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ABSTRACT 

 

Cardiovascular complications arising from diabetic hyperglycemia represents one of the leading 

causes of death and greatest public health challenges of modern societies. Despite state-of-the-art 

glucose control, diabetic patients remain at a markedly increased risk of cardiovascular disease. 

The loss of endothelial function (the development of diabetic endothelial dysfunction) has been 

implicated in the development of numerous diabetic cardiovascular diseases. The endothelial cell 

produces many vasoactive substances, hormones and cytoprotective biological factors. 

Endothelial cells are also involved in and affected by the initiation of inflammatory responses 

through the release and interaction of cytokines and other immune system molecules. Therefore, 

regulation of these signaling molecules is extremely important to the health of the vascular 

endothelium and, consequently, damage to the cells ability to control vessel tone and 

inflammation is a known hallmark to numerous cardiovascular diseases. Much of recent research 

attention is directed towards the loss of the ability of the diabetic vasculature to produce nitric 

oxide (vasodilator and anti-inflammatory hormone, a key component of vascular homeostasis). 

The observation that endothelial cells in diabetes fail to produce sufficient amount of nitric oxide 

and fail to relax in response to the endothelium-dependent vasorelaxants (e.g. acetylcholine, 

bradykinin, shear stress, etc.) has been documented by multiple studies, both in animal models of 

the disease and in human studies. In this dissertation, we investigated the molecular and 

enzymatic mechanisms associated with the loss of nitric oxide bioavailability and increase in 

oxidant formation using a hyperglycemic human umbilical vein endothelial cell model. Our 

results indicate that while hyperglycemia decreases overall nitric oxide levels, generation of 

nitric oxide is paradoxically increased, validating previous modeling data published by our lab. 

Furthermore, we were able to indirectly confirm this concomitant increase in superoxide and 



 

nitric oxide by showing a significant increase in the formation of nitrotyrosine in high glucose 

exposed endothelial cells. This illustrates that the parallel increase in superoxide and nitric oxide 

lead to increased reaction with one another, resulting in higher levels of the cytotoxic 

peroxynitrite molecule. To better understand the effects of angiotensin II and high glucose on 

gene regulation of oxidant generating enzymes involved in oxidative and nitrosative stress 

pathways, we performed real-time quantitative PCR for NADPH oxidase subunits and nitric 

oxide synthase isoforms in HUVEC’s. Results from our studies show that stimulating effects of 

angiotensin II on the activity of endothelial cell NADPH oxidases is enhanced in high-glucose 

exposed HUVEC’s. We also show that hyperglycemic endothelial cells are more sensitive to 

Ang II interaction, resulting in lower levels of nitric oxide bioavailability and increased 

nitrotyrosine formation. Our results also provide insight into the gene regulation of NADPH 

oxidase, eNOS and iNOS. Data shows that angiotensin II increases NADPH oxidase and iNOS 

mRNA levels in high-glucose exposed HUVECs, while eNOS expression is relatively 

unchanged. This further validates the hypothesis that high glucose initiates a protective response 

in endothelial cells by upregulating nitric oxide producing enzymes, iNOS, in an attempt to 

counteract/scavenge the increased production of superoxide by NADPH oxidase. This protective 

measure only exacerbates the oxidative and nitrosative stress environment of the cell, leading to 

increased cell damage and/or apoptosis. Studies in this dissertation will help [1][1][1]clarify the 

molecular mechanisms and interactions involved in hyperglycemia induced oxidative and 

nitrosative stress, providing improved focus for treatment design towards improving/reversing 

high glucose induced endothelial cell dysfunction. 
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1.1 Overview 

The prevalence of type 2 diabetes is increasing at an alarming rate and is near epidemic 

proportions. According to the World Health Organization, the number of people worldwide with 

diabetes is expected to rise to nearly 400 million by 2025 [2]. Perhaps most alarming of all, an 

increasing number of children with type 2 diabetes have been reported in many of the developed 

countries; the United States, Japan, the United Kingdom, Australia and others. Clearly, type 2 

diabetes is currently one of the largest threats to global health. With the increased risk of diabetic 

complications occurring over such a broad spectrum of the human race, knowledge of the body's 

response to hyperglycemia is needed to assist public health efforts in the reduction and treatment 

of Diabetes and its complications. Numerous epidemiological and basic science studies have 

highlighted the relationship between hyperglycemia and increased risk of cardiovascular 

disease. Impaired glucose tolerance and the metabolic syndrome often lead to development 

of type 2 diabetes. Hyperglycemia and the metabolic syndrome have been shown as causal 

factors of micro- and macrovascular disease. The risk of cardiovascular disease is increased 

threefold in patients with established metabolic syndrome [3]. 

Much is now known about the deleterious effects of high ambient glucose concentrations on the 

vasculature. Although the mechanisms are complex, a number of overlapping concepts seem to 

be prevalent among the numerous studies. The pathology of cardiovascular diseases associated 

with diabetes may ultimately be linked to oxidative and nitrosative stress and the development of 

inflammation, endothelial cell dysfunction and apoptosis. Research has shown that cross-talk 

between an expanding network of intracellular proteins and signaling molecules, coupled with 

the variability of responses in different cells and tissues has added to the complexity of diabetes-

induced endothelial dysfunction. To date, a direct causal role for nitrosative and oxidative stress 
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and activation and/or inhibition of intracellular signaling intermediates in the overall 

pathogenesis of diabetes is unproven. However, a number of working hypotheses exists that 

attempt to explain the oxidative/nitrosative stress mechanisms associated with diabetic 

endothelial dysfunction, which results in the loss of vasoconstriction/vasodilation function due to 

imbalance of signaling molecule homeostasis.  

 

1.2 Mechanisms of high glucose-induced endothelial cell dysfunction and death 

 

1.2.1 High glucose-induced nitrosative and oxidative stress 

One of the earliest detectable cell responses to high glucose exposure is the generation of 

reactive oxygen (ROS) and nitrogen species. Endothelial cells produce ROS such as superoxide 

and H2O2 similar to other types of nonphagocytic cells. Although excess amounts of ROS 

contribute to endothelial cell death and apoptosis, ROS have an important role at physiological 

concentrations and act as signaling molecules to mediate various biological responses. ROS are 

generated from a number of sources, including the mitochondrial electron transport system, 

xanthine oxidase, cytochrome p450, NADPH oxidase, uncoupled NO synthase (NOS) and 

myeloperoxidase. Activation and expression of these enzymatic sources of ROS in mammalian 

cells depend on the tissue and environmental context. There may also be complex interactions 

among different sources of ROS and feedback and feed forward regulation of ROS accumulation 

[4, 5].  

Molecular O2 is converted to superoxide by NADPH oxidase, and superoxide can be converted 

to H2O2 by superoxide dismutase (SOD), or to the highly reactive hydroxide ion by the Fenton or 

Haber–Weiss reactions, or to peroxinitrite by reacting with nitric oxide. Oxidative and nitrosative 
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stress play an important role in the development of diabetes complications, in both microvascular 

and macrovascular  settings [6]. The metabolic abnormalities of diabetes cause excess superoxide 

production in endothelial cells of both large and small vessels, as well as in the myocardium. 

This increased superoxide production is known to cause the activation of five major pathways 

involved in the pathogenesis of diabetic complications: polyol pathway flux, increased formation 

of advanced glycation end products (AGEs), increased expression of the receptor for AGEs and 

its activating ligands, activation of protein kinase C isoforms and overactivity of the hexosamine 

pathway [7]. Superoxide production induced by high glucose is a well-described phenomenon 

and arises via a number of important enzymes; mitochondrial electron transport chain, NADPH 

oxidase (NOX), nitric oxide synthase (NOS) and xanthine oxidase (XO) [8]. 

Endothelial cells are unable to regulate glucose intake due to the intrinsic properties of the 

GLUT4 receptor. Consequently, chronic high glucose exposure leads to a buildup of glucose 

inside the endothelial cell [9, 10]. High intracellular glucose levels causes interruption of the 

electron transport chain at complex III, resulting in increased oxidation of molecular oxygen by 

coenzyme Q, yielding superoxide anions [11]. Therefore the normally efficient metabolism of 

glucose can, in response to stress such as hyperglycemia, lead to excess free-radical generation 

and oxidative stress. 

Activation of NADPH oxidase and uncoupling of nitric oxide synthase are also significant in the 

contribution of excess free radical generation and decreased nitric oxide bioavailability in 

response to hyperglycemia. Our lab has previously predicted and shown that superoxide 

generation is increased and nitric oxide levels are decreased in human umbilical vein endothelial 

cells (HUVEC’s) in response to high glucose [12]. This intracellular environment of both 

superoxide and nitric oxide greatly favors the formation of peroxynitrite. Peroxynitrite is an 
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important and powerful oxidizer of various proteins inside the endothelial cell. Nitration by 

peroxynitrite is a well-established posttranslational modification and attracts considerable 

interest in biomedical research, because it can alter protein function, is associated with acute and 

chronic disease states, and can be a predictor of disease risk [13]. The reactions between nitric 

oxide and superoxide do not necessarily result in oxidative damage and in some cases can even 

be cytoprotective.  

Low levels of peroxynitrite are able to be detoxified by enzymatic and non-enzymatic systems 

[14]. Additional reactions of the peroxynitrite molecule lead to a number of other oxidative and 

nitrosative species. Protonation of peroxynitrite yields peroxynitrous acid, which may 

decompose to yield the oxidizing hydroxyl radical. Oxidation of peroxynitrite by CO2 generates 

nitrosoperoxycarbonate. Decomposition of this short-lived radical produces nitrogen dioxide and 

the carbonate anion leading to further oxidation and nitration reactions [15, 16]. 

Many studies have demonstrated oxidative and nitrosative stress in cells following exposure to 

high glucose concentrations [17-20] and several have shown some beneficial effect of 

antioxidants [21-25]. However, care should be taken when interpreting data from studies of this 

type. Many of the techniques used to detect free radical species such as superoxide are not 

specific. Furthermore, the cellular half-life of these radicals is, at most, a few seconds given the 

number of possible reactants present. This is particularly true of peroxynitrite where oxidation 

and nitration reactions occur at very fast rates [14]. Therefore, studies involving detectors with 

relatively high reaction rates with the intended target, superoxide and nitric oxide, are needed to 

limit the potential for error. The efficacy of current fluorescent detectors specific for 

peroxynitrite is still under debate. The reactive species experiments performed in our lab utilize 

fluorescent probes known to react at high rates with their given targets, allowing for increased 
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accuracy in reactive species measurements. Despite these reservations, it is clear that oxidant 

formation is increased following exposure to high glucose and the oxidation and nitration 

products can be relatively detected both in vivo and in vitro. The detection of 3-nitrotyrosine in 

tissue sections is often used as an indicator of peroxynitrite induced oxidative stress and cellular 

injury. Increased nitrotyrosine staining has been detected in the proximal tubules of patients with 

diabetic nephropathy and in the renal cortex of diabetic rats [26, 27]. Peroxynitrite also directly 

causes oxidative DNA damage such as point mutation and double-strand breaks as well as lipid 

peroxidation [28-30]. Peroxynitrite was shown to activate caspases in HL-60 cells, but only 

caspase-3 was shown to be involved in apoptosis [31].  

An additional source of high glucose-induced oxidative stress is via the polyol pathway. Here, 

glucose is reduced to sorbitol by aldose reductase in a process that consumes NADPH. Sorbitol 

is then converted to fructose by sorbitol dehydrogenase with the generation of NADH [32-34].  

Glucose can undergo auto-oxidation or decomposition via numerous intermediates to yield 

reactive dicarbonyls glyoxal, methylglyoxal and 3-deoxyglucosone. These can then react with 

proteins to generate advanced glycation end products (AGEs) resulting in altered function that 

may lead, via ROS generation or NF-κB activation, to cell death. Many studies now implicate 

AGEs as mediators of diabetic pathophysiology [35]. 

The main underlying theme to these apoptotic cellular pathways is the condition of oxidative and 

nitrosative stress. From a molecular level, oxidative stress arises from increased production of 

ROS or reduced antioxidant capacity in cells or tissue. ROS are molecules with unpaired 

electrons, which can either accept another electron or transfer an electron to another molecule. 

The major intracellular form of ROS is superoxide, which may be converted to weaker or more 

stable ROS, like hydrogen peroxide or hydroxyl radicals, or to more aggressive compounds, like 
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peroxynitrite. As previously mentioned, ROS are normal by-products of cell metabolism through 

mitochondrial respiration or several oxidases, including NADPH oxidase, xanthine oxidase, 

cyclooxygenase, and lipoxygenase. ROS are required for maintaining normal cellular function, 

including scavenger and signal transduction roles. However, when cells are exposed to stress 

conditions such as hyperglycemia, a number of superoxide-producing enzymes are activated. 

The antioxidant mechanisms of the cell are overwhelmed, leading to the intracellular 

accumulation of excess superoxide. Endothelial nitric oxide synthase (eNOS) and SOD lose their 

ability to regulate superoxide levels and ultimately compound the problem of excess ROS/RNS 

production. The product of eNOS, nitric oxide, may react with superoxide to form peroxynitrite.  

Clarification of the complete major enzymatic biochemical pathways associated with 

hyperglycemia and their relative contribution towards inducing oxidative stress will greatly assist 

understanding of endothelial dysfunction. Furthermore, clarification of the early stages of 

enzymatic pathway activation due to high glucose stimulation in endothelial cells would be of 

large importance in understanding diabetic vascular pathology. 

 

1.2.2 Involvement of NADPH oxidase 

One of the major sources of ROS in endothelial cells is the NADPH oxidase system [36]. The 

activation of endothelial cell NADPH oxidase is a major hypothesis in the progression of high 

glucose induced oxidative and nitrosative stress. NADPH oxidase is activated in endothelial cells 

by growth factors, cytokines, shear stress, hypoxia, and G-protein coupled agonists [37]. In 

mammalian neutrophils, NADPH oxidase consists of the membrane-bound cytochrome b558 

comprising the catalytic subunit gp91 phox (Nox2) and regulatory subunit p22 phox , as well as 

cytosolic subunits, p40 phox , p47 phox , and p67 phox, and the GTPase, Rac. The neutrophil 
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NADPH oxidase releases large amounts of O2 in bursts, whereas the nonphagocytic, such as 

endothelial cell, NADPH oxidase(s) continuously produce low levels of O2 intracellularly in 

basal state. However, these oxidant-producing enzymes can be further stimulated acutely by 

various agonists and growth factors [38]. In nonphagocytic cells, several human homologs of 

gp91 phox (also termed as Nox2) have been identified including Nox1, Nox3, Nox4, Nox5, and 

the dual oxidases (Duox1 and Duox2). In endothelial cells Nox1, Nox2, Nox4, and Nox5 are 

mainly expressed and Nox family members share the common binding sites for FAD, heme, and 

NADPH, and six transmembrane domains [39, 40]. Nox2 is the primary source of superoxide 

among all endothelial NADPH oxidase. The regulation of Nox1 activity requires p22 phox , as 

does Nox2 [41], and NoxO1 (Nox organizer 1) and NoxA1 (Nox activator 1)-respective 

homologs of p47 phox and p67 phox [42].  

NADPH oxidase is activated by diverse stimuli including G-protein-coupled receptor agonists 

(angiotensin II and thrombin); cytokines (tumor necrosis factor and transforming growth factor); 

growth factors [VEGF (vascular endothelial growth factor), angiopoietin-1, PDGF, EGF, 

fibroblast growth factor and insulin]; hypoxia-reoxygenation or ischemia-reperfusion; and 

mechanical stimuli (shear stress) [4, 43]. The molecular mechanism of NADPH oxidase 

activation in endothelial cells has been better characterized for the Nox2-based oxidase and 

Nox1. In general, Nox2 oxidase activation of endothelial cells involves a translocation of 

cytosolic oxidase components (p47 phox, p67 phox, and Rac1) to the plasma membrane and 

association with cytochrome b558, which initiates the electron transfer process. The key post-

translational modifications involved in oxidase activation are the phosphorylation of p47 phox 

and Rac activation [43, 44]. PKC isoforms are believed to be the major kinases responsible for 

p47 phox phosphorylation, although other kinases such as Src kinases, PI3 kinase (PI3K), Akt, 
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mitogen-activated protein kinases (MAP kinases) including p38 MAPK, JNK/SAPK, and ERK, 

and PAK (p21-activated kinase) may also play a role depending on the stimulus [5, 45]. 

Nox activation can also result in cell death. ROS can trigger apoptosis either indirectly through 

damage to DNA, lipids, and proteins or directly by ROS-mediated activation of signaling 

molecules [46]. Such pro-apoptotic signaling by ROS may occur through activation of MAP 

kinases, such as SAPK/JNK, ERK1/2, and p38 [43]. MAP kinase activation is known to occur in 

many instances through ROS-dependent inhibition of tyrosine phosphatase [47]. At higher ROS 

concentrations, hydrogen peroxide can inhibit caspases and thereby lead to a switch from 

apoptosis to necrosis [48]. High concentrations of ROS directly cause damage of DNA, lipids, 

and proteins that result in apoptosis [49]. 

 

1.2.3 Mitochondria-dependent mechanisms 

Much more has been studied of the hypothesis regarding mitochondrial activation of oxidative 

stress and apoptotic pathways in diabetes. The current hypothesis linking mitochondria reactive 

oxygen species production to sustained hyperglycemia involves increased TCA activity, leading 

to increased electron delivery to the electron transport chain from NADH and FADH2. Increased 

metabolic respiration occurs due to elevated intracellular glucose levels resulting from 

hyperglycemia. This condition hyperpolarizes the mitochondria membrane resulting in inhibit ion 

of complex I and III, which increases the electron transfer to O2, producing superoxide [50]. 

Mitochondrial apoptosis is regulated by a large number of proteins that directly or indirectly 

activate or inhibit the activity of cysteine proteases. Several of these proteins share homology 

and comprise the Bcl-2 family of apoptosis regulators, of which there are three main groups 

defined according to the number and type of Bcl-2 homology (BH) domains they contain [51]. 
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The pro-apoptotic proteins Bax and Bak contain multiple BH domains. BH3-only proteins inhibit 

the anti-apoptotic actions of Bcl-2 directly by binding and preventing its inhibition of Bax. Bax 

promotes mitochondrial membrane permeability, allowing the release of cytochrome c and 

formation of the apoptosome. This leads to activation of caspase-9 and, subsequently, caspase-3 

[52].  

High glucose causes mitochondrial membrane depolarization and loss of uncoupling proteins 

(UCP), especially UCP3, resulting in increased oxidative stress as well as release of cytochrome 

c and activation of caspases [53]. Uncoupling proteins are inner mitochondrial membrane 

proteins that can prevent ROS formation and maintain mitochondrial membrane potential [54]. 

The role of UCPs in apoptosis is not clear, however, and may depend on the nature of the stimuli 

and cell type. However, studies have shown that loss of UCP3 expression appears with high 

glucose-induced apoptosis [55]. Recent work has also shown that high glucose-induced 

superoxide generation causes DNA strand breaks and activation of poly(ADP)-ribose polymerase 

(PARP). In turn, PARP inhibits glyceraldehyde phosphate dehydrogenase (GAPDH) and leads to 

cell death. This study illustrates another potential role of mitochondrial ROS generation in high 

glucose-induced cell death [56]. 

The effects of high glucose on apoptotic cell death appear to be independent of hyperosmolarity 

of glucose, which induces necrosis in endothelial cells [3]. However, mitochondrial dependent 

apoptosis in high glucose endothelial cells has been linked to Bax and Bad translocation. Risso et 

al. showed that intermittent high glucose (5 mM followed by 25 mM daily over 14 days) was 

more effective at inducing mitochondrial Bax-mediated apoptosis than stable high glucose (25 

mM continuously) [57]. Nakagami et al. showed that high glucose caused translocation of Bax to 

the mitochondrial membrane and subsequent caspase-3 and caspase-9 activation [58].  
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1.2.4 Nitric oxide synthase function/dysfunction and apoptosis 

Lack of function or dysfunction of nitric oxide synthase represents another major hypothesis in 

the development of oxidative and nitrosative stress pathways in high glucose induced endothelial 

dysfunction. Three isozymes of nitric oxide synthase (NOS) have been identified in the current 

literature. Their cDNA- and protein structures as well as their genomic DNA structures have also 

been described. NOS I (nNOS, originally discovered in neurons) and NOS III (eNOS, originally 

discovered in endothelial cells) are relatively low output, Ca(2+)-activated enzymes whose main 

physiological function is signal transduction. NOS II (iNOS, originally discovered in cytokine-

induced macrophages) is a high output enzyme which produces relatively higher amounts of 

nitric oxide [14]. Depending on the species, NOS II activity is largely or completely Ca(2+)-

independent. All NOS produce nitric oxide by oxidizing guanidino nitrogen of L-arginine, 

utilizing molecular oxygen and NADPH as co-substrates. All isoforms contain FAD, FMN and 

heme iron and require the cofactor BH4. NOS I and III are constitutively expressed in various 

cells, however, expression of these isoforms is subject to regulation [59]. TNF-alpha has been 

shown to reduce the expression of NOS III by a post-transcriptional mechanism that destabilizes 

the mRNA. Expression of NOS II is mainly regulated at the transcriptional level and can be 

induced in many cell types with LPS, cytokines, and other compounds [60].  

Nitric oxide, produced by endothelial nitric oxide synthase (eNOS),
 
is a key signaling molecule 

in vascular homeostasis [61]. Originally
 
identified as endothelium-derived relaxing factor, nitric 

oxide is an important regulator of vascular tone and blood pressure.
 
In addition, nitric oxide has 

multiple antiatherogenic roles, including anti-inflammatory, antithrombotic, antiproliferative, 

and antioxidant
 
effects [62]. Loss of nitric oxide bioavailability is

 
a cardinal feature of 

endothelial dysfunction that precedes the development of atherosclerosis and is an independent
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predictor of cardiovascular disease risk [63, 64]. Several factors contribute to loss of nitric oxide 

bioavailability in endothelial dysfunction states, including eventual reduction in nitric oxide 

synthesis and nitric oxide scavenging by reactive oxygen species [65]. The regulation of nitric 

oxide production
 
by eNOS is complex, but the cofactor tetrahydrobiopterin

 
(BH4) has emerged as 

a critical determinant of nitric oxide synthesis.
 
Endothelial BH4availability appears to be a key 

requirement
 
for maintaining normal endothelial function [66]. 

In a number of studies where oxidative stress induces endothelial dysfunction, expression of 

eNOS has been shown to be paradoxically unchanged or increased. The mechanisms underlying 

expression changes of eNOS are not fully described, but may be associated with increases in 

secondary oxidative radicals such as hydrogen peroxide, which increases the expression of eNOS 

at the transcription and protein levels. The development of endothelial dysfunction in the 

presence of unchanged or increased eNOS levels suggests that the enzyme’s function to produce 

nitric oxide may be limited. This decrease in nitric oxide production by eNOS may explain the 

reduced bioavailability of nitric oxide in the stressed endothelial cell. However, our data shows 

that although overall nitric oxide levels are decreased, nitric oxide production is increased in 

response to high glucose stimulation of endothelial cells [67]. This suggests that another 

significant source of nitric oxide appears during hyperglycemia-induced oxidative stress, 

presumably iNOS. Recent qPCR data from our lab shows that iNOS gene expression is 

significantly increased in HUVECs in as little as 1 hour exposure to high glucose. HUVEC gene 

expression of iNOS is further increased for 24 and 48 hour high glucose exposure. These data 

corroborate the theory that eNOS function is reduced and also converted to production of 

superoxide due to high glucose induced oxidative stress. Additionally, iNOS expression is 

increased, resulting in significantly higher nitric oxide production in the presence of elevated 
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superoxide production. All of these points taken together illustrate potent pathways for the 

development of nitrosative and oxidative stress within the high glucose exposed endothelial cell.  

 

1.2.5 Role of nitration in endothelial cell dysfunction/apoptosis 

The peroxynitrite anion is a short-lived oxidant species that is produced by the reaction of nitric 

oxide and superoxide radicals at diffusion-controlled rates (~1 × 10
10

 M–1 s–1) [68]. The sites of 

peroxynitrite formation are assumed to be spatially associated with the sources of superoxide 

(such as the plasma membrane NADPH oxidases or the mitochondrial respiratory complexes) 

because although nitric oxide is a relatively stable and highly diffusible free radical, superoxide 

is much shorter lived and has restricted diffusion across biomembranes [69]. The rates of 

peroxynitrite production in vivo in specific compartments have been estimated to be as high as 

50–100 μM per min. The steady-state concentrations are estimated to be in the nanomolar 

concentration range, which, however, can be sustained for a long period of time [68]. So, under 

certain conditions such as hyperglycemic stress, exposure to peroxynitrite can be significant, 

considering the length of time of formation. Despite the short half-life of peroxynitrite at 

physiological pH (~10 ms), its ability to cross cell membranes suggests that peroxynitrite 

generated from a cellular source could influence surrounding cells within one to two cell 

diameters (~5–20 μm) [70]. When biological systems are exposed to peroxynitrite, a number of 

biological effects can occur, with adverse effects on the viability and function of cells. A 

fundamental reaction of peroxynitrite in biological systems is its fast reaction with carbon 

dioxide, which leads to the formation of carbonate and nitrogen dioxide radicals. Nitrogen 

dioxide can undergo reactions with biomolecules, resulting in nitrated compounds [71]. The 
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decomposition of peroxynitrite to form hydroxide ions may also be important in the initiation of 

lipid peroxidation processes [72].  

Many biomolecules are oxidized and/or nitrated by peroxynitrite-derived radicals, including 

tyrosine residues, thiols, DNA and unsaturated fatty-acid-containing phospholipids. Tyrosine 

nitration, dimerization and hydroxylation by peroxynitrite to form 3-nitrotyrosine, 3,3′-dityrosine 

and 3,4′-dihydrophenylalanine, respectively, are completely dependent on free-radical pathways 

[73]. Thiols can also be oxidized by one-electron reactions by peroxynitrite-derived radicals. In 

DNA, purine nucleotides are vulnerable to oxidation. Also, peroxynitrite can cause deoxyribose 

oxidation and strand breaks [29]. The reaction of peroxynitrite-derived radicals with lipids leads 

to peroxidation and the formation of nitrated lipid oxidation. Lipid peroxidation processes may 

also assist in protein tyrosine oxidation and nitration in biomembranes and lipoproteins [72]. 

Peroxynitrite can promote the oxidation of co factors either by direct or free-radical-dependent 

mechanisms. Peroxynitrite-mediated oxidation of tetrahydrobiopterin (BH4) to 5,6-

dihydrobiopterin (and subsequently to 7,8-dihydrobiopterin) leads to the dysfunction of nitric 

oxide synthase, as BH4 is an essential NOS cofactor. Another theory proposes that low levels of 

BH4 can lead to its own further depletion, mediated by the NOS-dependent formation of 

peroxynitrite [74]. This hypothesized mechanism might also contribute to vascular endothelial 

dysfunction that is induced by oxidative stress in diseases such as diabetes. 

An imbalance in the ratio of nitric oxide to superoxide anion due to increased superoxide levels 

has been shown to lead to an alteration in vascular reactivity. Under these conditions an increase 

in peroxynitrite formation, resulting from the reaction between nitric oxide and superoxide, is 

likely to occur. Peroxynitrite is responsible for nitration of tyrosine residues in proteins; therefore 

the presence of nitrotyrosine in plasma or intracellular proteins is considered indirect evidence of 
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peroxyntrite production and oxidative and nitrosative stress. Nitrotyrosine has been found in the 

plasma of patients with diabetes, but it is not detectable in the plasma of healthy controls. 

Nitrotyrosine plasma values are correlated with plasma glucose concentrations, and further 

studies exploring the effects of acute hyperglycemia on nitrotyrosine formation confirmed that 

nitrotyrosine is produced both in normal subjects during hyperglycemic clamp and in working 

hearts from rats during hyperglycemic perfusion. In a clinical study, glucose produced a decrease 

in endothelial function and an increase in nitrotyrosine in normal subjects and patients with 

diabetes [75]. 

 

1.2.6 Justification 

Evidence for oxidative and nitrosative stress involvement in hyperglycemia-induced endothelial 

dysfunction is very strong. Taken together, these reports support the view that nitrosative stress 

and peroxyntrite-induced damage play a crucial role in multiple interrelated aspects of the 

pathogenesis of diabetes and its complications. Numerous studies have shown that diabetic 

patients have higher incidence of endothelial dysfunction and oxidant stress. The imbalance 

between superoxide and nitric oxide levels has the potential to damage the endothelial cell and 

lead to loss of vasomotor control. However, understanding of both nitric oxide and reactive 

oxygen species pathways and their interactions in hyperglycemia is unclear. Clarification of the 

molecular mechanisms involved in endothelial cell dysfunction is important for delineating 

effective treatment strategies. Neutralization of reactive nitrogen species or inhibition of 

upstream ROS pathways may emerge as novel approaches for the experimental therapy of 

diabetes, as well as for the prevention or reversal of its complications. However, without 
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complete knowledge of the numerous interactions involved in reactive oxygen and nitrogen 

species pathways, interventional treatments may create unintended damage or ineffective results. 

 

1.3 Specific Aims 

The overall goal of this study is to understand the interactions between high-glucose induced 

superoxide and nitric oxide in endothelial cells and their role in the development of oxidative and 

nitrosative stress, endothelial cell damage and apoptosis. To that end, we focused on the 

application of fluorescence detection techniques of nitric oxide and superoxide, contribution and 

gene regulation of enzymatic pathways involved in hyperglycemic stress and apoptosis and the 

role of the renin-angiotensin pathway in high-glucose endothelial cell dysfunction. The specific 

aims of this study are as follows: 

Specific Aim 1: To study the reaction rates of fluorescent probes and their given reactive species, 

nitric oxide and superoxide, in a cell-free system 

 

Specific Aim 2: To investigate the contribution levels and significance of endothelial and 

inducible nitric oxide synthase and NADPH oxidase in the development of oxidative and 

nitrosative stress and apoptosis in hyperglycemic endothelial cells 

 

Specific Aim 3: To understand the effects of the renin-angiotensin pathway on cell damage and 

gene expression of endothelial and inducible nitric oxide synthase and NADPH in hyperglycemic 

endothelial cells 
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1.4 Significance 

The results from our studies will enhance our current understanding of the complicated 

mechanisms associated with reduced nitric oxide availability and increased superoxide levels 

caused by hyperglycemia in endothelial cells. Increased understanding of the intracellular targets 

involved in high-glucose induced endothelial dysfunction will assist in the development of better 

drug design and treatment strategies for diabetic cardiovascular diseases.  
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CHAPTER 2 

 

Critical Evaluation of DHE Fluorescence Measurement of Superoxide: Effect of Nitric Oxide 

and Superoxide Dismutase Presence 
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Abstract 

An accurate detection of superoxide is desired to better understand numerous vascular 

pathologies. In this study, we performed mechanistic studies to understand the effectiveness of a 

currently used oxidative stress assay. We systematically evaluated the effect of nitric oxide (
•
NO) 

and superoxide dismutase (SOD) presence, two effective scavengers of superoxide, on the 

fluorescence measurement of superoxide. We also conducted a detailed reaction kinetic analysis 

of the dihydroethidium (DHE)-superoxide interaction. We used xanthine oxidase/hypoxanthine 

and spermine nonoate to produce superoxide and 
•
NO, respectively. A microplate reader was 

used to measure DHE fluorescence detection of superoxide. SOD significantly decreased 

superoxide concentrations in the fluorescence assays. 
•
NO showed an inhibitory effect on 

superoxide measurement at higher concentrations in DHE fluorescence measurements. The 

kinetic analysis resulted in a reaction rate constant of 1.1 × 10
3
 M

-1
s

-1
 for DHE-superoxide 

reaction that is ~260× slower than the reported value of 2.6 × 10
5
 M

-1
s

-1
. The lower reaction rate 

constant can explain a lack of DHE fluorescence in the presence of SOD. Results suggest that an 

accurate measurement of superoxide production may be difficult due to competitive interference 

from varying 
•
NO and SOD levels; however net superoxide concentration may be quantified. 
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DHE, Superoxide, Reaction rate constant, Nitric oxide, Kinetic analysis, Reaction, Oxidative 

stress 
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2.1 Introduction 

Detection of superoxide has been an essential tool for exploring the various mechanisms 

occurring in physiological and experimental environments [76]. Xanthine oxidase (XO) catalysis 

of hypoxanthine oxidation to form superoxide is used widely in cell-free reactions in an 

experimental environment. Since 1990, fluorescence resulting from the oxidation of 

dihydroethidium (DHE) (also HE hydroethidine) has been used as a superoxide probe with much 

success [77]. DHE fluorescence is inhibited by superoxide scavengers such as SOD and NO [38].  

For the detection of superoxide using DHE fluorescence, high performance liquid 

chromatography (HPLC), microplate reader analysis, and fluorometry have proven effective for 

both qualitatively and quantitatively determining superoxide concentrations [78]. For an accurate 

description of superoxide measurement an understanding of total reactive species interactions in 

an experiment is needed. Without this only qualitative measurements of superoxide are possible 

[79].  

Products for the oxidation of DHE by superoxide are well established in the current literature. In 

the presence of superoxide, DHE is oxidized to 2-OH-ethidium and to a much lesser extent, 

ethidium. The main product, 2-hydroxyethidium, fluoresces at a wavelength measured with a 

maximum excitation and emission of 480 nm and 585 nm respectively [76, 80]. The product was 

also found to be stable within the cell, allowing for precise measurement of DHE fluorescence 

without risk of intraconversion variability. Fluorescence measurement of DHE yields superoxide 

concentrations specific for either intracellular or extracellular locations [81].  

Oxidative stress within the vascular environment arises from excessive reactive oxygen species 

[82]. In normal vascular function, the endothelium maintains regulation of blood flow and 

vascular tone through a balance between vasodilators and vasoconstrictors. ROS also play an 
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important role in vascular homeostasis. Endothelial dysfunction resulting from oxidative stress is 

characterized by reduced vasodilation and increased concentrations of ROS including 

superoxide. The biological implications for accurate detection of superoxide levels within the 

vasculature are critical for understanding numerous pathologies involving endothelial 

dysfunction [83]. 

Nitric oxide is released from the endothelium in response to various agonist and shear stress. 

Endothelial nitric oxide is produced by catalysis of the amino acid L-arginine by endothelial 

nitric oxide synthase (eNOS) [84]. When released, nitric oxide is a potent vasodilator and 

antagonist against accumulation of superoxide within the vascular environment. In addition, 

nitric oxide and SOD inhibit oxidative stress by acting as an antioxidant in their regulatory 

interactions with superoxide. Contrarily, in conditions of oxidative stress, superoxide 

concentrations increase above effective nitric oxide and SOD levels. This leads to decreased 

bioavailability of nitric oxide and increased concentrations of superoxide and cytotoxic species, 

such as peroxynitrite and hydrogen peroxide [38]. 

In vivo, SOD and nitric oxide counteract superoxide. Previous studies have shown that disease 

pathologies such as hyperglycemia elevate both SOD and eNOS expression [21, 85]. However, 

the degree to which these species influence total superoxide production and affect DHE 

fluorescence detection is not fully understood. For this study, we determined the levels at which 

SOD and nitric oxide presence effect the fluorescence detection of superoxide. We also 

developed a reaction kinetic model to quantify DHE and superoxide interactions.  
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2.2 Materials and Methods  

 

2.2.1 Materials:  

Xanthine oxidase (XO), hypoxanthine, catalase, SOD, sodium hydroxide (NaOH), 

ferricytochrome-c and phosphate buffer solution (PBS) were obtained from Sigma Chemical Co. 

(St. Louis, MO, USA). Spermine nonoate was purchased from Calbiochem (Gibbstown, NJ, 

USA). Dihydroethidium (hydroethidine) was purchased from Invitrogen Corp. (Carlsbad, CA, 

USA).  

 

2.2.2 Superoxide and nitric oxide sources:  

Reactions were conducted in a BD Falcon 96-well plate with a transparent bottom holding a total 

reagent volume of 300 µL balanced with PBS (10 mM, pH 7.4). Superoxide was produced using 

a hypoxanthine and XO enzyme system. Excess catalase was used to remove hydrogen peroxide, 

which is generated by the dismutation of superoxide. Nitric oxide source was spermine nonoate, 

which was prepared in a 0.1 M NaOH (pH 12) stock solution for stable storage. Spermine 

nonoate releases NO at pH 7.4.  Final concentrations of 1, 10, and 100 U/mL of SOD and 1, 10, 

100 and 1000 µM of spermine nonoate were used to understand the effect of SOD and 
•
NO 

presence on DHE fluorescence. 

 

2.2.3 Fluorescence measurement: 

DHE reacts with superoxide to form mainly 2-OH-ethidium, however a secondary product 

ethidium can also form at low level [86]. The fluorescence from hydroxy-product (2-OH-

ethidium) can be measured at excitation of either 396 or 510 nm with an emission at 585 nm. 
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Because of a higher contribution of ethidium fluorescence at 510 nm excitation wavelength, the 

excitation at 396 nm wavelength is advantageous for specific oxidation dependent of superoxide 

formation [87]. We measured the secondary product at 510/610 nm excitation/emission and 

observed a linear increase of ethidium over time and the amount of ethidium formation was less 

than 5% (data not shown). 

Fluorescence was monitored with a Synergy 2 Multi-Detection Microplate Reader using Gen5 

Microplate Data Collection & Analysis software (BioTek Instruments Inc., VT, USA). The 

excitation was set to 390/20 nm and emission to 585/40 nm for the detection of 2-OH-ethidium. 

The unreacted DHE levels were measured at excitation 360/40 and emission 460/40. The plate 

was read from the bottom, and sensitivity of the photomultiplier tube was set to 70.  The 

fluorescence measurements were performed either for 30 or 120 minutes. For each of the 

experiments, the final concentrations were 1.5 mU/mL, 0.25 mM, 100 U/mL and 5µM for XO, 

HX, catalase and DHE, respectively in a 300 L volume. All fluorescence values were corrected 

for the background fluorescence that was measured in PBS with DHE in the absence of XO. 

 

2.2.4 Superoxide production: 

Superoxide production was measured by the widely used assay of rapid reduction of 

ferricytochrome c [78, 88]. Absorbance readings at 550 nm were collected every minute for 30 

minutes and a molar extinction coefficient 21,000 M
-1

cm
-1

 was used to calculate superoxide 

production. The absorbance assay volume was 300 µL in PBS with reagents including XO (1.5 

mU/mL), hypoxanthine (0.25 mM), catalase (100 U/mL), and ferricytochrome c (81 µM). 

 

2.2.5 DHE and superoxide reaction kinetic analysis: 
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To understand the kinetics of the DHE and superoxide reaction, we modified the kinetic analysis 

from an earlier study by Zhao et al. [80] that used the competition kinetic analysis to provide a 

rate constant of 2.6 × 10
5
 M

-1
s

-1 
for superoxide and DHE reaction. However, based on our 

fluorescence measurements and model predictions, we propose a much lower reaction rate for 

superoxide and DHE reaction as described in the results section. 

 We consider the following reactions occurring in the system. 

 

i). The reaction between DHE and superoxide yields a fluorescent product at a rate constant of 

kDHE (=2.6 × 10
5
 M

-1
s

-1 
[80] or 1.1 × 10

3
 M

-1
s

-1 
proposed in this study) as follows: 

 

      
  

    
→                                             (1) 

 

ii). When SOD is present, the reaction between superoxide and SOD occurs at a rate constant of 

3 × 10
9
 M

-1
s

-1
 as follows: 

 

      
  

            
→        

  

 
   

  

 
               (2) 

 

iii). We included the dismutation of superoxide in our analysis. Earlier studies have indicated 

that this reaction is negligible [80, 89]; we also analyzed the effect of this reaction on the 

predictions. The rate constant for dismutation of superoxide is 8 × 10
7
 M

-1
s

-1
 and the reaction 

occurs as follows: 

 

   
    

     
    
→                (3) 
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Thus, the mass balance equation for the species of interests,   
  , and DHE, can be written as 

,
22222

2






oHODoSODSODoDHEDHEo

o
CCkCCkCCkS

dt

dC
     (4) 


2oDHEDHE

DHE CCk
dt

dC
         (5) 

 

Note that, i) 
2o

S  (0.76 M/min) is the rate of superoxide production in the system, and ii) rate 

can be simplified assuming a rapid equilibrium of    
    

   with 0025.0C/C
22 oHO
 based on 

pKa=4.8.  

 

Equations 4 and 5 were solved using MatLab
®
 with an initial concentration of 5 M for DHE 

and 0 nM for superoxide.   

 

2.2.6 Statistical analysis: 

 

Three runs were performed for each assay and all values represent the mean ± std deviation. A 

paired two sample t-test was performed to determine significance between SOD and 
•
NO 

treatments against no treatment. P < 0.05 was deemed as significant.  
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2.3 Results 

 

2.3.1 Fluorescence measurements of 2-OH- ethidium (main product of superoxide and 

DHE reaction) and unreacted DHE  

DHE and superoxide reaction was observed using XO, HX, catalase and DHE at concentrations 

of 1.5 mU/mL, 0.25 mM, 100 U/mL and 5µM, respectively in a 300 L volume.  Fluorescence 

measurements of 2-OH-ethidium (396/585 nm, ex/em) and unreacted DHE (360/460 nm, ex/em) 

were conducted. Figure 1a and b shows the accumulation of 2-OH-ethidium and the remaining 

unreacted DHE, respectively in solution over 120 minutes. Both increase in 2-OH-ethidium and 

decrease in unreacted DHE occurred linearly with a fluorescence rate of 38.62 and 39.19 

RFU/min, respectively for up to 90 min. After 90 min unreacted DHE levels became zero, 

consequently fluorescence of 2-OH-ethidium plateaued.  

To validate that the unreacted DHE levels became zero, we added SOD (1 U/ml) and spermine 

nonoate (10 M) to reduce available superoxide level for DHE reaction. As seen in Figure 1, in 

the presence of SOD and NO, increase in 2-OH-ethidium and decrease in unreacted DHE kept 

changing linearly over 120 min. This shows that DHE was still available for reaction after 120 

min. However, the 2-OH-ethidium fluorescence rate decreased to 21.60 and  RFU/min and 

the unreacted DHE fluorescence rate changed to 25.41 and 15.58 RFU/min for NO and SOD, 

respectively. 

 

2.3.2 Kinetic analysis of DHE and superoxide reaction 

Using kDHE of 2.6 × 10
5
 M

-1
s

-1
, and 

2o
S  (superoxide production rate) of 0.76 M/min, we solved 

the kinetic model of DHE and superoxide reaction represented by Eqs 4 and 5. The unreacted 
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DHE and superoxide concentration profiles are shown in Figure 2a. Superoxide reached a 

steady-state concentration of 250 nM. To our surprise, the unreacted DHE concentration in the 

solution reduced to zero (less than 1 nM) within the first 10 min (Figure 2a). Using kDHE of 2.6 × 

10
5
 M

-1
s

-1
, the fluorescence cannot increase linearly for 90 min in this system, as we observed in 

our experiments. In addition, this establishes that DHE, not superoxide, is the limiting factor for 

the continuation of the reaction. 

 

2.3.3 A slower reaction rate constant for DHE and superoxide reaction 

Next, we analyzed whether the long-term linear increase in DHE fluorescence can be explained 

from a slower reaction rate constant for the DHE and superoxide reaction using kinetic analysis. 

For this purpose, we obtained the time at which the RFU value was 63.2% of the maximum 

fluorescence value (1722 RFU) for the 5 M DHE concentration experiments shown in Figure 1. 

This corresponds to the one time constant response for a first order system. The time was 68 min. 

We performed kinetic analysis by reducing the reaction rate of DHE with superoxide. The 

reaction rate was found to be 1.01 × 10
3
 M

-1
s

-1
 for which 1.84 M unreacted DHE (shows 

reaction is 63.2% complete with 63.2% of DHE consumed) remained after 68 min. Figure 2a 

shows the predicted unreacted DHE concentration profiles for 5 and 10 M initial DHE 

concentrations. As seen, the unreacted DHE concentration is 0.85 and 1.8 M for 5 and 10 M 

initial DHE concentrations, respectively after 120 min.   

We also show the unreacted DHE profiles for a reaction rate constant of 2 × 10
3
 M

-1
s

-1
.  Figure 

2b shows the profiles for 5 and 10 M initial DHE concentrations. As seen, the profiles plateau 

earlier. The unreacted DHE concentrations were 0.70 and 1.6 M at 68 min and 0.35 and 0.45 

M at 120 min for 5 and 10 M initial DHE concentrations, respectively. This clarifies that even 
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at a high reaction rate constant of 2 × 10
3
 M

-1
s

-1
, the amount of unreacted DHE remaining is 

small and may not be sufficient for a linear increase in the DHE fluorescence.   

Thus, the proposed reaction rate constant for the DHE and superoxide reaction (kDHE) is 1.01 × 

10
3
 M

-1
s

-1
, which is ~260× lower than the previously reported value of 2.6 × 10

5
 M

-1
s

-1
 [80]. 

 

2.3.4 DHE fluorescence is completely inhibited at 10 U/ml SOD concentration 

DHE fluorescence from superoxide was measured for SOD concentrations of 0, 1, 10, and 100 

U/mL. DHE background fluorescence was measured in PBS in the absence of SOD and XOD. 

The background fluorescence was 522 ± 12 relative fluorescence units (RFU) (n = 3) and did not 

change with time due to the absence of superoxide generation. Figure 4a shows the measurement 

of DHE fluorescence over 30 minutes. The presence of XO and hypoxanthine in PBS, containing 

DHE and catalase but no SOD, produced a significantly higher value of 1873 ± 69 RFU (n = 3, p 

< 0.05) after 30 min.  The increase in fluorescence was linear, indicating a steady-state system 

with constant and uninhibited formation of superoxide and its interaction with DHE.  

As the concentrations of SOD increased, DHE fluorescence values decreased (Figure 4a). This 

indicates that SOD was reducing the concentration of superoxide in the solution. SOD 

concentrations as low as 1 U/mL significantly decreased DHE fluorescence (p < 0.05). For the 

10 and 100 U/mL SOD concentrations, DHE fluorescence was significantly abolished (p < 0.05) 

and were similar to background values produced by DHE and PBS alone. Absence of catalase 

was without effect (data not shown). Figure 4b shows the rate of DHE fluorescence in RFU per 

minute for a given SOD concentration. For 0 and 1 U/mL SOD concentration, the rate of DHE 

fluorescence are 33 ± 3 and 10 ± 2 RFU/min, respectively. Thus, even a small amount of SOD 

can reduce the rate of DHE fluorescence by 70 percent. At high SOD concentrations (10 and 100 
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U/mL), the rate of DHE fluorescence was negligible. This lack of change in DHE fluorescence 

suggests that there was very low superoxide concentration in the system to react with DHE at 

any time during the assay, though there was superoxide production from XO and hypoxanthine 

system. This indicates that SOD concentration of 10 U/mL or higher, will be able to scavenge all 

superoxide produced in this system. 

 

2.3.5 DHE fluorescence is reduced in presence of nitric oxide 

The effects of nitric oxide presence on the DHE fluorescence of superoxide were assessed using 

spermine nonoate concentrations of 0, 1, 10, 100 and 1000 M. DHE and PBS fluorescence was 

measured to establish a background control for the nitric oxide assay; results averaged 521 ± 7 

RFU (n = 3). Hypoxanthine, XO, DHE, catalase and PBS resulted in a RFU value of 2077 ± 24 

RFU (n = 3) after 30 min, indicating the production of superoxide by the enzymatic system. 

Figure 5a shows the DHE fluorescence change with time in the presence of spermine nonoate. 

DHE fluorescence was directly related to the concentration of spermine nonoate present in the 

system; as spermine nonoate concentrations increased, RFU values decreased. For every 

spermine nonoate concentration, the increase in DHE fluorescence was linear indicating a 

steady-state system with constant and uninhibited formation of superoxide. Absence of catalase 

was without effect (data not shown). After 30 min, DHE fluorescence decreased to 1731 ± 93 (p 

< 0.05), 1449 ± 59 (p < 0.05), 839 ± 16 (p < 0.05) and 584 ± 7 (p < 0.05) RFU for spermine 

nonoate concentrations of 1, 10, 100 and 1000 µM, respectively.  

Figure 5b shows the rate of DHE fluorescence in RFU per minute for each spermine nonoate 

concentration (0, 1, 10, 100, 1000 µM). DHE fluorescence in the absence of spermine nonoate 

resulted in the fluorescence rate of 24.3 ± 2.6 RFU per minute. Addition of 1, 10, 100, and 1000 
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µM spermine nonoate reduced the rate of DHE fluorescence to 20.5 ± 0.2, 15.4 ± 0.5, 5.1 ± 0.3 

and 0.4 ± 0.4 RFU/min, respectively, which represents a 16, 37, 79 and 98 percent reduction in 

RFU/min values over that of 0 U/mL spermine nonoate value, respectively. The relationship of 

DHE fluorescence rate with spermine nonoate concentration is y = -1.95 ln(x) + 19.76 with r² = 

0.996, where y is the RFU/min and x is the spermine nonoate concentration. Spermine nonoate 

significantly reduced the rate of DHE fluorescence. 

 

2.3.6 Kinetic analysis of DHE and superoxide reaction in the presence of SOD 

Previous studies have raised concern regarding the detection of superoxide using DHE in the 

presence of in vivo SOD concentration range ofM [79]. The reasoning behind the concern is 

that the reaction rate constant of the reaction of superoxide with DHE (kDHE =2.6-4 × 10
5
 M

-1
s

-1
) 

is 1,000 times lower than that of the reaction rate constant of superoxide with SOD (k=3 × 10
9
 

M
-1

s
-1

). We estimate an even lower reaction rate of DHE with superoxide. To understand the 

effect of this lower reaction rate constant of 1.01 × 10
3
 M

-1
s

-1
 in our experiments, we used 

Equations 4 and 5 to solve for profiles of DHE and superoxide for the 1, 10 and 100 U/ml (or 

0.011, 0.11, and 1.1 M) SOD concentrations used in this study. For the lower reaction rate 

constant of 1.01 × 10
3
 M

-1
s

-1
, superoxide concentrations reached steady state values of 706, 70.6, 

7.06 pM within a few seconds for SOD concentrations of 1, 10 and 100 U/ml, respectively. After 

60 min, DHE remained unconsumed at 5 M concentrations for 10 and 100 U/ml SOD but 

reduced by 0.1 M for 1 U/ml SOD concentration. When we used the reaction rate constant of 

2.6 × 10
5
 M

-1
s

-1
, superoxide concentrations reached steady state values of 680, 70.2 and 7.06 pM 

within a few seconds for SOD concentrations of 1, 10 and 100 U/ml, respectively. After 60 min, 

DHE concentrations were 2.67, 4.68 and 4.97 M for SOD concentrations of 1, 10 and 100 
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U/ml, respectively. Thus, only the lower reaction rate constant can explain no change in 

measured RFU for 10 and 100 U/ml of SOD concentrations and a small change in RFU for 1 

U/ml SOD concentration as measured in this study and reported in Figure 3. 

 

2.4 Discussion 

Nitric oxide and SOD are two efficient scavengers of superoxide in cells and tissue, rendering 

measurement of superoxide complicated. In this study, we demonstrate the level at which nitric 

oxide and SOD effect superoxide measurements using DHE fluorescence. Using kinetic analysis 

of the experiments, a DHE-superoxide reaction rate constant of 1.1 × 10
3
 M

-1
s

-1
 is proposed.   

 

2.4.1 Superoxide measurements  

A predictable cell-free superoxide generating system was utilized to achieve reliable 

measurements of superoxide concentrations for in vitro study of SOD and nitric oxide 

interactions using a common fluorescence detection method. A range of SOD and nitric oxide 

concentrations were examined by introducing nitric oxide, via spermine nonoate donation, and 

SOD directly into a superoxide environment. The system is free from reactive species 

interference found in the in-vivo detection of superoxide, allowing for a more accurate analysis 

of species interactions. We confirmed that DHE fluorescence occurred at significant rates from 

superoxide generated by the hypoxanthine/xanthine oxidase system. The presence of SOD or 

nitric oxide will reduce superoxide concentration, which directly affects DHE fluorescence 

detection.  

Currently, there is question in the literature regarding the accuracy of fluorescence detection of 

the DHE-superoxide reaction [90]. The authors suggest that HPLC analysis is the only reliable 
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method for measurement of DHE detection of superoxide. Results from this study confirm 

through the simultaneous detection of 2-OH-ethidium accumulation and monitoring of unreacted 

DHE in solution that fluorescence measurements are specific for that of the DHE-superoxide 

reaction product reported in the literature. Using microplate reader fluorescence detection, we 

found that the rate of 2-OH-ethidium formation was equal to that of the decrease in unreacted 

DHE levels in solution. Therefore, we conclude that by using appropriate excitation and 

emission filters fluorescence measurement of DHE is an accurate method for the detection of in 

vitro superoxide levels.  

Studies investigating reactive oxygen species have used several different methods to measure 

superoxide concentration, including DHE fluorescence, cytochrome c absorbance, lucigenin 

chemiluminescence, and HPLC [77, 91-93]. Data presented in this study regarding the 

limitations of DHE measurements are in agreement with other studies. Due to the extremely 

short half-life of superoxide and rapid reaction with SOD, DHE fluorescence detection is prone 

to underestimation of actual superoxide production [90, 94]. Additionally, Papapostolou et al. 

showed that DHE can react with various oxidants found within the cell, including cytochrome 

hemes of the mitochondria [95]. Shao et al. also demonstrated that certain potent diet 

antioxidants can greatly decrease superoxide concentration even in extreme acute oxidative 

stress [96]. DHE fluorescence measurements can describe quantitative measurements of 

localized superoxide concentration. However, total superoxide production measurements are not 

possible as reported [76] and, at best, will be an estimate due to the varying amount of 

superoxide consumption among various interactions with other species. Further experimental and 

computational studies are needed for the calibration of DHE fluorescence with superoxide. 
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2.4.2 Justification of DHE-superoxide reaction rate constant of 1.1 × 10
3
 M

-1
s

-1
 

Based on experimental measurements and computational modeling, we report a reaction rate of 

~1.1 × 10
3
 M

-1
s

-1
 that is ~260× lower than the previously reported value of 2.6 × 10

5
 M

-1
s

-1
 [9].  

The possible reasons for the discrepancy include: i) our kinetic analysis is more detailed with 

respect to the actual reaction occurring in the system, ii) we considered the dismutation of 

superoxide which will increase superoxide consumption that was not considered in previous 

study, and iii) we did not assume saturating concentrations of DHE (compared to superoxide 

flux), as the previous study, model analysis (Figure 5) and experimental measurements (Figure 

6) show that DHE is the limiting factor in its reaction with superoxide.  

In the presence of SOD, the experimental results of no DHE fluorescence in this study were 

similar to the absence of oxyethidium peak formation at SOD concentration of 100 U/ml [97]. 

Additionally, the lower reaction rate constant 1.1 × 10
3
 M

-1
s

-1
 can justify no observed DHE 

fluorescence in our experiments for SOD levels above 0.11 M (10 U/mL), whereas the higher 

reaction rate constant of 2.6 × 10
5
 M

-1
s

-1
 will still lead to significant DHE fluorescence for SOD 

levels above 0.11 M (10 U/mL).  

 

2.4.3 Effect of SOD concentration on superoxide presence 

This study analyzed the concentration levels at which SOD effects detection of superoxide using 

an in vitro system. SOD catalyzes dismutation of superoxide within the vascular environment to 

help maintain healthy endothelial function [98]. In the case of DHE detection of superoxide, 

fluorescence decreased with increasing SOD concentration (see Figure 4a). At low SOD 

concentration of 0.011 M (1 U/mL), change in DHE fluorescence per minute was reduced by 

70 percent. Furthermore, DHE fluorescence was nearly abolished at SOD concentrations above 
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0.11 M (10 U/mL). Fink, et al. [97] reported similar findings using an endothelial cell model, 

with SOD completely eliminating induced superoxide formation due to angiotensin II 

administration. This data indicates that DHE measurements of superoxide production may be 

highly underestimated even in the presence of relatively low SOD competition. New evidence 

has also shown that apocynin may directly inhibit superoxide, much like SOD, rather than 

indirectly decrease its levels through the inhibition of NADPH-oxidase [99, 100]. Furthermore, 

other research has shown that apocynin is potentially a pro-oxidant, leading to the increased 

production of superoxide in endothelial cells [101]. In addition, the scavenging efficiency of 

vascular antioxidant systems in maintaining healthy blood flow and reactive oxygen species 

levels further complicates the accurate analysis of superoxide production [82]. Dependent on 

experimental conditions such as hypoxia, inflammation, atherosclerosis, SOD expression may up 

or down-regulate within the vascular environment and may vary widely on a spatial level [102, 

103]. Consequently, DHE fluorescence can describe localized superoxide concentration rather 

than vascular superoxide production. 

 

2.4.4 Effect of nitric oxide on superoxide concentrations 

Nitric oxide is released from the endothelium in response to stimuli such as superoxide 

concentration increases in the vascular environment. However, in the case of oxidative stress, 

superoxide concentrations are elevated beyond effective nitric oxide levels [81]. Our objective 

was to evaluate the level at which nitric oxide influences the detection of superoxide production. 

Selemidis, et al. [77] reports that an increase in nitric oxide donor concentrations led to a 

dramatic decrease in superoxide production as measured by DHE fluorescence in endothelial 

cells. We show that in vitro DHE fluorescence measurement of superoxide significantly 



41 

 

decreased in the presence of nitric oxide. Spermine nonoate concentrations as low as 1 µM 

significantly decreased superoxide detection while 1 mM concentrations completely abolished 

DHE measurement (See Figure 5a). Cosentino reports that hyperglycemia upregulates the 

expression of nitric oxide synthase [85]. This may lead to local elevation of nitric oxide, 

however, spatial nitric oxide concentrations will vary widely. Consequently, dependent upon the 

nitric oxide environment of a given sample DHE superoxide production measurements may be 

over- or underestimated. A more accurate description of superoxide production may require 

DHE measurement in relation to nitric oxide, peroxynitrite and SOD concentrations in a given 

sample. 

 

2.4.5 Pathological Implications of SOD and nitric oxide interactions 

A complete understanding of species interactions is critical for reducing the risk of numerous 

disease pathologies. Concentrations of reactive oxygen species, such as superoxide, are tightly 

regulated in the normal functioning vascular system [98]. However, accumulation of superoxide 

within the vasculature, termed as oxidative stress, contributes to the development of a number of 

diseases, such as atherosclerosis, diabetes, and dyslipidemia [104, 105]. As superoxide 

concentrations increase, excess molecules react with nitric oxide to form the cytotoxic chemical 

peroxyntirite and effectively decrease the bioavailability of nitric oxide [106]. Consequently, a 

reliable method for quantifying superoxide levels is highly desirable. However, presently there is 

no method that will describe superoxide production without the problem of interference. Data 

presented in this study demonstrate that a full understanding of the competition between SOD, 

nitric oxide, and superoxide interactions are critical when using DHE fluorescence methods for 

in vivo measurements.  
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2.5 Conclusions 

An accurate method for superoxide measurement would be highly beneficial to the potential 

diagnosis and treatment of a number of different health problems. The current study describes 

some of the necessary considerations for experimental measurement and analysis of superoxide 

concentrations in the presence of SOD and nitric oxide. DHE measurement of superoxide in 

conjunction with the relative amount of nitric oxide, SOD and peroxynitrite present may provide 

a more accurate description of oxidative stress. A detailed kinetic analysis resulted in a DHE and 

superoxide reaction rate constant of ~1.1 × 10
3
 M

-1
s

-1
 that is ~260× lower than the previously 

reported value of 2.6 × 10
5
 M

-1
s

-1
. The lower reaction rate constant can explain a lack of DHE 

fluorescence in the presence of SOD. 
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Figure Legends 

 

Figure 1. Experimental reaction profile for DHE fluorescence detection of superoxide for 

120 minutes. (a) Results shown are for fluorescence detection of the DHE (5µM) and 

superoxide reaction product 2-OH ethidium using a microplate reader set at excitation 

390/20 nm and emission 585/20. A cell-free XO/hypoxanthine system was used to 

generate superoxide and readings were taken every 2 minutes for 120 minutes. 

Detection of superoxide using DHE increases linearly until saturation of the dye 

occurs at approximately the 100 minute reading. (b) Data shows the fluorescence 

monitoring of the unreacted portion of DHE, excitation 360/40 and emission 460/40, 

remaining in solution at each time point. The amount of unreacted DHE in the system 

decreases linearly until being quenched at approximately 100 minutes. 

Figure 2. Unreacted DHE concentration profiles using kinetic analysis. a). The DHE 

concentration profiles are shown for 5 and 10 M initial DHE concentrations for 120 

min for a reaction rate of (kDHE) 1.01 × 10
3
 M

-1
s

-1
. We performed kinetic analysis by 

reducing the reaction rate of DHE with superoxide to better fit the experimental 

observation of DHE fluorescence in Figure 6. We obtained the time (=68 min) at 

which the RFU value was 63.2% of the maximum fluorescence value (1722 RFU) for 

5 M DHE concentration experiments in Figure 6 (which corresponds to one time 

constant response for a first order system). The reaction rate for which 1.84 M 

unreacted DHE (63.2 % of DHE consumed) was at 68 min was 1.01 × 10
3
 M

-1
s

-1
. The 

superoxide concentrations reached steady-state concentration of 250 nM not shown. 

b). The DHE concentration profiles for a higher reaction rate of (kDHE) 2.0 × 10
3
 M

-1
s

-
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1 
is shown for 5 and 10 M initial DHE concentrations for 120 min. Note that, the 

DHE concentration fall more sharply and reach a plateau at an earlier time points.  

Figure 3. Superoxide and DHE concentration profiles using kinetic Analysis. The reaction 

rate constant of DHE and superoxide reaction used was 2.6 × 10
5
 M

-1
s

-1
. The 

superoxide concentration reached a steady-state concentration of 250 nM. The 

unreacted DHE concentration in the solution reduced to less than 1 nM within first 10 

min. This indicates that DHE fluorescence cannot increase linearly over 30 min in 

experimental measurement as seen in Figure 1.  

Figure 4. Fluorescence of DHE for the reaction of hypoxanthine with XO in the presence 

of SOD. (a). The results shown are for SOD concentrations of 1, 10, and 100 U/mL 

with a total run time of 30 minutes (n = 3). DHE fluorescence of superoxide was 

measured using a microplate reader and cell-free XO/hypoxanthine system. RFU 

values were inversely proportional to SOD concentrations. (b). The data represents 

the average change in DHE fluorescence per minute for the reaction of hypoxanthine 

with XO in the presence of catalase and SOD. Values were calculated by taking the 

slope of the linear-fit curve for each fluorescence readings.  

Figure 5. Fluorescence of DHE for the reaction of hypoxanthine with XO in the presence 

of nitric oxide. (a). The data shows DHE fluorescence for superoxide detection in the 

presence of SPERMINE NONOATE (n = 3). Fluorescence was measured using a 

microplate reader and best-fit lines were calculated based on linear-regression. (b). 

The results shown represent the change in RFU per minute for each measured nitric 

oxide concentration. Values were calculated by plotting the slopes for each of the 

nitric oxide concentrations.  
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Figure 6. Measurement of DHE fluorescence at 5 and 10 M initial DHE concentrations 

for 120 min. The increase in RFU plateaus around 100 min for the 5 M initial DHE 

concentration but remains increasing for 10 M DHE.  
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Figure 1b 
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Figure 2a 
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Figure 2b 
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Figure 3 
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Figure 4a 
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Figure 4b 
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Figure 5a 
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Figure 5b 
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Figure 6 
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CHAPTER 3 

Mechanistic Study of Nitrosative and Oxidative Stress in High Glucose Exposed HUVEC’s 
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Abstract (250 words) 

Pathogenesis of diabetes-related vascular complications involves progression of oxidative and 

nitrosative stress, leading to endothelial dysfunction and cell death. A major characteristic of 

hyperglycemia is increased reactive oxygen species. Superoxide interacts readily with nitric 

oxide to form the cytotoxic oxidant peroxynitrite. This leads to formation of nitrated proteins, 

reduction of BH4/BH2 ratios and nitric oxide levels, and activation of apoptotic caspase 

pathways. In this study, we examine the effect of high glucose on endothelial superoxide, and 

nitric oxide levels, nitrotyrosine and apoptosis. HUVECs were exposed to 1, 24 and 48 hour 

control (5 mM) and high glucose (25 mM) conditions in the presence of L-NAME (100 μM), 

apocynin (300 μM), or SOD (100 units/ml). Fluorescence dyes dihydroethidium and DAF-FM 

DA were used to detect superoxide and nitric oxide, respectively. Nitrotyrosine formation was 

measured using competitive ELISA and immunocytofluorescence. Apoptosis was measured 

using Hoechst 33342 fluorescence. Results showed that 48 hour high glucose exposure 

upregulates NADPH oxidase activation, leading to 87% increase in intracellular superoxide 

levels and 32% decrease in nitric oxide bioavailability. Additionally, results show that nitric 

oxide production is increased 28% in high glucose exposed endothelial cells. HUVEC’s exposed 

to high glucose for 24 hours show 62% increase in nitrotyrosine levels compared to that of 

normal glucose cells. Finally, our results suggest that increased production of peroxynitrite and 

decreased nitric oxide levels induces significant apoptosis via caspase denitroslyation. Inhibition 

of NADPH oxidase activity lead to restoration of nitric oxide bioavailability and reduction of 

hyperglycemia induced apoptosis. The results indicate that treatment strategies towards reducing 

NADPH oxidase activity and increasing nitric oxide levels will help reverse the damaging effects 

of high glucose on endothelial cells. 
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3.1 Introduction 

Current literature supports that nitrosative and oxidative stress are strongly involved in 

endothelial dysfunction and the pathogenesis of diabetes [42, 107, 108]. This stress condition is 

characterized by the imbalance between free radical production and available antioxidants in 

vasculature tissue. It is widely accepted that the pathologic pathway is facilitated by a loss in 

nitric oxide bioavailability, mediated by increased superoxide production [109, 110]. A hallmark 

of diabetic vascular disease is reduction or loss of nitric oxide activity, leading to poor vessel 

tone and inflammation [111]. Furthermore, nitrosative stress leads to increased 

nitration/nitrosylation events, resulting in cell damage and activation of apoptosis signaling 

cascades [14]. A number of enzymatic sources of superoxide exist within endothelial cells such 

as NADPH oxidase, mitochondrial electron transport chain, xanthine oxidase, cyclooxygenase 

and uncoupled endothelial nitric oxide synthase (eNOS) [112]. However, the significance, 

involvement and contribution of these enzymes in nitrosative and oxidative stress are still not 

completely understood. 

In the vasculature, eNOS production of nitric oxide is an important regulator of physiological 

vessel tone and inflammation [113]. During normal conditions, nitric oxide production occurs at 

low, basal levels as a pro-life molecule and to facilitate important signaling events. Stress 

induces an increase in reactive oxygen and nitrogen species, leading to decreased nitric oxide 

bioavailability and increased cell damage/death [114, 115]. Decreased eNOS-derived nitric oxide 

bioavailability and endothelial dysfunction are hallmarks for a number of vascular pathologies 

such as diabetes, atherosclerosis and hypertension [116, 117]. While the mechanistic basis for 

reduced nitric oxide bioavailability is uncertain, both slowed
 

nitric oxide synthesis and 

accelerated nitric oxide scavenging by reactive oxygen
 
species (ROS), such as superoxide, have 
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been implicated as pathogenic [118]. In contrast,
 
levels of eNOS protein are typically unchanged 

or paradoxically
 
increased. Additionally, our lab has previously predicted that nitric oxide 

production concomitantly increases along with superoxide in response to high glucose exposure 

[12]. 

Oxidative stress, due to excessive superoxide generation,
 
is thought to underlie and trigger the 

development of endothelial dysfunction in chronic vascular conditions as seen in diabetes [62]. 

According to Paravinci, NADPH oxidase is a multi-subunit enzyme that catalyzes O2
−
 

production by the 1-electron reduction of O2 using NADPH or NADH as the electron donor: 2O2 

+ NADPH → 2·O2
−
 + NADP

+
 + H

+
. NADPH oxidase was originally found in neutrophils and 

the basic enzyme structure has five subunits: p47phox, p67phox, p40phox, p22phox, and the 

catalytic subunit gp91phox (also termed “Nox2”) [38, 119]. Inactive NOX enzymes exist as 

unincorporated protein structures with the subunits, p47phox, p67phox, and p40phox in the 

cytosol. Only p22phox and gp91phox are found in the membrane, as a heterodimeric protein 

referred to as cytochrome b558. When the cell is exposed to sufficient stimuli, phosphorylation 

of p47phox acts as the activator and the remaining cytosolic subunits form a complex that 

translocates to the membrane. Translocation to the membrane results in the association of the 

cytosolic subunits with the existing cytochrome b558 unit to assemble the active oxidase, which 

transfers electrons from the substrate to O2, forming ·O2
−
 [120]. Additionally, activation of the 

NOX enzyme requires the presence and activity of co-factors such as Rac (1 or 2) and Rap 1A 

[121, 122]. Among the different enzymatic sources of ROS reported to be activated by 

hyperglycemia, NADPH oxidase appears to play a major role. Higher vascular NADPH oxidase 

activity has been detected in diabetic patients and, more importantly, endothelial NADPH 

oxidase activity is markedly increased by high glucose levels [123]. Therefore, focusing on 
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mechanisms leading to NADPH oxidase activation may reveal further molecular details involved 

in diabetes-induced vascular injury. 

Uncoupled eNOS represents another potentially important enzymatic generator of superoxide in 

hyperglycemic conditions. A deficiency of 5,6,7,8-tetrahydrobiopterin (BH4) results in eNOS 

uncoupling, which is associated with increased superoxide and decreased NO
•
 production. BH4 is 

an essential cofactor of eNOS and its oxidation in the setting
 
of diabetes and other chronic 

vasoinflammatory conditions can
 
cause reduced cofactor availability and uncoupling of eNOS 

[17, 124]. Hyperglycemia-induced superoxide production may lead to increased interactions with 

NO and elevated peroxynitrite (ONOO-) levels. BH4 has been suggested as a target for oxidation 

by ONOO
–
, a product of the superoxide and nitric oxide reaction. The immediate product of the 

reaction between ONOO- and BH4 is the trihydrobiopterin radical (BH3) which is further 

oxidized to 7,8-dihydrobiopterin (BH2). Studies have shown that the ratio of BH4 and BH2 is an 

important indicator of the level of eNOS uncoupling [17]. 

Identification of the complete major enzymatic biochemical pathways associated with 

hyperglycemia induced oxidative stress may potentially lead to novel diabetic drug treatment 

therapies. Furthermore, clarification of the early stages of enzymatic pathway activation due to 

high glucose stimulation in endothelial cells would be of importance in understanding diabetic 

vascular pathology. The aim of this study is to quantify the contribution levels of NADPH 

oxidase and eNOS towards excess intracellular superoxide presence and decreased nitric oxide 

bioavailability. Additionally, we quantify the downstream cellular effects of superoxide-nitric 

oxide interactions through the measurement of nitrotyrosine, an indirect marker of peroxynitrite. 

Lastly, we investigate the impact of high glucose exposure on endothelial cell death. Overall, our 

focus is on the level of enzymatic involvement in the initiation of these nitrosative and oxidative 
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stress pathways in hyperglycemia. We specifically show that short-term hyperglycemia causes 

increased intracellular superoxide and decreased nitric oxide presence in HUVEC’s. NADPH 

oxidase appears to contribute the greatest portion of superoxide generation. Furthermore, nitric 

oxide bioavailability is greatly reduced in hyperglycemic cells, apparently from increased 

superoxide interaction and uncoupled eNOS. 

 

3.2 Materials and Methods 

 

3.2.1 Materials 

Pooled HUVEC’s, trypsin-EDTA, trypsin neutralizing solution (TNS), HEPES, phenol red-free 

EBM and EGM-2 bullet kits were obtained from Lonza (Walkersville, PA). Glucose, SOD, 

apocynin, and L-NAME were purchased from Sigma-Aldrich (St. Louis, MO). Hoechst 33342, 

DHE, DAF-FM diacetate, Alexa-594 goat anti-rabbit secondary antibody and DAPI nuclear 

staining probe were acquired from Invitrogen Molecular Probes (Carlsbad, California). 

Nitrotyrosine ELISA kit and nitrotyrosine monoclonal rabbit primary antibody were obtained 

from Millipore (Billerica, MA).  

 

3.2.2 Human Umbilical Vein Endothelial Cell Culture and Treatment Incubation 

Pooled primary cell line HUVEC’s were cultured in BD falcon 75 cm
2
 flasks containing EGM-2 

supplemented with 2% heat irradiated fetal bovine serum. The culture flasks were incubated at 

37°C in 5% CO2. Primary
 
cultures were fluid changed 24 hours after seeding and were 

subcultured upon reaching 80-90% confluence by the use of 0.25% trypsin-EDTA, inactivated 

by TNS. Only passages 2-4 were used in the
 
study to avoid passage-dependent cellular 
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modifications. Upon confluency HUVEC’s
 
were passaged and seeded at equal density (1 x 10

4
 

per well) onto BD Falcon 96 well microplates and allowed to attach overnight in fresh growth 

media. Once confluent, fresh basal media was then added and treated HUVEC’s were incubated 

with 25mM high glucose for 1, 24 or 48 hours. After glucose treatment cells were then incubated 

for 1 hour with each respective enzymatic inhibitor or superoxide scavenger; L-NAME (100 

μM), apocynin (300 μM), or SOD (100 units/ml). Treated basal media was then removed from 

the well and replaced with phenol-red free basal media to avoid possible fluorescence 

measurement interference. Cells were then incubated with either 5 µM DHE or 5 µM DAF-FM 

diacetate for 20 minutes for the measurement of superoxide and NO respectively. Basal media 

containing either DHE or DAF-FM diacetate was then aspirated from the well and the cells were 

washed three times with phenol-red free EBM to remove any extracellular fluorescence 

presence. Fresh phenol-red free media and all respective chemical treatments were added back 

into each well before fluorescence detection. Osmotic control was assured by incubating 

HUVEC’s with 25mM mannitol for 1, 24 or 48 hours. 

 

3.2.3 Fluorescence Measurement of Superoxide and NO Presence 

Fluorescence of DHE and DAF-FM diacetate was monitored with a Synergy 2 Multi-Detection 

Microplate Reader using Gen5 Microplate Data Collection & Analysis software (BioTek 

Instruments Inc., VT, USA). The fluorescence software was programmed to collect readings 

every two minutes for 30 minutes. For DHE detection of intracellular superoxide the excitation 

was set to 485/20 nm and emission to 590/35 nm according to Fernandes et al. [93]. DAF-FM 

diacetate detection of intracellular nitric oxide was measured at excitation 485/20 and emission 

545/40 [125]. The plate was read from the bottom and sensitivity of the photomultiplier tube was 
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set to 70. For each assay, final concentrations for each of the treatments were as follows: 5.5 mM 

and 25 mM glucose, 100 µM L-name, 300 µM apocynin, 100 µM L-name + 300 µM apocynin, 

100 U/mL SOD. 

 

3.2.4 Fluorescence Microscopy of Superoxide and NO in HUVEC’s 

Fluorescence microscopy was performed using an Olympus IX81 motorized inverted 

microscope, Hamamatsu ORCA high resolution digital camera and IPLab 4.0 image analysis 

software. HUVEC’s were seeded at equal density onto BD Falcon 12 well plates. Treatment 

times and concentrations were identical to the above fluorometric protocols for both DHE and 

DAF-FM diacetate. After chemical treatments, images were immediately acquired using the 

fluorescence microscope detection software and appropriate filters for DHE and DAF-FM 

diacetate. 

 

3.2.5 Nitrotyrosine Immunocytofluorescence 

Following respective normal glucose and 24 hour glucose treatment, cells were washed briefly 

with cold PBS and fixed for 15 min with 4% formalin. The fixative was removed by washing 

with PBS and cells were permeabilized with 0.1% Triton X-100/0.1% sodium citrate for 2 min 

on ice. Cells were washed with PBS and blocked with 3% BSA in PBS for 1 h, followed by 

overnight incubation at 4°C with primary rabbit nitrotyrosine antibody diluted (1:200) in 

antibody diluent (1.5% BSA and 0.5% skim milk in PBS). The following day cells were washed 

with PBS-T and incubated with the secondary antibody, Alexa-594 goat anti-rabbit IgG, for 30 

minutes at room temperature in the dark. Cells were rinsed with PBS-T and nuclear 

counterstaining was initiated using DAPI for 10 minutes at room temperature and were washed 
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with PBS. Nitrotyrosine staining was evaluated with an Olympus IX81 motorized inverted 

microscope, Hamamatsu ORCA high resolution digital camera and IPLab 4.0 image analysis 

software. 

 

3.2.6 Nitrotyrosine ELISA 

We used a competitive ELISA to measure intracellular nitrotyrosine concentrations. HUVEC’s 

were grown to confluence in 6 well plates and treated with either normal or high glucose 1, 24 or 

48 hours. Additionally, cells were treated with either 300 μM L-NAME, 100 μM apopcynin or 

100 U/mL SOD to evaluate contribution of each respective enzymatic pathway responsible for 

the increased peroxynitrite formation. HUVEC’s were lysed using a standard RIPA buffer 

protocol and protein content was standardized via Bradford assay. Equal amounts of protein were 

then aliquoted for use in the ELISA. High binding plates were first coated with antigen, nitrated 

BSA, and blocked. Next, the competitive ELISA was performed using a nitrotyrosine antibody 

and a HUVEC lysate sample. HRP-conjugated goat anti-rabbit IgG and LumiGLO® were used 

for chemiluminescence detection of nitrotyrosine.  

First, 100 μL of 5 μg/mL nitrated BSA in 50mM carbonate buffer was added to each well. Next, 

the plate was incubated for 2 hours at 37°C to ensure adequate binding. The wells were then 

emptied by inverting the plate over a sink. The plate was then washed two times with 1X TBS-T, 

then soaked for 2-3 minutes in 1X TBS. Next, we blotted the plate on absorbent paper to remove 

excess liquid. To eliminate unspecific binding of the antibody, 150 μL per well of 1X blocking 

buffer was added to each well and the plate was incubated at 37°C for 1 hour. Lastly, the 

microplate wells were emptied by inverting the plate over a sink and the plate was blotted on 

absorbent paper to remove excess liquid.  
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Next, 50 μL of HUVEC sample was added to the appropriate wells. Then 50 μL of 2X rabbit 

anti-nitrotyrosine primary antibody was added to each well. The plates were incubated at 37°C 

for 60 minutes. Next, the wells were emptied by inverting the plate over a sink. We then washed 

the plate once with TBS-T and three times with 1X TBS to remove all bound antibody-

nitrotyrosine complexes. The wells were then emptied by inverting the plate over a sink and the 

plate was blotted on absorbent paper to remove excess liquid. Now, 100 μL of the secondary 1X 

goat anti-rabbit IgG, HRP-conjugated antibody was added to each well. The plate was incubated 

at 37°C for 60 minutes to bind the labeled secondary antibody to any remaining primary 

antibody on the well surface. The plate was then washed two times with 1X TBS-T and twice 

with TBS to remove any unbound secondary antibody. The wells were then emptied by inverting 

the plate over a sink and the plate was blotted on absorbent paper to remove excess liquid. 

Finally, 75 μL of freshly prepared LumiGLO® chemiluminescent substrate was added to each 

well and the plate was incubated at room temperature for 10 minutes to complete the reaction. 

Measurement of nitrotyrosine was performed through the detection of luminescence as relative 

light units (RLU) using a BioTek Synergy 2 Multi-Detection Microplate Reader. A standard 

curve using known concentrations of nitrated BSA was generated to provide concentration 

analysis of each respectively treated HUVEC sample. To generate a standard curve (0-1200 

μg/mL nitrated BSA) we used the following procedure recommended by the manufacturer, 

Millipore (Figure 7c). Briefly, we prepared the 2400 μg/mL nitrated BSA standard in 1X 

blocking buffer as described previously. Next, we prepared 3-fold serial dilutions of the 2400 

μg/mL nitrated BSA standard in microfuge tubes (transfer 55 μL of the 2400 μg/mL nitrated 

BSA standard to 110 μL of 1X blocking buffer, mixing thoroughly before the next transfer. 

Repeat this process to make successive 3-fold dilutions). Lastly, we used 110 μL of 1X blocking 



71 

 

buffer in the last tube for the background. Each assay point used 50 μL as described in the 

previous Elisa protocol and was performed in duplicate. The concentrations of nitrated proteins 

that inhibit anti-nitrotyrosine antibody binding were estimated from the standard curve and are 

expressed as nitro-BSA equivalents, i.e. an equivalent concentration of 3-nitrotyrosine in nitro-

BSA that produces the equivalent inhibition as the nitrated proteins. 

 

3.2.7 24 and 48 hour Hyperglycemia Induced Apoptosis in HUVEC’s 

Apoptosis was detected through nuclear fluorescence staining using Hoechst 33342 with an 

excitation/emission maxima of 350/460 nm. HUVEC’s were seeded at equal density onto BD 

Falcon 12 well plates and once confluent incubated with normal or high (25 mM) glucose for 24 

or 48 hours. Following glucose treatment, endothelial cells were incubated in EBM phenol red-

free basal media with 10 µM Hoechst 33342 for 10 minutes. HUVEC’s were then washed with 

fresh basal media and images were acquired immediately using the appropriate filters and 

methods described in the previous section. Hoechst 33342 binds more readily to condensed 

chromatin in the nucleus of apoptotic cells. Therefore, a stronger fluorescence signal indicates 

larger presence of condensed chromatin and apoptosis [126]. 

 

3.2.8 Statistical analysis 

Statistical analysis was performed using JMP Statistical Discovery Software Version 8.0 (SAS 

Institute, USA). All data are expressed as the mean ± standard deviation. Statistical differences 

were assessed using the two-way analysis of variance (ANOVA) test. Differences were 

considered statistically significant at a value of p < 0.05. 
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3.3 Results 

 

3.3.1 Superoxide and NO Presence in HUVEC’s after 1 hour High Glucose Treatment 

We first tested whether there was an immediate effect of a high glucose environment on 

intracellular superoxide and nitric oxide presence in HUVEC’s. Figure 1a shows the RFU change 

in DHE fluorescence for HUVEC’s treated with high glucose for 1 hour during the course of the 

fluorometric measurement for 30 minutes after washing. Cells treated with normal and high 

glucose showed no difference in DHE fluorescence. High glucose cells treated with L-name 

showed a 190% increase in fluorescence, while those treated with SOD or apocynin showed a 

decrease of 56% and 44%, respectively. Cells incubated with the combined L-name/apocynin 

treatment showed an increase of 160% in DHE fluorescence. Figure 1b illustrates the level of 

DHE fluorescence intensity for each hyperglycemic treatment through fluorescence microscopy. 

Figure 2a shows the RFU change over time for DAF-FM DA detection of nitric oxide in the 

same environment. Again, there was no difference in DAF-FM DA fluorescence among normal 

and high glucose treatments. High glucose cells treated with apocynin and SOD showed an 

increase in DAF-FM fluorescence of 142% and 127%, respectively. Treatment with L-NAME 

resulted in a decrease of 20% for DAF-DA detection of nitric oxide. Combined treatment of L-

NAME and apocynin gave a fluorescence reduction of 12%. Figure 2b shows the qualitative 

levels of DAF-FM fluorescence intensity for each hyperglycemic treatment through fluorescence 

microscopy. 

 

3.3.2 Superoxide and NO Presence in HUVEC’s after 24 hour Hyperglycemic Treatment 
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Next we characterized the effect of short term high glucose exposure on the different enzymatic 

pathways that are thought to contribute to intracellular superoxide and nitric oxide presence in 

HUVEC’s. Figure 3a illustrates the change in DHE fluorescence for HUVEC’s incubated in 

hyperglycemic conditions for 24 hours. The graph shows that hyperglycemic cells showed an 

increase of 165% in DHE fluorescence compared to that of normal glucose cells. Additionally, 

hyperglycemic cells treated with L-name showed a 200% increase in fluorescence over that of 

normal glucose cells. HUVEC’s incubated in high glucose and treated with apocynin or SOD 

showed a 31% and 47% decrease in DHE fluorescence, respectively. The combined treatment of 

L-name/apocynin on hyperglycemic cells showed a return in fluorescence values near that of 

normal glucose cells. Figure 3b illustrates the level of DHE fluorescence intensity for each 

hyperglycemic treatment through fluorescence microscopy. Figure 4a shows the change in DAF-

DAF-FM fluorescence over time for HUVEC’s incubated in high glucose for 24 hours. 

Hyperglycemic cells resulted in a decrease of 27% in DAF-FM fluorescence compared to that of 

normal glucose HUVEC’s. High glucose cells treated with apocynin and SOD showed an 

increase in fluorescence of 116% and 112%, respectively. Cells treated with high glucose and L-

NAME resulted in a 42% reduction in DAF-DA fluorescence. Hyperglycemic cells incubated 

with a combined treatment of L-NAME and apocynin showed a decrease of 12% in fluorescence. 

Figure 4b shows the qualitative levels of DAF-FM DA fluorescence intensity for each 

hyperglycemic treatment through fluorescence microscopy. 

 

3.3.3 Superoxide and NO Presence in HUVEC’s after 48 hour Hyperglycemic Treatment 

The next sets of experiments were performed to determine whether a more chronic exposure to 

hyperglycemia enhanced or altered the effects of enzymatic contribution to intracellular 
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superoxide and nitric oxide presence. Figure 5a illustrates the change in DHE fluorescence over 

time for HUVEC’s incubated in high glucose for 48 hours. Cells treated with high glucose 

showed an increase of 187% in DHE fluorescence as compared to that of normal glucose cells. 

Cells treated with high glucose and L-NAME resulted in 209% increase in DHE fluorescence. 

Hyperglycemic cells incubated in apocynin and SOD showed a fluorescence decrease of 8% and 

23% compared to that of normal cells, respectively. Combined treatment of L-NAME and 

apocynin in hyperglycemic cells gave an increase of 123% in DHE fluorescence measurement. 

Figure 6a shows the change in DAF-FM fluorescence for HUVEC’s incubated in hyperglycemic 

conditions for 48 hours. Cells incubated in high glucose showed a decrease DAF-FM 

fluorescence of 32% compared to that of normal glucose HUVEC’s. Treatment with high 

glucose and L-NAME resulted in a fluorescence decrease of 48%. Hyperglycemic cells 

incubated with a combined treatment of L-NAME and apocynin gave a 19% reduction in 

fluorescence. Hyperglycemic cells treated with apocynin and SOD showed a return of DAF-FM 

fluorescence back to normal glucose levels. 

 

3.3.4 Nitric Oxide and Superoxide Production in HUVEC’s Exposes to High Glucose 

As indicated in the fluorometric data, increases in RFU for both DHE and DAF-FM were linear. 

Therefore, we calculated the slopes (rate of change over time in RFU) for each of the superoxide 

and nitric oxide measurements as a quantitative measurement for rate of production. Table 1 

shows the rate of superoxide production for 1, 24 and 48 normal and high glucose exposure. 

Normal glucose showed no significant change in rate of superoxide production over any time 

period. Additionally, for 1 hr exposure there was no difference between that of normal and high 

glucose. However, 24 and 48 hr high glucose treatments showed a progressively higher 
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significant increase over time compared to that of normal glucose for the same treatment time. 

Treatment of 24 and 48 hr high glucose exposed endothelial cells with L-NAME resulted in an 

even greater significant increase in superoxide production rate than that of normal glucose 

HUVEC’s. When apocynin and SOD were added to HUVECs treated with high glucose for 24 

and 48 hr the increase in superoxide production over time was abolished and restored to 

production levels lower than that of normal glucose treated cells. Rates of nitric oxide production 

for 1, 24 and 48 normal and high glucose exposure are shown in Table 2. Normal glucose 

showed no significant change in rate of nitric oxide production over any time period. 

Additionally, for 1 hr normal and high glucose exposure there was no difference between nitric 

oxide production rates. However, 24 and 48 hr high glucose treatments showed a significant 

decrease over time compared to that of normal glucose for the same treatment time. Nitric oxide 

production was further decreased by treatment of 24 and 48 hr high glucose exposed cells with 

L-NAME. Interestingly, when we removed the competition of superoxide by treating the 24 and 

48 hr high glucose treated cells with apocynin and SOD, we observed a significant increase in 

nitric oxide production over time compared to that of normal glucose HUVEC’s.  

 

3.3.5 Nitrotyrosine Levels in Normal and Hyperglycemic HUVEC’s 

The downstream effect of increased superoxide-nitric oxide interactions, via peroxynitrite was 

quantified. Nitrotyrosine is well known to be an indirect marker for peroxynitrite inside cells and 

tissue [73]. First we visualized the increase in nitrotyrosine presence between normal and 24 hr 

high glucose exposed HUVEC’s using immunocytofluorescence microscopy. Figure 7a 

illustrates that exposure to high glucose for 24 hr is sufficient to increase peroxynitrite formation 

in endothelial cells. Endothelial cells exposed to high glucose for 24 hours show substantially 
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more immunofluorescence when compared visually with that of normal glucose cells. We then 

quantified the concentration of intracellular nitrotryosine using an established competitive 

ELISA. Figure 7b shows the concentration of nitrotyrosine for HUVEC’s treated with high 

glucose for 1, 24 and 48 hr. There was very little difference in nitrotyrosine concentrations 

among all the different treatment groups for 1 hr high glucose exposure. There was no statistical 

difference in nitrotyrosine concentrations between normal glucose and 1 hr high glucose treated 

HUVEC’s. Endothelial cells exposed to 24 and 48 hr high glucose showed a significant increase 

in intracellular nitrotyrosine concentration compared to that of normal glucose cells. L-NAME 

treatment of 24 and 48 hr high glucose exposed HUVEC’s also showed a significant increase in 

nitrotyrosine concentration compared to that of normal glucose cells. Treatment of 24 and 48 hr 

high glucose exposed HUVEC’s with apocynin and SOD was shown to restore nitrotyrosine 

concentrations near to those of normal glucose cells. 

 

3.3.6 Analysis of Apoptosis in HUVEC’s after 24 and 48 hour hyperglycemic treatment 

Lastly, we were interested in the prevalence of apoptosis as a result of hyperglycemia exposure 

in endothelial cells. For this purpose, we treated HUVEC’s with 25 mM high glucose for 24 and 

48 hours and compared Hoechst 33342 nuclear fluorescence staining to that of normal glucose 

treated cells. Figure 8 qualitatively shows the presence of condensed nuclear chromatin for 

normal, 24 and 48 hour high glucose HUVEC’s. Endothelial cells in normal glucose media show 

little to no apoptosis as evidenced by the lack of significant Hoechst 33342 fluorescence. 

HUVEC’s exposed to both 24 and 48 hour high glucose show progressively increased nuclear 

fluorescence, indicating a high concentration of condensed chromatin and apoptosis, with 48 
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hour exposure being the most significant. Interestingly, as seen in Figure 8, most of the apoptosis 

occurs in clusters within the endothelial cell monolayer.  

 

3.4 Discussion 

Type-2 diabetes is characterized by chronically elevated glucose levels in the vasculature as a 

result of insulin resistance and decreased insulin secretion [127]. Endothelial cells are unable to 

regulate glucose intake due to the intrinsic properties of the GLUT4 receptor. Consequently, 

chronic high glucose exposure leads to a buildup of glucose inside the endothelial cell [128]. 

This condition increases mitochondrial function and superoxide leakage, activates stress 

pathways (NF- B, p38 MAPK, JNK/SAPK, PKC, AGE/RAGE, sorbitol) and increases reactive 

oxygen species production [1]. Oxidative and nitrosative stress pathways induce an imbalance of 

vascular reactive species homeostasis and can be a contributor or consequence of endothelial 

dysfunction. Numerous enzymatic pathways contribute to oxidative and nitrosative stress. 

Enzymes such as NADPH oxidase, uncoupled eNOS and the mitochondrial electron transport 

chain are all implicated in the production of superoxide [42].  

Our study focuses on quantifying the contribution levels of NADPH oxidase and eNOS towards 

hyperglycemia induced superoxide generation, nitrosative stress and depletion of nitric oxide 

bioavailability in HUVEC’s. We show that 24 and 48 hr hyperglycemia exposure is sufficient to 

increase nitric oxide production in HUVEC’s. We also show that upregulation of nitric oxide 

generation is accompanied by a comparatively greater increase in superoxide production. This 

excess intracellular superoxide presence leads to decreased nitric oxide bioavailability, increased 

formation of peroxynitrite and endothelial cell damage/death. 
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3.4.1 NOS Function and Nitrosative Stress in Hyperglycemic HUVEC’s 

Structure of nitric oxide synthase is described as a homodimer consisting of an oxygenase and 

reductase domain, binding-dependent upon the cofactor tetrahydrobiopterin [129]. Proper 

function of eNOS is dependent upon the dimer to monomer ratio of the enzyme. Pathology such 

as diabetes induces “uncoupling” of the enzyme, leading to higher levels of the monomer form of 

eNOS due to a lower ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin [17]. Due to the 

dysfunction of eNOS and increased levels of superoxide, NO bioavailability decreases and 

peroxynitrite levels increase.  

Studies have shown that augmentation of intracellular BH4 levels restores endothelial nitric oxide 

synthase function and nitric oxide bioavailability in the presence of high glucose [130]. 

Interestingly, our data shows that NO production increases, presumably in the attempt to provide 

antioxidant support against increased production of superoxide (see Tables 1 and 2). From our 

data and the current literature; it is not clear what enzymatic source(s) is responsible for the 

increased production of nitric oxide. Increase in gene and/or protein expression levels of eNOS 

may account for the increase. Activation or increase in gene and/or protein expression of iNOS 

may also be responsible for this source of increased nitric oxide production and, consequently, 

nitrosative stress. Ultimately, this antioxidant defense mechanism leads to increased 

peroxynitrite formation, caspase activation and apoptosis. Our results support that hyperglycemia 

alters the role of nitric oxide from that of a vasoprotective, signaling molecule to cytotoxic and 

apoptotic. 

 

3.4.2 Hyperglycemia Induced NADPH oxidase Activity and Oxidative Stress 
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NADPH oxidase may act as both a pro- and anti- oxidative stress enzyme, depending upon the 

local cellular environment [42, 112, 119, 131]. In normal function, the enzyme induces 

antioxidant defenses via ROS-mediated activation of intracellular redox signaling pathways [36]. 

However, overproduction of ROS leads to eNOS uncoupling, mitochondrial dysfunction, and an 

impaired redox balance due to depletion of NADPH and impaired Nrf2/ARE-mediated gene 

expression [131]. Recent studies in the identification of vascular NADPH oxidase subunits and 

their subcellular localization/regulation have shown that increased NADPH oxidase expression 

and cytosolic subunit translocation to the membrane results in increased superoxide presence 

[38, 127, 132].  

Our results indicate that NADPH oxidase is the main source of superoxide in hyperglycemic 

HUVEC’s. We show that hyperglycemic endothelial cells treated with apocynin, an NADPH 

oxidase inhibitor, showed intracellular superoxide return to levels lower than that of normal 

glucose cells (see Figures 1a, 3a, 5a). These data are in agreement with a previous study which 

shows inhibition of Rac-1, an important NADPH oxidase cofactor, protected against 

hyperglycemic injury in a murine model [133]. Rac-1 assembly with membrane bound NADPH 

oxidase subunits is needed for the activation and production of superoxide by this enzyme. 

Together, these data suggests that activation of NADPH oxidase is the most significant 

contributor of hyperglycemic induced superoxide in endothelial cells. We also found that, 

although NADPH oxidase accounted for most of the excess superoxide presence, treatment of 

hyperglycemic HUVEC’s with SOD still showed intracellular superoxide presence which was 

significantly lower than that of apocynin treated cells. These results suggest that there is another 

source of hyperglycemic induced superoxide within the endothelial cell. Our findings support the 
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hypothesis of increased nitric oxide inactivation by O2
−
 as an important mechanism for 

hyperglycemic endothelial dysfunction. 

 

3.4.3 Level of Nitrotyrosine and Apoptosis in HUVEC’s Exposed to High Glucose 

Because peroxynitrite is a highly transient species with a biological half-life [10–20 ms [134]] 

much shorter than that of nitric oxide [1–30 s [135]], it cannot be directly measured. One of the 

molecular footprints left by the reactions of this reactive nitrogen species with intracellular 

biomolecules is the nitration of protein tyrosine residues to 3-nitrotyrosine [14, 136]. This well-

established posttranslational modification attracts considerable interest in biomedical research, 

because it can alter protein function, is associated with acute and chronic disease states, and can 

be a predictor of disease risk. The reactions between nitric oxide and superoxide do not 

necessarily result in oxidative damage and in some cases can even be cytoprotective. Low levels 

of peroxynitrite are able to be detoxified by enzymatic and non-enzymatic systems [137]. 

Results from this study verify a small intracellular presence of peroxynitrite through the 

detection of a low concentration of nitrotyrosine in normal glucose HUVEC’s. However, in 

response to high glucose exposure and subsequent increases in nitric oxide and superoxide 

production and interaction, we show that nitrotyrosine concentration is highly elevated in 24 and 

48 hr hyperglycemic HUVEC’s. These results corroborate ex vivo findings by previous work 

with perfused rat hearts exposed to short term high glucose [138]. Additionally, our findings 

show that this significant increase in nitrotyrosine formation is largely mediated by NADPH 

oxidase activity in response to high glucose exposure. We were able to virtually abolish the high 

glucose stimulated increase in nitrotyrosine concentration with treatment of apocynin (Figure 

7b). 
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Increased peroxynitrite and nitration events are thought to be major participants in endothelial 

cell apoptosis [73]. Mitochondrial proteins have been shown to be nitrated in vitro and in vivo, 

including MnSOD, aconitase, cytochrome c, voltage-dependent anion channel, ATPase, and 

succinyl-CoA oxoacid-CoA transferase [73, 139]. According to Radi, the nitration inactivation of 

MnSOD can lead to enhanced intramitochondrial peroxynitrite formation, which in turn triggers 

apoptotic signaling of cell death, in part by the thiol oxidation-dependent assembly of the 

permeability transition pore [73]. Our results using Hoechst 33342 fluorescence detection of 

condensed nuclear chromatin show that apoptotic events increase relative to time of high glucose 

exposure. Normal glucose HUVEC’s showed no evidence of condensed chromatin over any of 

the tested time periods, while 24 and 48 hour high glucose exposure produced increasingly 

higher Hoechst 33342 fluorescence (Figure 8).  

In conclusion, low basal production of nitric oxide promotes a pro-life intracellular environment 

through the nitrosylation, and consequent inactivation, of caspases 1 and 3 [140]. Enhanced 

endothelial cell nitric oxide and superoxide production in response to stress results in greater 

incidence of protein nitrosylation [141]. This pathway represents an additional and, perhaps, 

more prominent mode of nitrosative stress involvement in hyperglycemic endothelial cell 

apoptosis [142].  
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Figure Legends 

 

Figure 1. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

1 hour. (a) Data shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 1 hour. 

Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Results show the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 1 hour. 

Figure 2. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 1 hour.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 

glucose (25 mM) for 1 hour. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 1 hour. 

Figure 3. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

24 hours. (a) Data shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 24 

hours. Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Data shows the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 24 hours. 

Figure 4. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 24 hours.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 
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glucose (25 mM) for 24 hours. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 24 hours. 

Figure 5. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

48 hours. (a) Results shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 48 

hours. Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Data shows the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 48 hours. 

Figure 6. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 48 hours.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 

glucose (25 mM) for 48 hours. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 48 hours. 

Figure 7. Immunocytochemistry detection of nitrotyrosine in HUVEC’s exposed to normal 

and high glucose for 1, 24 and 48 hours. Nitrotyrosine Standard Curve (a) Data 

shown represent nitrotryosine presence in HUVEC’s exposed to normal glucose (5.5 

mM) or high glucose (25 mM) for 24 hours. Endothelial cells were formalin fixed and 

treated with primary nitrotyrosine antibodies. HUVEC’s were then treated with Alexa 

594-labeled secondary antibodies for immunocytofluorescence imaging. (b) Results 
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shown are for luminescence measurement of horseradish peroxidase-labeled 

secondary antibodies and LumiGLO® chemiluminescent substrate using a microplate 

reader in HUVEC’s exposed to normal glucose and 1, 24 and 48 hour high glucose.  

(c) A standard curve using known concentrations of nitrated BSA was generated to 

provide concentration analysis of each respectively treated HUVEC sample. To 

generate a standard curve (0-1200 μg/mL nitrated BSA) we used the procedure 

recommended by the manufacturer, Millipore. We prepared the 2400 μg/mL nitrated 

BSA standard in 1X blocking buffer. Next, we prepared 3-fold serial dilutions of the 

2400 μg/mL nitrated BSA standard in microfuge tubes (transfer 55 μL of the 2400 

μg/mL nitrated BSA standard to 110 μL of 1X blocking buffer, mixing thoroughly 

before the next transfer. Repeat this process to make successive 3-fold dilutions). 

Lastly, we used 110 μL of 1X blocking buffer in the last tube for the background. 

Each assay point used 50 μL as used in the sample protocol and was performed in 

duplicate. The concentrations of nitrated proteins that inhibit anti-nitrotyrosine 

antibody binding were estimated from the standard curve and are expressed as nitro-

BSA equivalents, i.e. an equivalent concentration of 3-nitrotyrosine in nitro-BSA that 

produces the equivalent inhibition as the nitrated proteins. 

Figure 8. Hoechst 33342 nuclear fluorescence staining to detect hyperglycemia induced 

apoptosis. The figure shown is for apoptosis analysis of HUVEC’s exposed to 

normal glucose (5.5 mM), 24 or 48 hour high glucose (25 mM) using Hoechst 33342 

fluorescence dye detection. Cells were formalin fixed and stained with Hoechst 

33342. Hoechst binds more readily to condensed chromatin found in apoptotic cells. 

Therefore, greater observed fluorescence shows increased presence of condensed 
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chromatin and apoptosis. Normal glucose HUVEC’s show weak widespread 

fluorescence, indicating generic Hoechst dye staining of healthy nuclei. HUVEC’s 

exposed to 24 and 48 hour high glucose show increasing levels of Hoechst 

fluorescence, indicating greater levels of apoptosis as high glucose exposure 

increases. 
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Figure 1a 
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Figure 1b 
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Figure 2a 
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Figure 2b 
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Figure 3a 
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Figure 3b 
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Figure 4a 
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Figure 4b 
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Figure 5a 
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Figure 5b 
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Figure 6a 
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Figure 6b 
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Figure 7a 
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Figure 7b 
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Figure 7c 
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Table 1: DHE RFU/min Slopes 

 

 

 

† - significantly different (P < 0.05) Normal Glucose (NG) 

†† - significantly different (P < 0.05) High Glucose (HG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time 

NG 

(RFU/min) 

HG 

(RFU/min) 

L-Name 

(RFU/min) 

L-

Name/Apo 

(RFU/min) 

SOD 

(RFU/min) 

Apo 

(RFU/min) 

1 hr Slope 14.3 ± 1.6 13.7 ± 1.1 

25.8 ±2.8 

††  14.3 ±0.73 5.4 ± 2.3 ††  8.7 ± 1.9 †† 

24 hr Slope 

15.1 ± 2.7 

††  24.4 ± 2.8 †  

29.1 ± 3.8 

††  

19.8 ± 0.82 

†, ††  

6.3 ± 0.48 

††  

10.0 ± 0.74 

††  

48 hr Slope 

14.7 ± 0.79 

††  27.3 ± 1.2 †  

36.3 ± 1.8 

†, ††  

24.6 ± 0.93 

†, ††  

9.2 ± 1.9 †, 

†† 

 9.8 ± 0.67 

†† 
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Table 2: DAF-FM RFU/min Slopes 

 

Time 

NG 

(RFU/min) 

HG 

(RFU/min) 

L-Name 

(RFU/min) 

L-

Name/Apo 

(RFU/min) 

SOD 

(RFU/min) 

Apo 

(RFU/min) 

1 hr Slope 

686.3 ± 

51.9 

650.5 ± 

47.3 

536.3 ± 

33.4 †† 

688.3 ± 

33.7 

770.6 ± 6.8 

††  

774.4 ± 

15.5 †† 

24 hr Slope 

680.3 ± 22 

†† 597 ± 21.2 

480.7 ± 2.3 

†, ††  

612.1 ± 

44.3 †, †† 

872.4 ± 7.9 

†, ††  

874.1 ± 13 

†, ††  

48 hr Slope 

709.8 ± 

19.2 †† 

492.4 ± 

22.5 † 

395.9 ± 

11.7 †, ††  

596.9 ± 

36.5 †† 

985.1 ± 

68.7 †, †† 

880.1 ± 2 

†† 

 

 

† - significantly different (P < 0.05) Normal Glucose (NG) 

†† - significantly different (P < 0.05) High Glucose (HG) 
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CHAPTER 4 

 

Angiotensin II Enhances Oxidative and Nitrosative Stress in Hyperglycemic Human 

Umbilical Vein Endothelial Cells 
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4.1 Introduction 

Renin-angiotensin system (RAS) activation is widely shown to be present in many 

cardiovascular disorders. Therapeutic regulation of RAS with angiotensin-converting enzyme 

(ACE) inhibitors is currently a well-established treatment regimen for a number of 

cardiovascular diseases, such as  hypertension and atherosclerosis. More recently, angiotensin 

type 1 receptor blockers (ARBs) have shown similar promise [143]. Current research is being 

focused on the role of the RAS in diabetes mellitus, a disorder characterized primarily by chronic 

inflammation and has emerged as a major risk factor for cardiovascular disease [144-146]. 

Despite advancements in glucose control, diabetic patients remain at a markedly increased risk of 

cardiovascular disease. The loss of endothelial function (the development of diabetic endothelial 

dysfunction) has been implicated both in the development of diabetic macrovascular diseases 

(e.g. increased incidence and severity of stroke, atherosclerosis, hypertension and myocardial 

infarction) and in the development of microvascular diseases (neuropathy, nephropathy and 

retinopathy) [147]. Production of reactive oxygen species (ROS) is increased in both type 1 and 

type 2 diabetes, contributing not only to the development of diabetes [148], but also significantly 

to diabetic acceleration of vascular diseases [149, 150]. One important mechanism for ROS-

induced vascular damage is oxidative reduction of nitric oxide levels. This leads to endothelial 

dysfunction that is characterized by a loss in nitric oxide-dependent vasodilatation [151, 152], 

which has been shown to be impaired in diabetes. The enzyme(s) responsible for production of 

ROS in diabetes have yet to be fully elucidated. Recent studies by our lab demonstrate that 

NADPH oxidase (NOX) serves as the predominant source of ROS in high glucose exposed 

endothelial cells. Uncoupled endothelial nitric oxide synthase (eNOS), however, may be another 

important source of ROS in the diabetic endothelium [153], likely downstream of NOX [154, 
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155]. The electron transport chain is also implicated as a potential major contributor of ROS in 

diabetes. Recent studies suggest that there might be additional cross-talk between the different 

enzymatic sources of ROS [156]. Nitric oxide synthases produce nitric oxide to scavenge 

superoxide acting as a potent antioxidant enzyme in the vasculature. Together with other anti-

inflammatory and antithrombotic properties of nitric oxide, this antioxidant role of NOS is 

essential for protection against endothelial dysfunction. Under pathological conditions, however, 

NOS can convert into a pro-oxidant enzyme, generating superoxide [157]. This “uncoupling” of 

NOS is thought to have multiple potential mechanisms associated with the oxidative stress 

pathways involved in the progression of diabetic endothelial dysfunction.  

The renin-angiotensin system also represents a major contributor to vascular endothelial 

dysfunction in macro- and microvascular diseases. Angiotensin II (Ang II) is a circulating 

vasoconstrictive hormone whose production is often elevated in patients with hypertension and 

hypercholesterolemia [158]. Production of Ang II is also increased in patients with diabetes, 

particularly those with hypertension and renal dysfunction [159, 160]. Angiotensin II activates 

endothelial cell NADPH oxidases via AT1 receptor stimulation [161]. The stimulating effects of 

angiotensin II on the activity of endothelial cell NADPH oxidases strongly suggests that an 

activated renin–angiotensin system could cause increased vascular superoxide production and 

enhance endothelial vascular dysfunction.  

A close association exists between signaling pathways and enzymatic nitrosative and oxidative 

stress activity among endothelial cells and their local environment. Clarification of the 

mechanisms by which these signaling molecules activate and enhance high-glucose induced 

endothelial dysfunction would greatly benefit drug design and treatment strategies. The aims of 

this study are to determine the level of enhancement of angiotensin II on hyperglycemic 
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endothelial cells and its influence on enzymatic gene expression involved in nitrosative and 

oxidative stress and endothelial cell damage. Furthermore, we were interested in the potential 

antagonistic effects of the commonly used angiotensin II receptor blocker (ARB), Losartan, and 

statin, Simvastatin on high-glucose exposed HUVEC’s. We hypothesize that Ang II may mediate 

common pathological mechanisms involved in the development of different vascular diseases 

and that high glucose could sensitize endothelial cells to Ang II. 

 

4.2 Materials and Methods 

 

4.2.1 Materials 

Pooled HUVEC’s, trypsin-EDTA, trypsin neutralizing solution (TNS), HEPES, phenol red-free 

EBM and EGM-2 bullet kits were obtained from Lonza (Walkersville, PA). Glucose, 

Angiotensin II, Losartan and Simvastatin were purchased from Sigma-Aldrich (St. Louis, MO). 

DHE and DAF-FM diacetate were acquired from Invitrogen Molecular Probes (Carlsbad, 

California). Nitrotyrosine ELISA kit was obtained from Millipore (Billerica, MA). RNA 

isolation kit was purchased from Qiagen (Germantown, MD). cDNA master mix, PCR mix, PCR 

96-well plates and all gene-specific Taqman Probes acquired from Applied Biosystems 

(Carlsbad, CA). Trizol was obtained from Invitrogen (Carlsbad, CA). 

 

4.2.2 Human Umbilical Vein Endothelial Cell Culture and Treatment Incubation 

Pooled primary cell line HUVEC’s were cultured in BD falcon 75 cm
2
 flasks containing EGM-2 

supplemented with 2% heat irradiated fetal bovine serum. The culture flasks were incubated at 

37°C in 5% CO2. Primary
 
cultures were fluid changed 24 hours after seeding and were 
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subcultured upon reaching 80-90% confluence by the use of 0.25% trypsin-EDTA, inactivated 

by TNS. Only passages 2-4 were used in the
 
study to avoid passage-dependent cellular 

modifications. Upon confluency HUVEC’s
 
were passaged and seeded at equal density (1 x 10

4
 

per well) onto BD Falcon 96 well microplates and allowed to attach overnight in fresh growth 

media. Once confluent, fresh basal media was then added and treated HUVEC’s were incubated 

with 25mM high glucose for 48 hours. During the final 18 hours of glucose treatment cells were 

then exposed to Angiotensin II. For the Ang II dose-dependent superoxide and nitric oxide 

curves we used concentrations ranging from 1 x 10
-9

 to 1 x 10
-3

 M. All other experiments in the 

study used the Ang II dosage of 1 x 10
-5

 M for treatment with endothelial cells. HUVEC’s 

treated with pharmaceutical agonists, Losartan (750 μM) and Simvastatin (100 μM), were 

exposed to the drugs during the last 18 hours of glucose and Ang II incubation [162]. Treated 

basal media was then removed from the well and replaced with phenol-red free basal media to 

avoid possible fluorescence measurement interference. Cells were then incubated with either 5 

µM DHE or 5 µM DAF-FM diacetate for 20 minutes for the measurement of superoxide and NO 

respectively. Basal media containing either DHE or DAF-FM diacetate was then aspirated from 

the well and the cells were washed three times with phenol-red free EGM to remove any 

extracellular fluorescence presence. Fresh phenol-red free media and all respective chemical 

treatments were added back into each well before fluorescence detection. Osmotic control was 

assured by incubating HUVEC’s with 25mM mannitol for 1, 24 or 48 hours. 

 

4.2.3 Fluorescence Measurement of Superoxide and NO Presence 

Fluorescence of DHE and DAF-FM diacetate was monitored with a Synergy 2 Multi-Detection 

Microplate Reader using Gen5 Microplate Data Collection & Analysis software (BioTek 
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Instruments Inc., VT, USA). The fluorescence software was programmed to collect readings 

every two minutes for 30 minutes. For DHE detection of intracellular superoxide the excitation 

was set to 485/20 nm and emission to 590/35 nm according to Fernandes et al. [93]. DAF-FM 

diacetate detection of intracellular nitric oxide was measured at excitation 485/20 and emission 

545/40 [125]. The plate was read from the bottom and sensitivity of the photomultiplier tube was 

set to 70. For each assay, final concentrations for each of the treatments were as follows: 5.5 mM 

and 25 mM glucose, Ang II from 1 x 10
-9

 to 1 x 10
-3

 M. 

 

4.2.4 Nitrotyrosine ELISA 

We used a competitive ELISA to measure intracellular nitrotyrosine concentrations. HUVEC’s 

were grown to confluence in 6 well plates and treated with either normal or 48 hour high 

glucose. Additionally, cells were treated with Ang II (1 x 10
-5

 M) and Losartan (750 μM) or 

Simvastatin (100 μM. HUVEC’s were lysed using a standard RIPA buffer protocol and protein 

content was standardized via Bradford assay. Equal amounts of protein (50µg) were then 

aliquoted for use in the ELISA. High binding plates were first coated with antigen, nitrated BSA, 

and blocked. Next, the competitive ELISA was performed using a nitrotyrosine antibody and a 

HUVEC lysate sample. HRP-conjugated goat anti-rabbit IgG and LumiGLO® were used for 

chemiluminescence detection of nitrotyrosine.  

First, 100 μL of 5 μg/mL nitrated BSA in 50mM carbonate buffer was added to each well. Next, 

the plate was incubated for 2 hours at 37°C to ensure adequate binding. The wells were then 

emptied by inverting the plate over a sink. The plate was then washed two times with 1X TBS-T, 

then soaked for 2-3 minutes in 1X TBS. Next, we blotted the plate on absorbent paper to remove 

excess liquid. To eliminate unspecific binding of the antibody, 150 μL per well of 1X blocking 
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buffer was added to each well and the plate was incubated at 37°C for 1 hour. Lastly, the 

microplate wells were emptied by inverting the plate over a sink and the plate was blotted on 

absorbent paper to remove excess liquid.  

Next, 50 μL of HUVEC sample was added to the appropriate wells. Then 50 μL of 2X rabbit 

anti-nitrotyrosine primary antibody was added to each well. The plates were incubated at 37°C 

for 60 minutes. Next, the wells were emptied by inverting the plate over a sink. We then washed 

the plate once with TBS-T and three times with 1X TBS to remove all bound antibody-

nitrotyrosine complexes. The wells were then emptied by inverting the plate over a sink and the 

plate was blotted on absorbent paper to remove excess liquid. Now, 100 μL of the secondary 1X 

goat anti-rabbit IgG, HRP-conjugated antibody was added to each well. The plate was incubated 

at 37°C for 60 minutes to bind the labeled secondary antibody to any remaining primary 

antibody on the well surface. The plate was then washed two times with 1X TBS-T and twice 

with TBS to remove any unbound secondary antibody. The wells were then emptied by inverting 

the plate over a sink and the plate was blotted on absorbent paper to remove excess liquid. 

Finally, 75 μL of freshly prepared LumiGLO® chemiluminescent substrate was added to each 

well and the plate was incubated at room temperature for 10 minutes to complete the reaction. 

Measurement of nitrotyrosine was performed through the detection of luminescence as relative 

light units (RLU) using a BioTek Synergy 2 Multi-Detection Microplate Reader. A standard 

curve using known concentrations of nitrated BSA was generated to provide concentration 

analysis of each respectively treated HUVEC sample.  

 

4.2.5 Quantitative Real-Time PCR 
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Total RNA was extracted and purified from 1 × 10
6
 HUVECs grown to confluence in a BD 

Falcon T-75 flask using a standard Trizol isolation protocol and RNeasy Micro kit (QIAGEN). 

Briefly, endothelial cells were exposed to normal or high glucose for 48 hours. For the final 18 

hours, glucose exposed cells were treated with Ang II (1 x 10
-5

 M) and Losartan (750 μM) or 

Simvastatin (100 μM). The concentration of RNA extracted was determined at a wavelength of 

260 nm using a Beckman Coulter DU800 (Brea, CA). First-strand complementary DNA (cDNA) 

was synthesized by using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). Total RNA (1 μg) was reverse transcribed to first-strand cDNA in a 20 μL mixture 

containing reverse transcription 10X reverse transcription buffer (2 μL), 25X 

deoxyribonucleotide triphosphate (dNTP) Mix (0.8 μL), 10X reverse transcription random 

primers (2 μL), MultiScribe™ Reverse Transcriptase (1 μL) and nuclease-free H2O (4.2 μL). The 

reactions were incubated at 25 °C for 10 min, 37 °C for 120 minutes and then the samples were 

heated at 85 °C for 5 min. Samples were then either placed on ice for immediate use in PCR 

experiments or placed in -80 °C for storage. A total of 50 ng cDNA was used for all PCR 

experiments. All mRNA expression levels were performed by the qRT-PCR technique using a 

housekeeping gene, beta actin, as an internal standard. The total reaction volume was 25 μL for 

PCR, which was performed in an Applied Biosystems 7300 Real Time PCR System (Applied 

Biosystems, Carlsbad, CA). Table 1 shows the list of all TaqMan probes used for each enzyme 

and endogenous control tested. 

 

4.3 Results 
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4.3.1 Angiotensin II Sensitivity  

We first wanted to determine if there were differences in Ang II sensitivity among normal and 

high glucose exposed endothelial cells. Figures 1a-b and 2a-b represent superoxide and nitric 

oxide profiles, respectively, through dose-dependent curves of Ang II treatment on normal and 

48 hour high glucose exposed HUVECs. Figure 1a shows the superoxide levels in normal 

glucose HUVEC’s in response to a range of Ang II concentrations (1 x 10
-9

 to 1 x 10
-3

 M), while 

Figure 1b illustrates the change in superoxide levels in high glucose HUVEC’s. The results 

indicate that normal glucose HUVEC’s have a lower slope for change in DHE fluorescence 

levels from that of the high glucose exposed endothelial cells. Additionally, Figure 2a shows the 

fluorescent values for DAF-FM in normal glucose HUVEC’s exposed to Ang II concentrations 

of 1 x 10
-9

 to 1 x 10
-3

 M. Figure 2b gives the nitric oxide levels for HUVEC’s exposed to high 

glucose and Ang II dosages. The figures show that normal glucose endothelial cells have a lower 

negative slope for change in DAF-FM values compared to that of high glucose HUVEC’s. 

 

 4.3.2 Gene Expression in Ang II Treated HUVEC’s 

In order to investigate the gene regulation of enzymatic pathways involved in Ang II stimulation 

of hyperglycemic endothelial cells, we quantified the mRNA expression levels of eNOS, iNOS, 

NOX4 and p22phox and calculated the fold increase in expression levels as compared to that of 

the untreated normal glucose endothelial cells. As seen in Figure 4a and 4b there is no significant 

increase in eNOS mRNA expression among normal glucose and high glucose exposed HUVEC’s 

in both the Ang II untreated and treated groups. However, iNOS mRNA expression is 

significantly increased by 9.6 ± 0.3 fold in normal glucose cells treated with Ang II as compared 

to non-treated normal glucose HUVEC’s. Expression of iNOS in Ang II treated high glucose 

cells shows a significant increase of 19.7 ± 0.5 fold compared to non-treated normal glucose 
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HUVEC’s. Non-treated high glucose cells had a significantly lower increase, 18.4 ± 0.4 fold, in 

iNOS expression compared to that of Ang II treated high glucose HUVEC’s. This illustrates that 

the synergistic exposure of high glucose and Ang II results in significantly higher increases in 

iNOS gene expression.  

mRNA expression of NOX is also significantly increased by 2.9 ± 0.3 fold in normal glucose 

cells treated with Ang II as compared to non-treated normal glucose HUVEC’s. Expression of 

NOX4 in Ang II treated high glucose cells shows a significant increase of 13.1 ± 0.7 fold 

compared to non-treated normal glucose HUVEC’s. Non-treated high glucose cells had a 

significantly lower increase, 5.7 ± 0.2 fold, in NOX4 expression compared to that of Ang II 

treated high glucose HUVEC’s. This illustrates that the synergistic exposure of high glucose and 

Ang II results in significantly higher increases in NOX4 gene expression.  

Gene expression of p22phox was found to have a modest increase of 1.9 ± 0.5 fold in normal 

glucose cells treated with Ang II as compared to non-treated normal glucose HUVEC’s. 

Expression of p22phox in Ang II treated high glucose cells shows a significant increase of 11.3 ± 

0.8 fold compared to non-treated normal glucose HUVEC’s. Non-treated high glucose cells had 

a significantly lower increase, 6.2 ± 0.2 fold, in p22phox expression compared to that of Ang II 

treated high glucose HUVEC’s. This illustrates that the synergistic exposure of high glucose and 

Ang II results in significantly higher increases in p22phox gene expression.  

 

4.3.3 Pharmacological Effects on Gene Expression in Ang II Treated HUVEC’s 

Due to recent reports describing the potential for NADPH oxidase activation via angiotensin II 

interactions with AT1R, we tested the antagonistic effects of the common angiotensin 1 receptor 

blocker, Losartan, and statin, Simvastatin, on Ang II/high glucose exposed HUVEC’s. We were 

interested in determining if these drugs were able to diminish or reverse the gene upregulation of 
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oxidant enzymes by Ang II and high glucose. Figure 6a shows that high glucose HUVEC’s 

treated with Losartan had a significant decrease in iNOS gene expression compared to that of 

high glucose HUVEC’s with no treatment, from a 17.9 ± 0.5 fold increase down to only a 3.2 ± 

0.3 fold increase compared to that of normal glucose HUVEC’s. 

 

4.3.4 Nitrotyrosine Levels 

In order to assess the overall oxidative and nitrosative stress induced by increased superoxide-

nitric oxide interactions, we measured nitrotyrosine levels in normal and high glucose HUVEC’s 

treated with Ang II. We then tested the antagonistic effects of both Losartan and Simvastatin on 

the Ang II treated high glucose endothelial cells. 

 

4.4 Discussion 

 

Vascular complications are the leading cause of morbidity and mortality in patients with 

diabetes. Because the initial injury by hyperglycemia occurs in the blood vessels, endothelial 

cells are considered to be among the first targets of diabetic vascular disease. Furthermore, 

endothelial damage and dysfunction plays an important role in the development and progression 

of diabetic vascular complications [163]. Four main molecular mechanisms have been implicated 

in glucose-mediated vascular disease: the glucose-induced activation of protein kinase C 

isoforms, an increased formation of glucose-derived advanced glycation end-products (AGEs), 

an increased glucose flux through the aldose reductase pathway, and an increased production of 

reactive oxygen species by pathways such as the renin-angiotensin system [164]; however, the 

enzymatic mechanisms of endothelial injury by high glucose are not fully understood. 

The present data indicate that angiotensin II exposure increases hyperglycemic endothelial cell 

superoxide levels and increases the gene expression of the ROS generating enzyme NADPH 
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oxidase subunits p22
phox

 and nox4, while also elevating iNOS mRNA expression. Angiotensin II 

also reduced nitric oxide bioavailability, which may further enhance oxidative and nitrosative 

stress in high-glucose exposed endothelial cells, thereby exacerbating endothelial dysfunction. In 

spite of an increase in iNOS expression, endothelial cell nitric oxide levels are reduced, as 

upregulation of the NOX subunits facilitates increased peroxynitrite formation. Sensitivity of 

hyperglycemic endothelial cells to Ang II may be explained by upregulated expression of AT1 

receptors on the cell surface and/or enhanced activation of the multiple ROS producing enzymes 

through amplification of one or more of the molecular signaling pathways. The combination of 

these events most likely contributes to the elevated nitrotyrosine levels and endothelial 

dysfunction observed in this high-glucose HUVEC model.  

 

4.4.1 Effects of Angiotensin II Treatment on Superoxide and Nitric Oxide Levels in Normal 

and High Glucose Exposed Endothelial Cells 

The renin-angiotensin system is an enzymatic cascade in which the precursor, angiotensinogen, 

is converted to the intermediate angiotensin I. Subsequently, angiotensin I is converted to 

angiotensin II by the coordinated actions of renin and ACE. Additional caspase-dependent 

pathways for angiotensin II are also present [165]. Angiotensin II is considered the major 

signaling molecule of the RAS and its functions are known to regulate vasomotor tone, blood 

pressure, and cardiovascular structure. These functions are primarily via activation of the G-

protein–coupled angiotensin II type 1 receptor [166]. The complex cellular interactions of the 

RAS and hyperglycemia include shared signal transduction pathways, including the PI3 kinase 

and MAP kinase pathways. Additionally, hyperglycemia activates the RAS by increasing the 

expression of angiotensinogen and Ang II, which, together, may contribute to the development of 
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hypertension in patients with diabetes [167]. Ang II acting via AT1 receptors is a powerful 

stimulus for the generation of ROS in the blood vessels from the NADPH oxidases [168], which 

become further upregulated in hyperglycemic environments.
 
This increased oxidant stress is 

instrumental in the progression of endothelial dysfunction, inflammation, smooth muscle 

hypertrophy, and vascular remodeling. 

Vasoactive peptides such as ANG II, which can be synthesized locally in the vasculature, have 

been implicated in diabetes-associated vascular dysfunctions, including vascular remodeling, 

hypertrophy, and proliferation of VSMCs [169], leading to impaired relaxation to vasodilators or 

an enhanced response to vasoconstrictors. The levels of ANG II have been shown to be elevated 

in plasma from both type 1 and type 2 diabetes and also in experimental models, as well as in 

endothelial and smooth muscle cells in the presence of high glucose [170], which may contribute 

to the vascular complications of diabetes. Our data is in agreement with these findings showing 

that increasing levels of Ang II stimulation of high-glucose exposed HUVEC’s results in 

significantly greater superoxide levels as compared to the same treatment in normal glucose 

endothelial cells. Furthermore, when compared with normal glucose HUVEC’s, nitric oxide 

levels are greatly reduced in hyperglycemic endothelial cells as concentration of Ang II is 

increased. This strongly suggests high-glucose endothelial cells are highly sensitive to Ang II 

interactions, resulting in greater localized oxidative and nitrosative stress via increased AT1R 

mediated NADPH oxidase activation. 

4.4.2 Influence of Angiotensin II on NOS and NOX Gene Expression in Hyperglycemic 

HUVEC’s  

The underlying mechanism(s) by which AT1 receptor activation by high glucose induces 

vascular dysfunction is not well understood at this time. However, ANG II has been reported to 
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increase oxidative stress by activating NADPH oxidase, an enzyme responsible for the 

production of superoxide anion and other reactive oxygen species [171-173]. As shown in Figure 

4, our data indicates that Ang II enhances the increase in gene expression of NOX4 and p22phox 

in high glucose exposed endothelial cells. An ANG II-induced increased expression of p47
phox

 

and p22
phox

 has also been shown recently in vascular smooth muscle cells [174]. In addition, a 

possible explanation for the decreased nitric oxide levels shown in our study may be that 

increased concentration of Ang II increases expression/activity of the enzymes that are 

responsible for the formation of nitric oxide and superoxide, leading to increased peroxynitrite 

formation and an overall net reduction in nitric oxide levels. The excess generation of 

superoxide, presumably by NADPH oxidase, would scavenge nitric oxide. Studies have 

suggested that nitric oxide may directly decrease transcription of AT1Rs by binding to DNA 

[175]. Therefore, a decrease in nitric oxide levels may result in increased AT1R expression. 

Taken together, it may be possible that ANG II-induced enhanced oxidative stress under 

hyperglycemic conditions contributes to the enhanced expression of AT1R, leading to a more 

potent oxidative stress environment. However, the expression of endothelial cell ATR1 still 

needs to be investigated. 

Ang II may increase oxidative stress in the short term by direct activation of NADPH oxidase to 

form superoxide [161]. Zhang et al demonstrated that Ang II induces immediate release of 

superoxide in endothelial cells via activation of NADPH oxidase [176]. Another study suggested 

that Ang II increases NOS enzyme activity, resulting in increased nitric oxide and peroxynitrite 

production in endothelial cells [177], and the increase in peroxynitrite could be associated with 

endothelial dysfunction and cardiovascular disease. Our present data suggest that increased 

interaction of Ang II with hyperglycemic endothelial cells results in enhanced activation of 
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iNOS, but not eNOS, mRNA expression. This is in agreement with previous in vivo studies of 

Ang II.  However, these studies did not evaluate Ang II-induced effects on gene regulation of 

enzymes that are major contributors to oxidative stress in hyperglycemia, which was one of the 

aims of the present study. Our data indicate that Ang II induces iNOS as well as NADPH oxidase 

expression, which likely contributes to increased endothelial peroxynitrite formation and 

oxidative/nitrosative stress in high glucose exposed endothelial cells. 

 

4.4.3 Oxidative and Nitrosative Stress Gene Regulation is Reduced by ARBs and Statins 

Angiotensin 1 receptor blockers (ARBs) have been show to decrease intracellular production of 

superoxide in the endothelium and vascular smooth muscle [178]. The reduction in superoxide 

protects nitric oxide from oxidative degradation to cytotoxic molecules. This will contribute to 

increased nitric oxide bioactivity by enhancing nitric oxide synthesis and limiting superoxide 

scavenging. Our data show (Figure 5b) that Losartan treatment reduces the increased expression 

of NADPH oxidase and iNOS induced by Ang II and high glucose exposure in HUVEC’s. This 

data suggests the blockade of angiotensin 1 receptor, results in decreased oxidant gene 

upregulation in hyperglycemic endothelial cells. 

Statins are thought to inhibit the expression of AT1 receptor upregulation. Furthermore, statins 

inhibit the production of oxygen derived free radicals by reducing LDL, increasing NO 

synthesis, and through antioxidant effects [179]. Statins also have an indirect NOX inhibitory 

action through inhibition of Rac. The ability of statins to block the activation of Rac1 regulates 

NADPH oxidase, inhibiting the G-protein to translocate to the membrane-bound NOX subunits 

[180]. The current study shows that simvastatin additionally blunts the expression of membrane 

subunits p22phox and NOX 4 in hyperglycemic endothelial cells. Consequently, superoxide 
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levels are significantly reduced in simvastatin-treated HUVEC’s. These results indicate that 

Losartan and Simvastatin protect against endothelial oxidative stress via inhibition of NADPH 

oxidase-derived superoxide in high glucose exposed HUVEC’s. Taken all together, combined 

therapy with statins and ARBs may have additive beneficial effects on inhibition of oxygen-

derived free radical production and improvement in nitric oxide bioactivity. This combined 

therapy may improve endothelial function in diabetic patients. 

 

4.4.4 Statins and ARBs Reduce Nitrotyrosine Levels in Angiotensin II Treated High 

Glucose HUVEC’s  

Interaction of ROS, particularly superoxide with nitric oxide, leads to production of 

peroxynitrite, which is a highly cytotoxic reactive compound. In turn, peroxynitrite reacts with 

DNA, lipid and protein molecules. This is important in biomedical research because it can alter 

protein function, is associated with acute and chronic disease states, and can be a predictor of 

disease risk. The reactions between nitric oxide and superoxide do not necessarily result in 

oxidative damage and at low levels can even be cytoprotective [181]. Data has shown that 

nitrotyrosine abundance is largely a function of ROS interaction with nitric oxide [182]. Our data 

show that Ang II exposure to hyperglycemic HUVEC’s results in increased nitrotyrosine levels. 

These findings support our data showing Ang II stimulation results in increased NOX and iNOS 

gene expression in high glucose exposed endothelial cells. This parallel increase in mRNA 

expression of NOX genes, p22phox and NOX4, and iNOS by HUVEC’s suggests a role of 

increased NADPH oxidase presence and elevated nitric oxide generation via iNOS, in the 

formation of nitrotyrosine in these endothelial cells. These findings further describe the role of 
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local Ang II interaction in augmenting oxidative and nitrosative stress of hyperglycemic 

endothelial cells. 

 

4.5 Conclusions 

 

Results from this study show Ang II exposure leads to an increase in oxidative and nitrosative 

stress and endothelial iNOS and NADPH oxidase mRNA expression in high glucose HUVEC’s. 

The data strongly suggests that hyperglycemic endothelial cells are sensitized to Ang II and that 

increased localized concentrations of this signaling molecule in the vasculature enhances 

oxidative and nitrosative stress pathways.  In the presence of the AT1R antagonist losartan and 

simvastatin, Ang II-induced increases in iNOS, whereas NADPH oxidase gene expression are 

significantly reduced. This confirms a significant role for ATI1R in the development of diabetic 

endothelial cell dysfunction. In addition, peroxynitrite formation was enhanced with Ang II 

exposure. The synergistic effect of Ang II and high glucose suggests that additional, more-

complex mechanisms that involve the interaction between free radicals and AT1 receptors, 

possibly dependent on certain levels of free radicals locally produced in the vasculature or 

endothelial cells are responsible for oxidative and nitrosative stress regulation in this HUVEC 

model. Further studies will be necessary to elucidate the exact mechanisms responsible for this 

interaction. Nevertheless, our results suggest that combined therapy using the AT1 receptor 

blockade and antioxidants may increase the efficacy of treatment for some forms of hypertension 

in diabetic patients. 
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Figure Legends 

 

Figure 1. DHE Fluorescence profile for Angiotensin II dose dependent curve in normal 

and high glucose exposed HUVEC’s. (a). The results shown are for SOD 

concentrations of 1, 10, and 100 U/mL with a total run time of 30 minutes (n = 3). 

DHE fluorescence of superoxide was measured using a microplate reader and cell-

free XO/hypoxanthine system. RFU values were inversely proportional to SOD 

concentrations. (b). The data represents the average change in DHE fluorescence per 

minute for the reaction of hypoxanthine with XO in the presence of catalase and 

SOD. Values were calculated by taking the slope of the linear-fit curve for each 

fluorescence readings.  

Figure 2. Fluorescence profile of DAF-FM DA for Angiotensin II dose dependent curve in 

normal and high glucose exposed HUVEC’s. (a). The data shows DHE 

fluorescence for superoxide detection in the presence of SNP (n = 3). Fluorescence 

was measured using a microplate reader and best-fit lines were calculated based on 

linear-regression. (b). The results shown represent the change in RFU per minute for 

each measured nitric oxide concentration. Values were calculated by plotting the 

slopes for each of the nitric oxide concentrations.  

Figure 3. mRNA expression of normal and high glucose exposed HUVEC’s. (a). The results 

shown are for measurement of ferricytochrome c absorbance in relation to varying 

concentrations of SOD. Absorbance values are representative of the level of 

superoxide reduction of ferricytochrome c in the presence of increasing SOD 

concentrations. (b). The results are shown for average change per minute in 

superoxide concentration as a result of SOD concentration. The concentration of 
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superoxide was determined from absorbance measurements by using the Beer-

Lambert law with a molar extinction coefficient of Δε = 21,000 M
-1

cm
-1

 and path 

length calculated to be 0.97473 cm. 

Figure 4. Gene expression analysis of normal and high glucose exposed HUVEC’s treated 

with Angiotensin II. (a). The graph illustrates the measurement of ferricytochrome c 

absorbance in relation to varying concentrations of SNP. Absorbance values are 

representative of the level of superoxide reduction of ferricytochrome c in the 

presence of increasing SNP concentrations. (b). The results shown indicate the 

average change per minute in superoxide concentration as a result of SNP interaction. 

Figure 5. Real Time PCR quantification of gene expression in HUVEC’s treated with 

Angiotensin II and Losartan. The reaction rate constant of DHE and superoxide 

reaction was 2.6 × 10
5
 M

-1
s

-1  
. The superoxide concentration reached a steady-state 

concentration of 250 nM. The unreacted DHE concentration in the solution reduced 

to less than 1 nM within first 10 min. This indicates that DHE fluorescence cannot 

increase linearly over 30 min in experimental measurement as seen in Figure 1.  

Figure 6. Gene expression quantification of HUVEC’s treated with treated with 

Angiotensin II and Simvastatin. The increase in RFU plateau around 100 min for 

 

Figure 7. Nitrotyrosine levels in normal and high glucose exposed HUVEC’s treated with 

Angiotensin II. 

initial DHE concentrations for 120 min for a reaction rate of (kDHE) 1.01 × 10
3
 M

-1
s

-1
. 

We performed kinetic analysis by reducing the reaction rate of DHE with superoxide 

to better fit the experimental observation of DHE fluorescence in Figure 6. We 
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obtained the time (=68 min) at which the RFU value was 63.2% of the maximum 

(which corresponds to one time constant response for a first order system). The 

ed DHE (63.2 % of DHE consumed) was at 

68 min was 1.01 × 10
3
 M

-1
s

-1
. The superoxide concentrations reached steady-state 

concentration of 250 nM not shown. b). The DHE concentration profiles for a higher 

reaction rate of (kDHE) 2.0 × 10
3
 M

-1
s

-1 
is shown for 

concentrations for 120 min. Note that, the DHE concentration fall more sharply and 

reach a plateau at an earlier time points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

Table 1: Taqman Probes 

Target Species TaqMan Probe Sequence 

NOS 3 Human Hs00167166_m1  

NOS 2 Human Hs01075529_m1 

p22phox Human Hs00609145_m1 

NOX4 Human Hs00276431_m1 

beta-actin Human Hs99999903_m1 
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Figure 1a 
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Figure 1b 

 

 

 

 

 

 

 

0

500

1000

1500

2000

2500

HG 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

∆
 R

FU
 

Ang II Concentration (M) 



144 

 

 

Figure 2a 
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Figure 2b 
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Figure 3a 
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Figure 3b 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

eNOS iNOS NOX4 p22phox

G
en

e 
E

x
p

re
ss

io
n

F
o
ld

 I
n

cr
ea

se

Gene of Interest

NG

48 hr HG

*           

*                      *  



148 

 

 

Figure 4a 
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Figure 4b 
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Figure 5a 
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Figure 5b 
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Figure 6a 
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Figure 6b 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

eNOS iNOS NOX4 p22phox

G
en

e 
E

x
p

re
ss

io
n

F
o

ld
 I

n
cr

ea
se

Gene of Interest

NG

48 hr HG

Simvastatin 48 hr HG

* 

*           *                *   
†            

†                †            

*                  



154 

 

 

Figure 7a 
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Figure 7b 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

NG Losartan NG 48 hr HG Losartan 48 hr

HG

N
it

ro
ty

ro
si

n
e 

(µ
M

)

Treatment

* 

† † 



156 

 

 

Figure 7c 
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CHAPTER 5  

 

Concluding Remarks and Future Work Recommendations 
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5.1 Concluding Remarks 

Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a 

dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a 

loss of the vascular endothelium to produce biologically active nitric oxide, which impairs 

vascular function. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction 

through a multitude of mechanisms and these interrelated pathways have been a focus of 

numerous researchers. It is well established that hyperglycemia induces excess superoxide 

production in endothelial cells. Furthermore, past studies have also described the reduced 

availability of nitric oxide within the endothelial layer. However, the specific pathways, enzymes 

and gene regulation responsible for the development of high glucose induced oxidative and 

nitrosative stress is still under intense investigation. The overall aim of the work presented in this 

dissertation was to provide a more clear understanding of the enzymes and gene regulation 

responsible for the development of reduced nitric oxide levels and increased superoxide 

presence, protein damage and apoptosis in high glucose exposed endothelial cells. Through these 

mechanistic studies we were able to analyze and better describe the interactions between reactive 

species and the primary enzymes and pathways involved in hyperglycemic endothelial cell 

dysfunction. 

A key factor in the analysis of intracellular superoxide and nitric oxide production is the rate at 

which the target species is detected compared with the potential rate of reaction of the target with 

other possible reactants. Previous studies investigating intracellular superoxide and nitric oxide 

production rates did not consider potential reactant interference in the measurements, while 

others used detection techniques with reaction rates far lower than those of potential side 

reactions of the target species. Consequently, these measurements are prone to over- or under-



159 

 

estimating the actual intracellular levels of superoxide and nitric oxide. We utilized a cell-free 

system to generate superoxide and nitric oxide in order to more accurately determine the reaction 

rates of superoxide and nitric oxide with two widely used fluorescent dyes, DHE and DAF-FM 

diacetate respectively. Absence of in-vivo reactant interference enabled us to better determine 

the reliability of these fluorophores to detect the highly reactive superoxide and nitric oxide 

species and also better describe the levels at which superoxide interaction with scavengers such 

as SOD and nitric oxide begin to interfere with the accuracy of fluorescence measurements. 

Results obtained from experiments conducted in Chapter 2 show that DHE and DAF-FM 

diacetate are reliable detectors of superoxide and nitric oxide concentrations in vivo, 

respectively. However, rates of production are much more difficult to accurately assess due to 

the varying degree of possible reactant interferences. Therefore, care should be taken in 

interpreting rate of production reported in oxidative/nitrosative stress studies utilizing 

fluorescence detection methods. 

Next, in Chapter 3 we utilized these fluorescence detection techniques to better describe the 

oxidative and nitrosative stress levels found in endothelial cells treated with increasing lengths of 

high-glucose exposure. Furthermore, through the use of specific enzyme inhibitors we were able 

to more accurately determine the contribution levels of oxidant producing enzymes involved in 

the excess levels of superoxide and nitric oxide in hyperglycemic HUVEC’s.  Results from these 

studies show that NADPH oxidase is the primary contributor to oxidative stress in high glucose 

exposed HUVEC’s. Our work also shows that while hyperglycemia decreases nitric oxide levels, 

generation of nitric oxide is paradoxically increased. Furthermore, we are able to indirectly 

confirm this concomitant increase in superoxide and nitric oxide by showing a significant 

increase in the formation of nitrotyrosine in high glucose exposed endothelial cells. This 
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illustrates that the parallel increase in superoxide and nitric oxide lead to increased reaction with 

one another, resulting in higher levels of the cytotoxic peroxynitrite molecule. 

To better understand the effects of angiotensin II and high glucose on gene regulation of oxidant 

generating enzymes involved in oxidative and nitrosative stress pathways, we performed real-

time quantitative PCR for NADPH oxidase subunits and nitric oxide synthase isoforms in 

HUVEC’s. The renin-angiotensin system represents a major contributor to vascular endothelial 

dysfunction in macro- and microvascular diseases. High glucose has been shown to increase both 

angiotensin converting enzyme activity, as well as local angiotensin II concentrations, in the 

vasculature. Furthermore, angiotensin II is thought to activate endothelial cell NADPH oxidases 

via AT1 receptor stimulation. Results from studies found in Chapter 4 show that stimulating 

effects of angiotensin II on the activity of endothelial cell NADPH oxidases is enhanced in high-

glucose exposed HUVEC’s. We also show that hyperglycemic endothelial cells are more 

sensitive to Ang II interaction, resulting in lower levels of nitric oxide bioavailability and 

increased nitrotyrosine formation. Our results also provide insight into the gene regulation of 

NADPH oxidase, eNOS and iNOS. Data shows that angiotensin II increases NADPH oxidase 

and iNOS mRNA levels in high-glucose exposed HUVECs, while eNOS expression is 

unchanged. This further validates the hypothesis that high glucose initiates a protective response 

in endothelial cells by upregulating nitric oxide producing enzymes, iNOS, in an attempt to 

counteract the increased production of superoxide by NADPH oxidase. Unfortunately, this 

protective measure only exacerbates the oxidative and nitrosative stress environment of the cell, 

leading to increased cell damage and/or apoptosis.  
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5.2 Future Work Recommendations 

Insights from the experimental analyses of nitric oxide-superoxide interactions conducted in this 

dissertation further our understanding of the role of oxidative and nitrosative stress in endothelial 

cells under diabetic pathophysiological conditions. Endothelial cells respond to hyperglycemia 

by upregulating antioxidant scavenging mechanisms, such as nitric oxide and SOD, and anti-

inflammatory actions. However, these potentially protective mechanisms are overwhelmed by 

the excessive production of oxidants, resulting in further damage and apoptosis. Treatment 

strategies should be aimed at alleviating the production of reactive oxygen species, rather than 

increasing antioxidants. An important point produced from our work is the increased sensitivity 

of hyperglycemic endothelial cells to angiotensin II, the powerful vasoconstrictor. Presumably, 

this mechanism involves, at least partly, upregulation or activation of angiotensin type 1 

receptors on the surface of endothelial cells. Future work should concentrate on determining 

whether gene and/or protein expression of angiotensin type 1 receptors is increased in response 

to hyperglycemia and what potential effects may occur from inhibiting the potential over-

expression of these receptors. Furthermore, in-depth molecular work on the gene/protein 

regulation of nitric oxide synthase and NADPH oxidase by hyperglycemic response in 

endothelial cells will also increase understanding and potential therapeutic targets in diabetes 

treatment. Focus on the transcriptional regulation of these genes via microRNA, transcriptional 

factors and histone modifications all represent potential areas of future work in this field. 

Additionally, a better understanding of the relationship between the signaling pathways and 

enzyme expression/activation involved in hyperglycemic stress is an area of future interest. 
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