into Water: The results from these tests were very similar to those shown in FIG. 3. The brite tank pressure did not increase until a 5 to 10 minute lag time allowed the water to become saturated at 0 (atmospheric) pressure and then the pressure 35 increased steadily. The slope of the line indicating pressure became more linear as leaks were repaired. FIG. 4 shows the results from Test 6.

Test 7—Dissolving Carbon Dioxide Gas into Beer: Through water testing, the prototype construction was 40 adjusted and problems repaired. Test 7 involved replacing water with beer. Core Brewery in Springdale, Arkansas donated 200 liters of beer from a fermentation tank for this testing. The beer was transported from Core to the lab where the prototype was moved into a refrigerated cold room 45 maintained at approximately 8 degrees C. The brite tank was filled with beer for testing. Data was collected for brite tank pressure versus time, as shown in FIG. 5. Once testing was complete, a sample of carbonated beer was collected and transported back to Core for testing with the Zahm and 50 Nagle CO₂ meter.

There was not a lag time between the start of carbonation and an increase in brite tank pressure. This was because the beer used for the test was removed from the fermentation process where the beer is saturated with CO₂ at near atmo- 55 spheric pressure. The model was able to predict the observed data well indicating that the processes that were expected to occur appeared to actually occur. The beer sample taken to Core for testing was collected at a pressure of 7.7 psig at a temperature of 7.8 degrees C. The equation developed for 60 this invention indicated the vol/vol measurement should have been 1.87 vol CO2/vol beer. The Zahm and Nagel CO₂ meter gave a reading of 1.91 vol CO2/vol beer. At the lab scale, the carbonation time achieved was 18 minutes compared to a full-scale typical time of 8 to 10 hours. Overall, 65 the invention appeared to operate as anticipated and provide acceptable beer carbonation.

10

Tests 8, 9, and 10—Dissolving Carbon Dioxide in Water at Core Brewery: The prototype saturation tank used for the tests described above was connected to a stainless steel brite tank at Core Brewery in Springdale, Arkansas. This brite tank was about a 2.5 times scale-up from the barrel used in Tests 1-7 and had the added advantage of not expanding significantly under pressure and ability to use a circulating glycol solution around the tank to cool the beverage and maintain a constant temperature. The tests were conducted using water cooled in the tank. Gas leaks were discovered resulting in the inability of the brite tank to maintain pressure after the prototype had completed carbonation and the brite tank was sealed. The leaks are currently being repaired so data can be generated for comparison to the mathematical model. However, testing with water showed similar results to the prior tests regarding the proposed behavior of the prototype and brite tank system. FIG. 6 shows the brite tank pressure versus time for three tests conducted at three different prototype saturation tank pressures and water temperatures. All tests show the same behavior that the water appears to require a lag time to become saturated with carbon dioxide and then the tank pressure begins to increase. The test at 90 psi saturation tank pressure was started after the water had been carbonated and then depressurized, so the initial dissolved carbon concentration was near saturated resulting in minimal lag time before brite tank pressure began to increase. The mathematical model predicts a slightly faster carbonation time than that observed in FIG. 6, but the model does not take the significant gas leaks into account. The gas leaks can be observed in FIG. 6 at the end of each test as the pressure in the brite tank begins to quickly decrease. Leaking carbon dioxide during testing results in an under reading of pressure observed, so the model's prediction of faster carbonation than observed is not surprising. However, the behavior of the data is consistent with prior observations showing an initial lag in pressure increase and then a linear increase in pressure that is proposed to correspond to an increase in vol/vol measurement of carbonation in water.

FIG. 7 shows the pressure versus time data in the brite tank for tests 8, 9, and 10 converted to vol CO₂/vol water with the added data of vol CO₂/vol water using the Zahm and Nagel CO₂ meter. The data in FIG. 7 shows an increase in vol/vol reading, but it should be understood that a reading of 0 psi on the brite tank could indicate that the concentration of dissolved CO₂ in the water is anywhere between 0 and saturated at the water temperature. Once the water becomes saturated with dissolved carbon dioxide, the pressure will increase on the brite tank and the water in the tank is saturated with carbon dioxide, so the pressure reading is a direct indication of vol/vol. When the water is below saturation conditions for dissolved CO2, the brite tank pressure reading will not correspond to vol/vol. The predicted vol/vol readings from brite tank pressure for the 90 psi test both under and over predicted the Zahm and Nagel readings. However, it appears as if the Zahm and Nagel readings were not consistent over time and may indicate measurement error. The Zahm and Nagel operator from Core indicated that the meter often gives variable readings on beer collected from the brite tank because of highly variable conditions of temperature of the beer and the meter. For the 66 psi test, the predicted vol/vol readings were only slightly lower than the measured vol/vol readings, indicating that if there is a difference, the actual carbonation level of the water is higher than predicted by the brite tank pressure reading. The 42 psi test also indicated that the Zahm and Nagel readings were greater than the predicted vol/vol from brite

tank pressure. Overall, the vol/vol readings based on brite tank pressure appeared to be more consistent than the Zahm and Nagel meter readings. This may indicate another advantage of the proposed invention is that it provides a more consistent indication of actual vol/vol state of the beverage at any time, thus allowing tighter control over gas use and process output quality.

Using the Mathematical Model: The model developed from lab-scale data can be scaled to commercial operational size. It can project capital and operating costs of a larger 10 scale system to carbonate beverages in much larger brite tanks. Rough analysis indicates that 50% operational cost savings can be realized by using less carbon dioxide. However, the majority of cost savings may be realized because of reduced operator time required to monitor the carbonation 15 process and the improved quality control that can be gained by a more consistent and predictable carbonation process.

Summary and Conclusions: The data collected from both small and medium scale tests with oxygen dissolved in water, CO_2 dissolved in water and CO_2 dissolved in beer all 20 indicate that the invention works as proposed and is able to carbonate beverages without wasting CO_2 gas. The data indicates the operating parameters of the invention are able to consistently control the rate and final carbonation level of the beverage. The mathematical model based on the proposed physics of the invention appears to consistently and accurately describe the process indicating that the proposed mechanisms of operation are consistent with the results.

The present invention has been described with reference to certain preferred and alternative embodiments that are 30 intended to be exemplary only and not limiting to the full scope of the present invention.

I claim:

1. A method of carbonating a beverage comprising the steps of:

providing a saturation tank containing a beverage, wherein said beverage contained in said saturation tank is supersaturated with carbon dioxide;

providing a carbonation tank containing said beverage, wherein said beverage contained in said carbonation 40 tank is non-saturated with carbon dioxide;

passing some of said beverage from said saturation tank to said carbonation tank, wherein said beverage super12

saturated with carbon dioxide mixes with said beverage in said carbonation tank that is non-saturated with carbon dioxide;

passing some of said beverage from said carbonation tank to said saturation tank until said beverage remaining in said carbonation tank is saturated with carbon dioxide at a pre-defined pressure in said carbonation tank.

- 2. The method of carbonating a beverage of claim 1, further comprising the step of monitoring a pressure in said carbonation tank with a pressure sensor.
- 3. The method of carbonating a beverage of claim 2, further comprising the step of shutting off power to a pump when said pre-defined pressure in said carbonation tank is recorded by said pressure sensor.
- **4.** The method of carbonating a beverage of claim **2**, further comprising the step of closing a valve in communication with said carbonation tank when said pre-defined pressure in said carbonation tank is recorded by said pressure sensor.
- **5**. The method of carbonating a beverage of claim **1**, wherein said method is controlled by a programmable logic controller.
- **6**. The method of carbonating a beverage of claim **1**, wherein said beverage is beer.
- 7. The method of carbonating a beverage of claim 1, wherein a rate of passing said beverage from said saturation tank to said carbonation tank is equal to a rate of passing said beverage from said carbonation tank to said saturation tank.
- **8**. The method of carbonating a beverage of claim **1**, wherein a pressure in said saturation tank is greater than a pressure in said carbonation tank.
- **9**. The method of carbonating a beverage of claim **1**, wherein said beverage passed from said saturation tank to said carbonation tank contains no gas bubbles.
- 10. The method carbonating a beverage of claim 1, further comprising the step of supplying carbon dioxide from a gas source to a gas head space in said saturation tank and passing said beverage into said gas head space, wherein some of said carbon dioxide contained in said head space is dissolved in said beverage.

* * * * *