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U/ml, respectively. Thus, only the lower reaction rate constant can explain no change in 

measured RFU for 10 and 100 U/ml of SOD concentrations and a small change in RFU for 1 

U/ml SOD concentration as measured in this study and reported in Figure 3. 

 

2.4 Discussion 

Nitric oxide and SOD are two efficient scavengers of superoxide in cells and tissue, rendering 

measurement of superoxide complicated. In this study, we demonstrate the level at which nitric 

oxide and SOD effect superoxide measurements using DHE fluorescence. Using kinetic analysis 

of the experiments, a DHE-superoxide reaction rate constant of 1.1 × 10
3
 M

-1
s

-1
 is proposed.   

 

2.4.1 Superoxide measurements  

A predictable cell-free superoxide generating system was utilized to achieve reliable 

measurements of superoxide concentrations for in vitro study of SOD and nitric oxide 

interactions using a common fluorescence detection method. A range of SOD and nitric oxide 

concentrations were examined by introducing nitric oxide, via spermine nonoate donation, and 

SOD directly into a superoxide environment. The system is free from reactive species 

interference found in the in-vivo detection of superoxide, allowing for a more accurate analysis 

of species interactions. We confirmed that DHE fluorescence occurred at significant rates from 

superoxide generated by the hypoxanthine/xanthine oxidase system. The presence of SOD or 

nitric oxide will reduce superoxide concentration, which directly affects DHE fluorescence 

detection.  

Currently, there is question in the literature regarding the accuracy of fluorescence detection of 

the DHE-superoxide reaction [90]. The authors suggest that HPLC analysis is the only reliable 
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method for measurement of DHE detection of superoxide. Results from this study confirm 

through the simultaneous detection of 2-OH-ethidium accumulation and monitoring of unreacted 

DHE in solution that fluorescence measurements are specific for that of the DHE-superoxide 

reaction product reported in the literature. Using microplate reader fluorescence detection, we 

found that the rate of 2-OH-ethidium formation was equal to that of the decrease in unreacted 

DHE levels in solution. Therefore, we conclude that by using appropriate excitation and 

emission filters fluorescence measurement of DHE is an accurate method for the detection of in 

vitro superoxide levels.  

Studies investigating reactive oxygen species have used several different methods to measure 

superoxide concentration, including DHE fluorescence, cytochrome c absorbance, lucigenin 

chemiluminescence, and HPLC [77, 91-93]. Data presented in this study regarding the 

limitations of DHE measurements are in agreement with other studies. Due to the extremely 

short half-life of superoxide and rapid reaction with SOD, DHE fluorescence detection is prone 

to underestimation of actual superoxide production [90, 94]. Additionally, Papapostolou et al. 

showed that DHE can react with various oxidants found within the cell, including cytochrome 

hemes of the mitochondria [95]. Shao et al. also demonstrated that certain potent diet 

antioxidants can greatly decrease superoxide concentration even in extreme acute oxidative 

stress [96]. DHE fluorescence measurements can describe quantitative measurements of 

localized superoxide concentration. However, total superoxide production measurements are not 

possible as reported [76] and, at best, will be an estimate due to the varying amount of 

superoxide consumption among various interactions with other species. Further experimental and 

computational studies are needed for the calibration of DHE fluorescence with superoxide. 
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2.4.2 Justification of DHE-superoxide reaction rate constant of 1.1 × 10
3
 M

-1
s

-1
 

Based on experimental measurements and computational modeling, we report a reaction rate of 

~1.1 × 10
3
 M

-1
s

-1
 that is ~260× lower than the previously reported value of 2.6 × 10

5
 M

-1
s

-1
 [9].  

The possible reasons for the discrepancy include: i) our kinetic analysis is more detailed with 

respect to the actual reaction occurring in the system, ii) we considered the dismutation of 

superoxide which will increase superoxide consumption that was not considered in previous 

study, and iii) we did not assume saturating concentrations of DHE (compared to superoxide 

flux), as the previous study, model analysis (Figure 5) and experimental measurements (Figure 

6) show that DHE is the limiting factor in its reaction with superoxide.  

In the presence of SOD, the experimental results of no DHE fluorescence in this study were 

similar to the absence of oxyethidium peak formation at SOD concentration of 100 U/ml [97]. 

Additionally, the lower reaction rate constant 1.1 × 10
3
 M

-1
s

-1
 can justify no observed DHE 

fluorescence in our experiments for SOD levels above 0.11 M (10 U/mL), whereas the higher 

reaction rate constant of 2.6 × 10
5
 M

-1
s

-1
 will still lead to significant DHE fluorescence for SOD 

levels above 0.11 M (10 U/mL).  

 

2.4.3 Effect of SOD concentration on superoxide presence 

This study analyzed the concentration levels at which SOD effects detection of superoxide using 

an in vitro system. SOD catalyzes dismutation of superoxide within the vascular environment to 

help maintain healthy endothelial function [98]. In the case of DHE detection of superoxide, 

fluorescence decreased with increasing SOD concentration (see Figure 4a). At low SOD 

concentration of 0.011 M (1 U/mL), change in DHE fluorescence per minute was reduced by 

70 percent. Furthermore, DHE fluorescence was nearly abolished at SOD concentrations above 
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0.11 M (10 U/mL). Fink, et al. [97] reported similar findings using an endothelial cell model, 

with SOD completely eliminating induced superoxide formation due to angiotensin II 

administration. This data indicates that DHE measurements of superoxide production may be 

highly underestimated even in the presence of relatively low SOD competition. New evidence 

has also shown that apocynin may directly inhibit superoxide, much like SOD, rather than 

indirectly decrease its levels through the inhibition of NADPH-oxidase [99, 100]. Furthermore, 

other research has shown that apocynin is potentially a pro-oxidant, leading to the increased 

production of superoxide in endothelial cells [101]. In addition, the scavenging efficiency of 

vascular antioxidant systems in maintaining healthy blood flow and reactive oxygen species 

levels further complicates the accurate analysis of superoxide production [82]. Dependent on 

experimental conditions such as hypoxia, inflammation, atherosclerosis, SOD expression may up 

or down-regulate within the vascular environment and may vary widely on a spatial level [102, 

103]. Consequently, DHE fluorescence can describe localized superoxide concentration rather 

than vascular superoxide production. 

 

2.4.4 Effect of nitric oxide on superoxide concentrations 

Nitric oxide is released from the endothelium in response to stimuli such as superoxide 

concentration increases in the vascular environment. However, in the case of oxidative stress, 

superoxide concentrations are elevated beyond effective nitric oxide levels [81]. Our objective 

was to evaluate the level at which nitric oxide influences the detection of superoxide production. 

Selemidis, et al. [77] reports that an increase in nitric oxide donor concentrations led to a 

dramatic decrease in superoxide production as measured by DHE fluorescence in endothelial 

cells. We show that in vitro DHE fluorescence measurement of superoxide significantly 
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decreased in the presence of nitric oxide. Spermine nonoate concentrations as low as 1 µM 

significantly decreased superoxide detection while 1 mM concentrations completely abolished 

DHE measurement (See Figure 5a). Cosentino reports that hyperglycemia upregulates the 

expression of nitric oxide synthase [85]. This may lead to local elevation of nitric oxide, 

however, spatial nitric oxide concentrations will vary widely. Consequently, dependent upon the 

nitric oxide environment of a given sample DHE superoxide production measurements may be 

over- or underestimated. A more accurate description of superoxide production may require 

DHE measurement in relation to nitric oxide, peroxynitrite and SOD concentrations in a given 

sample. 

 

2.4.5 Pathological Implications of SOD and nitric oxide interactions 

A complete understanding of species interactions is critical for reducing the risk of numerous 

disease pathologies. Concentrations of reactive oxygen species, such as superoxide, are tightly 

regulated in the normal functioning vascular system [98]. However, accumulation of superoxide 

within the vasculature, termed as oxidative stress, contributes to the development of a number of 

diseases, such as atherosclerosis, diabetes, and dyslipidemia [104, 105]. As superoxide 

concentrations increase, excess molecules react with nitric oxide to form the cytotoxic chemical 

peroxyntirite and effectively decrease the bioavailability of nitric oxide [106]. Consequently, a 

reliable method for quantifying superoxide levels is highly desirable. However, presently there is 

no method that will describe superoxide production without the problem of interference. Data 

presented in this study demonstrate that a full understanding of the competition between SOD, 

nitric oxide, and superoxide interactions are critical when using DHE fluorescence methods for 

in vivo measurements.  
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2.5 Conclusions 

An accurate method for superoxide measurement would be highly beneficial to the potential 

diagnosis and treatment of a number of different health problems. The current study describes 

some of the necessary considerations for experimental measurement and analysis of superoxide 

concentrations in the presence of SOD and nitric oxide. DHE measurement of superoxide in 

conjunction with the relative amount of nitric oxide, SOD and peroxynitrite present may provide 

a more accurate description of oxidative stress. A detailed kinetic analysis resulted in a DHE and 

superoxide reaction rate constant of ~1.1 × 10
3
 M

-1
s

-1
 that is ~260× lower than the previously 

reported value of 2.6 × 10
5
 M

-1
s

-1
. The lower reaction rate constant can explain a lack of DHE 

fluorescence in the presence of SOD. 
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Figure Legends 

 

Figure 1. Experimental reaction profile for DHE fluorescence detection of superoxide for 

120 minutes. (a) Results shown are for fluorescence detection of the DHE (5µM) and 

superoxide reaction product 2-OH ethidium using a microplate reader set at excitation 

390/20 nm and emission 585/20. A cell-free XO/hypoxanthine system was used to 

generate superoxide and readings were taken every 2 minutes for 120 minutes. 

Detection of superoxide using DHE increases linearly until saturation of the dye 

occurs at approximately the 100 minute reading. (b) Data shows the fluorescence 

monitoring of the unreacted portion of DHE, excitation 360/40 and emission 460/40, 

remaining in solution at each time point. The amount of unreacted DHE in the system 

decreases linearly until being quenched at approximately 100 minutes. 

Figure 2. Unreacted DHE concentration profiles using kinetic analysis. a). The DHE 

concentration profiles are shown for 5 and 10 M initial DHE concentrations for 120 

min for a reaction rate of (kDHE) 1.01 × 10
3
 M

-1
s

-1
. We performed kinetic analysis by 

reducing the reaction rate of DHE with superoxide to better fit the experimental 

observation of DHE fluorescence in Figure 6. We obtained the time (=68 min) at 

which the RFU value was 63.2% of the maximum fluorescence value (1722 RFU) for 

5 M DHE concentration experiments in Figure 6 (which corresponds to one time 

constant response for a first order system). The reaction rate for which 1.84 M 

unreacted DHE (63.2 % of DHE consumed) was at 68 min was 1.01 × 10
3
 M

-1
s

-1
. The 

superoxide concentrations reached steady-state concentration of 250 nM not shown. 

b). The DHE concentration profiles for a higher reaction rate of (kDHE) 2.0 × 10
3
 M

-1
s

-
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1 
is shown for 5 and 10 M initial DHE concentrations for 120 min. Note that, the 

DHE concentration fall more sharply and reach a plateau at an earlier time points.  

Figure 3. Superoxide and DHE concentration profiles using kinetic Analysis. The reaction 

rate constant of DHE and superoxide reaction used was 2.6 × 10
5
 M

-1
s

-1
. The 

superoxide concentration reached a steady-state concentration of 250 nM. The 

unreacted DHE concentration in the solution reduced to less than 1 nM within first 10 

min. This indicates that DHE fluorescence cannot increase linearly over 30 min in 

experimental measurement as seen in Figure 1.  

Figure 4. Fluorescence of DHE for the reaction of hypoxanthine with XO in the presence 

of SOD. (a). The results shown are for SOD concentrations of 1, 10, and 100 U/mL 

with a total run time of 30 minutes (n = 3). DHE fluorescence of superoxide was 

measured using a microplate reader and cell-free XO/hypoxanthine system. RFU 

values were inversely proportional to SOD concentrations. (b). The data represents 

the average change in DHE fluorescence per minute for the reaction of hypoxanthine 

with XO in the presence of catalase and SOD. Values were calculated by taking the 

slope of the linear-fit curve for each fluorescence readings.  

Figure 5. Fluorescence of DHE for the reaction of hypoxanthine with XO in the presence 

of nitric oxide. (a). The data shows DHE fluorescence for superoxide detection in the 

presence of SPERMINE NONOATE (n = 3). Fluorescence was measured using a 

microplate reader and best-fit lines were calculated based on linear-regression. (b). 

The results shown represent the change in RFU per minute for each measured nitric 

oxide concentration. Values were calculated by plotting the slopes for each of the 

nitric oxide concentrations.  
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Figure 6. Measurement of DHE fluorescence at 5 and 10 M initial DHE concentrations 

for 120 min. The increase in RFU plateaus around 100 min for the 5 M initial DHE 

concentration but remains increasing for 10 M DHE.  
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Figure 1b 
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Figure 2a 
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Figure 2b 
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Figure 3 
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Figure 4a 
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Figure 4b 
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Figure 5a 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

400

800

1,200

1,600

2,000

2,400

0 20 40 60 80 100 120

R
F

U
 

Time, min 

0M

M



60 

 

CHAPTER 3 

Mechanistic Study of Nitrosative and Oxidative Stress in High Glucose Exposed HUVEC’s 
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Abstract (250 words) 

Pathogenesis of diabetes-related vascular complications involves progression of oxidative and 

nitrosative stress, leading to endothelial dysfunction and cell death. A major characteristic of 

hyperglycemia is increased reactive oxygen species. Superoxide interacts readily with nitric 

oxide to form the cytotoxic oxidant peroxynitrite. This leads to formation of nitrated proteins, 

reduction of BH4/BH2 ratios and nitric oxide levels, and activation of apoptotic caspase 

pathways. In this study, we examine the effect of high glucose on endothelial superoxide, and 

nitric oxide levels, nitrotyrosine and apoptosis. HUVECs were exposed to 1, 24 and 48 hour 

control (5 mM) and high glucose (25 mM) conditions in the presence of L-NAME (100 μM), 

apocynin (300 μM), or SOD (100 units/ml). Fluorescence dyes dihydroethidium and DAF-FM 

DA were used to detect superoxide and nitric oxide, respectively. Nitrotyrosine formation was 

measured using competitive ELISA and immunocytofluorescence. Apoptosis was measured 

using Hoechst 33342 fluorescence. Results showed that 48 hour high glucose exposure 

upregulates NADPH oxidase activation, leading to 87% increase in intracellular superoxide 

levels and 32% decrease in nitric oxide bioavailability. Additionally, results show that nitric 

oxide production is increased 28% in high glucose exposed endothelial cells. HUVEC’s exposed 

to high glucose for 24 hours show 62% increase in nitrotyrosine levels compared to that of 

normal glucose cells. Finally, our results suggest that increased production of peroxynitrite and 

decreased nitric oxide levels induces significant apoptosis via caspase denitroslyation. Inhibition 

of NADPH oxidase activity lead to restoration of nitric oxide bioavailability and reduction of 

hyperglycemia induced apoptosis. The results indicate that treatment strategies towards reducing 

NADPH oxidase activity and increasing nitric oxide levels will help reverse the damaging effects 

of high glucose on endothelial cells. 
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Figure Legends 

 

Figure 1. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

1 hour. (a) Data shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 1 hour. 

Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Results show the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 1 hour. 

Figure 2. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 1 hour.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 

glucose (25 mM) for 1 hour. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 1 hour. 

Figure 3. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

24 hours. (a) Data shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 24 

hours. Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Data shows the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 24 hours. 

Figure 4. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 24 hours.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 
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glucose (25 mM) for 24 hours. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 24 hours. 

Figure 5. DHE intracellular superoxide detection in HUVEC’s exposed to high glucose for 

48 hours. (a) Results shown are for fluorometer measurement of DHE (5µM) in 

HUVEC’s exposed to normal glucose (5.5 mM) or high glucose (25 mM) for 48 

hours. Microplate reader was set at excitation 485/20 nm and emission 590/35 nm. (b) 

Data shows the DHE fluorescence imaging of intracellular superoxide in HUVEC’s 

exposed to normal or high glucose for 48 hours. 

Figure 6. DAF-FM diacetate intracellular nitric oxide detection in HUVEC’s exposed to 

high glucose for 48 hours.  (a) Results shown are for fluorometer measurement of 

DAF-FM diacetate (5µM) in HUVEC’s exposed to normal glucose (5.5 mM) or high 

glucose (25 mM) for 48 hours. Microplate reader was set at excitation 485/20 and 

emission 545/40. (b) Data shows the DAF-FM diacetate fluorescence imaging of 

intracellular intracellular nitric oxide in HUVEC’s exposed to normal or high glucose 

for 48 hours. 

Figure 7. Immunocytochemistry detection of nitrotyrosine in HUVEC’s exposed to normal 

and high glucose for 1, 24 and 48 hours. Nitrotyrosine Standard Curve (a) Data 

shown represent nitrotryosine presence in HUVEC’s exposed to normal glucose (5.5 

mM) or high glucose (25 mM) for 24 hours. Endothelial cells were formalin fixed and 

treated with primary nitrotyrosine antibodies. HUVEC’s were then treated with Alexa 

594-labeled secondary antibodies for immunocytofluorescence imaging. (b) Results 
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shown are for luminescence measurement of horseradish peroxidase-labeled 

secondary antibodies and LumiGLO® chemiluminescent substrate using a microplate 

reader in HUVEC’s exposed to normal glucose and 1, 24 and 48 hour high glucose. 

(c) A standard curve using known concentrations of nitrated BSA was generated to 

provide concentration analysis of each respectively treated HUVEC sample. To 

generate a standard curve (0-1200 μg/mL nitrated BSA) we used the procedure 

recommended by the manufacturer, Millipore. We prepared the 2400 μg/mL nitrated 

BSA standard in 1X blocking buffer. Next, we prepared 3-fold serial dilutions of the 

2400 μg/mL nitrated BSA standard in microfuge tubes (transfer 55 μL of the 2400 

μg/mL nitrated BSA standard to 110 μL of 1X blocking buffer, mixing thoroughly 

before the next transfer. Repeat this process to make successive 3-fold dilutions). 

Lastly, we used 110 μL of 1X blocking buffer in the last tube for the background. 

Each assay point used 50 μL as used in the sample protocol and was performed in 

duplicate. The concentrations of nitrated proteins that inhibit anti-nitrotyrosine 

antibody binding were estimated from the standard curve and are expressed as nitro-

BSA equivalents, i.e. an equivalent concentration of 3-nitrotyrosine in nitro-BSA that 

produces the equivalent inhibition as the nitrated proteins. 

Figure 8. Hoechst 33342 nuclear fluorescence staining to detect hyperglycemia induced 

apoptosis. The figure shown is for apoptosis analysis of HUVEC’s exposed to 

normal glucose (5.5 mM), 24 or 48 hour high glucose (25 mM) using Hoechst 33342 

fluorescence dye detection. Cells were formalin fixed and stained with Hoechst 

33342. Hoechst binds more readily to condensed chromatin found in apoptotic cells. 

Therefore, greater observed fluorescence shows increased presence of condensed 
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chromatin and apoptosis. Normal glucose HUVEC’s show weak widespread 

fluorescence, indicating generic Hoechst dye staining of healthy nuclei. HUVEC’s 

exposed to 24 and 48 hour high glucose show increasing levels of Hoechst 

fluorescence, indicating greater levels of apoptosis as high glucose exposure 

increases. 
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Figure 1a 
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Figure 1b 
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Figure 2a 
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Figure 2b 
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Figure 3a 
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Figure 4a 
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Figure 4b 
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Figure 5a 
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