Patents Granted

12-31-2019

Fusion proteins of collagen-binding domain and parathyroid hormone

Robert C. Gensure
Joshua Sakon
Osamu Matsushita
Tulasi Ponnappakkam

Follow this and additional works at: https://scholarworks.uark.edu/pat
United States Patent

Gensure et al.

FUSION PROTEINS OF COLLAGEN-BINDING DOMAIN AND PARATHYROID HORMONE

Applicants: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS, Little Rock, AR (US); OCHSNER CLINIC FOUNDATION, New Orleans, LA (US); NATIONAL UNIVERSITY CORPORATION KAGAWA UNIVERSITY, Kagawa (JP)

Inventors: Robert C. Gensure, Lexington, MA (US); Joshua Sakon, Fayetteville, AR (US); Osamu Matsushita, Okayama (JP); Tulasi Ponnappakam, Metairie, LA (US)

Assignees: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS, Little Rock, AR (US); OCHSNER CLINIC FOUNDATION, New Orleans, LA (US); NATIONAL UNIVERSITY CORPORATION KAGAWA UNIVERSITY, Kagawa (JP)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 16/517,988
Filed: Jul. 22, 2019

Prior Publication Data
US 2019/0338010 A1 Nov. 7, 2019

Related U.S. Application Data
Continuation of application No. 16/249,540, filed on Jan. 16, 2019, now Pat. No. 10,358,471, which is a continuation of application No. 15/387,817, filed on Dec. 22, 2016, now Pat. No. 10,202,434, which is a continuation of application No. 14/743,629, filed on Jun. 18, 2015, now Pat. No. 9,528,099, which is a division of application No. 13/898,058, filed on May 10, 2013.

References Cited
U.S. PATENT DOCUMENTS
5,914,126 A 6/1999 Li et al.

FOREIGN PATENT DOCUMENTS
EP 0207751 1/1987
JP 2002-58485 2/2002

Primary Examiner — Satyanarayana R Gudibande
Attorney, Agent, or Firm — Quarles & Brady LLP

ABSTRACT
Fusion proteins containing active agonist or antagonist fragments of parathyroid hormone (PTH) and parathyroid hormone related peptide (PTHrP) coupled to a collagen-binding domain are presented. The fusion proteins can be used to promote bone growth, to promote hair growth, to prevent cancer metastasis to bone, to promote immune reconstitution with a bone marrow stem cell transplant, to promote mobilization of bone marrow stem cells for collection for autologous stem cell transplant, and to treat renal osteodystrophy. Pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a non-peptidyl PTH/PTHrP receptor agonist or antagonist are also presented.

13 Claims, 7 Drawing Sheets
Specification includes a Sequence Listing.
Related U.S. Application Data

20, 2013, now Pat. No. 9,062,300, which is a division of application No. 12/594,547, filed as application No. PCT/US2008/004589 on Apr. 9, 2008, now Pat. No. 8,450,273.

(60) Provisional application No. 60/922,433, filed on Apr. 9, 2007.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0146887 A1 1/2006 Crone et al.
2008/0168562 A1 5/2008 Ferring

FOREIGN PATENT DOCUMENTS

WO 2010/087397 8/2010
WO 2012/157339 11/2012

OTHER PUBLICATIONS

European Search Report for Application No. 12857691.5 dated Feb. 8, 2016 (16 pages).
Poranapakam, T. et al., “A fusion protein of parathyroid hormone (PTH) and a collagen binding domain shows superior efficacy and longer duration of action compared to PTH(1-34) as an anabolic bone agent in normal female mice,” Bone (2009) 44:S35-S36.

References Cited

OTHER PUBLICATIONS

Gu, W.X. et al., “Mutual up-regulation of thyroid hormone and parathyroid hormone receptors in rat osteoblastic osteosarcoma 17/2.8 cells,” Endocrinology (2001) 142(1):157-64.

Katikaneni, R. et al., Parathyroid hormone linked to a collagen binding domain (PTH-CBD) promotes hair growth in a mouse model of chemotheraphy-induced alopecia in a dose-dependent manner. Anticancer Drugs. 2014. 25(7): 819-825.

* cited by examiner
Fig. 1

Collagen Binding In-Vitro

Fig. 2

Activity of PTH and PTH Analogs

pmol/well

Concentration (M)

1.0E-13 1.0E-11 1.0E-09 1.0E-07
Fig. 3

Lumbar BMD (whole mouse) after Weekly Dosing (8 weeks)

Bone Mineral Density (% Change)

Vehicle PTH(1-34) PTH-PKD-CBD PTH-CBD

Fig. 4

Lumbar BMD (Excised) after Weekly Dosing (8 weeks)

BMD mg/cm²

Vehicle PTH(1-34) PTH-PKD-CBD PTH-CBD
Serum Calcium after Weekly Injection (8 weeks therapy)

![Graph showing serum calcium levels after weekly injection]

Fig. 5

Serum Alkaline Phosphatase after Weekly Injection (8 weeks therapy)

![Graph showing serum alkaline phosphatase levels after weekly injection]

Fig. 6
Proximal Tibia, H&E Staining (8 weeks)

Vehicle

PTH-CBD

Fig. 7

Spinal BMD after Monthly Dosing in Mice

Fig. 8
Dose Response

- 4 Weeks
- 8 Weeks
- 20 Weeks
- 32 Weeks

BMD mg/cm²

mcg/Kg body weight

Fig. 11
Chemotherapy-induced Alopecia

Vehicle

PTH-CBD

Day 0

Day 14

Day 21

Fig. 12
FUSION PROTEINS OF COLLAGEN-BINDING DOMAIN AND PARATHYROID HORMONE

CROSS-REFERENCE TO RELATED APPLICATIONS

REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB

This application is being filed electronically via EFS-Web and includes an electronically submitted Sequence Listing in .txt format. The .txt file contains a sequence listing entitled "2016-12-22_58565-00077_ST25" created on Dec. 22, 2016 and is 35,340 bytes in size. The Sequence Listing contained in this .txt file is part of the specification and is incorporated by reference herein in its entirety.

BACKGROUND

Osteoporosis is a bone disease characterized by thinning of bone tissue and loss of bone density over time. It is widely prevalent in the elderly. The National Osteoporosis Foundation estimates that by 2020 nearly 14 million Americans will suffer from osteoporosis. An additional 18 million may have low bone mass, or osteopenia. Osteoporosis can occur either because the body fails to make enough new bone or reabsorbs too much old bone, or both.

Osteoporosis often progresses painlessly until a bone breaks. Any bone can be affected, but one of principal concern is the hip. A hip fracture impairs a person's ability to walk and causes prolonged and sometimes permanent disability.

Osteoporosis can be treated with anabolic therapies or antiresorptive therapies. Anabolic therapies build new bone. But antiresorptive therapies do not. Instead they slow the resorption of existing bone. A major factor in the control of bone remodeling is parathyroid hormone (PTH). PTH and its analogs are the only class of anabolic therapeutics with proven clinical efficacy. Teriparatide is an approved therapeutic that is a shortened version of PTH. It consists of the N-terminal 34 amino acid residues of mature PTH (PTH1-34)). Teriparatide is administered by once daily subcutaneous injection.

PTH is an 84-amino acid peptide. It is involved in mineral homeostasis. Increased PTH mobilizes calcium from bone in response to calcium deficient diets or vitamin D insufficiency. PTH also affects osteoblasts and stromal cells.

Although hyperparathyroidism is associated with bone loss, PTH administration causes bone gain. PTH binds to receptors on osteoblasts, specialized bone cells that synthesize bone, and this appears to prolong osteoblast life and increase osteoblast activity, causing bone gain.

PTH-related peptide (PTHrP) is a 141-amino acid protein that is homologous to PTH over its first 13 amino acids but diverges thereafter (1-3). PTH and PTHrP act through a common PTH/PTHrP receptor.

New treatments for osteoporosis are needed. Improved methods to deliver PTH, teriparatide, or other PTH/PTHrP receptor agonist agents are needed.

SUMMARY

One embodiment disclosed herein involves compositions or bioactive agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist. The inventors have constructed fusion proteins containing residues 1-33 of PTH, an active agonist fragment of PTH, fused to a collagen-binding domain (CBD) of Clostridium histolyticum. The inventors have found that the fusion protein is more active than PTH(1-34) in promoting bone growth in vivo in mice, even when administered systemically. With local administration to, for instance, a fracture site, the difference in efficacy is expected to be even greater. Peptides that are antagonists of the PTH/PTHrP receptor can also be coupled to a CBD for targeted and enhanced bioactivity.

Compositions or bioactive agents containing a collagen-binding polypeptide segment coupled to a non-peptidyl agonist or antagonist of the PTH/PTHrP receptor are also presented.

Collagen is the most abundant protein in mammals. It is the major protein component of bone and cartilage. A CBD-bioactive agent fusion protein thus targets the bioactive agent to collagen, and generally to bone and cartilage. The CBD-PTH fusion proteins have longer half-lives than PTH because of their stable binding to collagen, which tends to remove them from circulation. They can be administered locally, for instance, at a fracture site, and will tend to remain at the site of administration through binding to collagen at or near the site of administration. In support of this longer half-life, a fusion protein containing epidermal growth factor (EGF) with a CBD was shown to have much longer half life than EGF alone (8). Data is also presented in Examples 4 and 5 herein showing that a PTH-CBD fusion protein administered weekly or monthly is as effective or more effective than PTH(1-34) administered daily.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein the collagen-binding polypeptide segment is a bacterial collagen-binding polypeptide segment.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein the collagen-binding polypeptide segment is a segment of a collagenase.

One embodiment provides a composition comprising: a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist; wherein, over an 8-week period, the increase in bone mineral density of the composition injected with a vehicle intraperitoneally weekly in a mouse relative to the vehicle alone is at least 50% larger than the increase in bone mineral density of an equivalent amount of a composition consisting of the PTH/PTHrP agonist relative to the vehicle alone.
That is, the bioactive agent (composition) causes an increase in bone mineral density in mice when administered at an appropriate dose in a vehicle, such as an aqueous buffer solution. A control treatment with the vehicle alone may also result in some change in bone mineral density, for example because the mice are juveniles that are still growing or elderly mice whose bone mineral density is otherwise declining. The appropriate way to measure the effect of the bioactive agent is to measure increase in bone mineral density in experimental mice treated with the agent minus increase (or decrease) in bone mineral density in control mice treated with vehicle alone. This increase in bone mineral density with administration of the agent after correction for change in bone mineral density in control mice receiving vehicle alone is at least 50% larger than the increase in bone mineral density in mice treated with an agent containing only the PTH/PTHrP receptor agonist (not coupled to a collagen-binding polypeptide segment), again after correcting for any changes in bone mineral density in control mice treated with vehicle alone. For instance, in FIG. 3 herein, described in Example 4, the vehicle control mice have an increase in bone mineral density during an 8-week treatment period of 5%, mice treated with PTH(1-34) (a PTH/PTHrP agonist) have an increase in BMD of about 7.5%, and mice treated with a PTH-CBD fusion protein containing PTH(1-33) coupled to a collagen-binding domain have an increase in BMD of over 15%. The mice treated with the PTH-CBD fusion protein thus have an increase in BMD after correcting for the change with vehicle alone of over 10% (over 15% minus 5%), and the mice treated with PTH(1-34) have an increase in BMD after correcting for the change with vehicle alone of about 2.5% (about 7.5% minus 5%). Thus, intraperitoneal weekly injection of the fusion protein causes over 300% more (over 4-times as much, over 10% versus about 2.5%) increase in BMD as injection of the PTH(1-34).

Another embodiment provides a method comprising: a bacterial collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method comprising: a collagen-binding polypeptide segment of a collagenase; linked to a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor antagonist polypeptide segment.

Another embodiment provides a method comprising: a collagen-binding polypeptide segment; linked to a non-peptidyl PTH/PTHrP receptor antagonist.

Another embodiment provides a method comprising: a collagen-binding polypeptide segment; linked to a non-peptidyl PTH/PTHrP receptor agonist.

Another embodiment provides a method comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor agonist.

Another embodiment provides a method of promoting bone growth in a mammal comprising: administering to the mammal a composition comprising: (i) a collagen-binding polypeptide segment; linked to (ii) a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method of promoting hair growth in a mammal comprising: administering to the mammal a composition comprising: (i) a collagen-binding polypeptide segment; linked to (ii) a PTH/PTHrP receptor antagonist polypeptide segment.

Another embodiment provides a method of promoting tissue growth around an implant in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein before, during, or after the step of administering the composition, the mammal receives an implant placed in contact with tissue in the mammal; and wherein the step of administering the composition is effective to promote tissue growth around the implant.

Another embodiment provides a method of promoting immune reconstitution in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein before, during, or after the step of administering the composition, the mammal receives an administration of bone marrow stem cells. The composition enhances immune reconstitution by enhancing grafting, multiplication, and/or differentiation of the bone marrow stem cells.

Another embodiment provides a method of promoting bone marrow stem cell mobilization in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist; wherein administering the composition increases the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or 30 days after administering the fusion protein).

Another embodiment provides a method of treating or preventing renal osteodystrophy in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist; wherein the mammal is afflicted with renal osteodystrophy or renal disease and the composition is effective to reduce bone loss in the mammal.

Another embodiment provides a method of treating or preventing (i.e., reducing incidence of) bone metastasis of cancer in a mammal comprising: administering to the mammal a composition comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor antagonist; wherein the composition is administered at a dosage effective to reduce incidence of bone metastasis of cancer or slow the growth of metastatic cancer in bone.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an SDS-PAGE gel showing the results of an experiment showing that two PTH-CBD fusion proteins bind to collagen.

FIG. 2 is a graph showing in vitro cAMP accumulation in cells stimulated with PTH(1-34) or PTH-CBD fusion proteins.

FIG. 3 is a bar graph showing increase in spinal bone mineral density in mice treated with weekly intraperitoneal injection for 8 weeks of buffer (vehicle), PTH(1-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.
FIG. 4 is a bar graph showing absolute spinal bone mineral density of excised spine segments from mice sacrificed after treatment for 8 weeks with weekly intraperitoneal injection of buffer (vehicle), PTH(1-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 5 is a bar graph showing serum calcium levels of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(1-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 6 is a bar graph showing serum alkaline phosphatase concentration of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(1-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 7 is a micrograph of sections of tibia bone from a vehicle-treated control mouse and a mouse receiving 8 weeks of weekly injection of PTH-CBD fusion protein. The sections were stained with hematoxylin and eosin stain. The micrograph shows increased cortical and trabecular bone mass in the bone of the mouse treated with PTH-CBD.

FIG. 8 is a line graph of bone mineral density over time for mice treated monthly with PTH-CBD, PTH(1-34), or vehicle control for 6 months. At 6 months, the group receiving PTH(1-34) was treated daily for two weeks (indicated by the arrow on the X axis). Then all groups were untreated for the rest of the study.

FIG. 9 is a line graph of bone mineral density over time for mice treated with PTH(1-34) daily for 14 days (PTI), with the PTH-CBD fusion protein once at the initiation of the study (CBD-PTH-6), with PTH-CBD fusion protein at time 0 and a second time at 3 months (CBD-PTH-3), and with vehicle control.

FIG. 10 is a bar graph showing serum alkaline phosphatase concentration of mice after 8 weeks of weekly injections of buffer (vehicle), PTH(1-34), PTH-PKD-CBD fusion protein, or PTH-CBD fusion protein.

FIG. 11 is a bar graph of bone mineral density in mice receiving a single dose of a range of dosage amounts of PTH-CBD by subcutaneous injection. Bone mineral density was followed for 32 weeks. Each dosage was given to two mice.

FIG. 12 shows photographs of mice described in Example 8 having chemotherapy-induced alopecia and a shaved spot on their backs, treated with the PTH-CBD fusion protein by subcutaneous injection at the hairless spot, or untreated controls. There are 3 mice in each group, and photos are taken at 0 days, 14 days, and 21 days after the injection of PTH-CBD. The photos show greater hair growth in the subjects treated with the PTH-CBD fusion protein.

DETAILED DESCRIPTION

This disclosure involves compositions, including bioactive agents and fusion proteins, comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist or antagonist. In a preferred embodiment, the compositions are fusion proteins where the PTH/PTHrP antagonist or agonist is a polypeptide segment, where the collagen-binding polypeptide segment and PTH/PTHrP polypeptide segment are linked together in a fusion protein. But the PTH/PTHrP agonist or antagonist portion can also be a non-peptidyl agonist or antagonist.

The terms “fusion protein” and “fusion polypeptide” may be used to refer to a single polypeptide comprising two functional segments, e.g., a collagen-binding polypeptide segment and a PTH/PTHrP receptor agonist polypeptide segment. The fusion proteins may be any size, and the single polypeptide of the fusion protein may exist in a multimeric form in its functional state, e.g., by cysteine disulfide connection of two monomers of the single polypeptide. A polypeptide segment may be a synthetic polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a polypeptide or may comprise a mutation.

The collagen-binding polypeptide segment is a polypeptide that binds collagen and may be part of a larger fusion protein, bioactive agent, or pharmaceutical agent. Determination of whether a composition, polypeptide segment, fusion protein, or pharmaceutical or bioactive agent binds collagen can be made as described in Example 2 below. Briefly, it is incubated with collagen in binding buffer, and the mixture is then filtered through a filter that would otherwise allow it to pass through but that blocks the collagen and therefore holds back materials that bind to the collagen. The filtrate is then assayed for the presence of the composition, polypeptide segment, fusion protein, or pharmaceutical or bioactive agent. Preferably, at least 90%, more preferably at least 99% of the collagen-binding composition, polypeptide segment, fusion protein, or pharmaceutical or bioactive agent is retained by the filter in this assay, as compared to when the filtration is performed without collagen.

One embodiment disclosed herein involves fusion proteins comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist polypeptide segment.

The PTH/PTHrP receptor agonist polypeptide segment may be a synthetic polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a polypeptide or may comprise a mutation. Agonist activity with the PTH/PTHrP receptor can be assayed as described in Example 3 below by a cAMP stimulation assay. An agonist will stimulate cAMP synthesis. Preferably, an agonist can activate receptor activity at least 10% as much as PTH(1-34).

In a specific embodiment when injected intraperitoneally weekly in mice the agonist fusion protein causes at least 50% more increase in bone mineral density (as compared to vehicle control) than an equimolar amount of a polypeptide consisting of the PTH/PTHrP receptor agonist polypeptide segment when injected intraperitoneally weekly (as compared to vehicle control) over an 8-week period (as in Example 4 below). Likewise, in other specific embodiments, the fusion protein causes a statistically significantly (p<0.05) greater increase in BMD, or at least twice as much increase in BMD, than an equimolar amount of a polypeptide consisting of the PTH/PTHrP receptor agonist polypeptide segment or than PTH(1-34).

In some embodiments of the fusion proteins, the collagen-binding polypeptide segment is a bacterial collagen-binding polypeptide segment. In a more specific embodiment, it is a Clostridium collagen-binding polypeptide segment.

In some embodiments of the fusion proteins, the collagen-binding polypeptide segment is a segment of a collagenase, or a bacterial collagenase, or a Clostridium collagenase. Preferably, the segment is only a portion of the collagenase and the collagen-binding polypeptide segment does not have collagenase activity.

In some embodiments, the collagenase is CoH, SEQ ID NO:6.

In some embodiments, the collagen-binding polypeptide segment is or includes residues 501-1021 of SEQ ID NO:6 (residues 38-158 of SEQ ID NO:1), or a fragment of residues 38-158 of SEQ ID NO:1 at least 8 amino acid residues in length.
In some embodiments, the collagen-binding polypeptide segment is at least 90%, at least 95%, at least 96%, at least 98%, or at least 99% identical to residues 38-158 of SEQ ID NO:1.

In some embodiments, the collagen-binding polypeptide segment is or includes residues 907-1021 of SEQ ID NO:6 (residues 37-251 of SEQ ID NO:2).

In specific embodiments, the collagen-binding polypeptide segment is or comprises a fragment of residues 901-1021 of SEQ ID NO:6, e.g., a fragment of at least 8, at least 10, at least 20, at least 30 at least 40, or at least 50 consecutive amino acid residues of residues 901-1021 of SEQ ID NO:6.

Among other proteins the collagen-binding segment can be derived from are CoG (5), a class I collagenase from Clostridium histolyticum. CoG1 is a class II collagenase (6).

The collagen-binding polypeptide segment may also be a polypeptide segment from bone sialoprotein, fibronectin, or von Willebrand factor, as described in references (30-33), or may be polyglutamic acid (34).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is a PTH or PTHrP polypeptide segment. One human isoform of PTH is SEQ ID NO:7. One human isoform of PTHrP is SEQ ID NO:8.

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-33 of SEQ ID NO: 1 (residues 1-33 of PTH (SEQ ID NO:7)).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-34 of PTH (SEQ ID NO:7). In other embodiments, it is a fragment of residues 1-34 of PTH (SEQ ID NO:7).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-84 of PTH (SEQ ID NO:7).

In specific embodiments, the PTH/PTHrP receptor agonist polypeptide segment is or includes residues 1-14 of PTH (SEQ ID NO:7).

In specific embodiments, the PTH/PTHrP receptor agonist is a PTH or PTHrP polypeptide segment.

In one embodiment, the PTH/PTHrP receptor agonist polypeptide segment is N terminal to the collagen-binding polypeptide segment in the fusion protein. That is, the two polypeptide segments each have an N-terminal and a C-terminal, and the N-terminal of the collagen-binding polypeptide segment is linked directly or through a linker polypeptide segment to the C-terminal of the PTH/PTHrP agonist polypeptide segment.

The two polypeptide segments of the fusion proteins can be linked directly or indirectly. For instance, the two segments may be linked directly through, e.g., a peptide bond or chemical cross-linking, or indirectly, through, e.g., a linker segment or linker polypeptide.

This disclosure also provides a fusion protein comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor antagonist polypeptide segment.

The PTH/PTHrP receptor antagonist polypeptide segment may be a synthetic polypeptide or a naturally occurring polypeptide. Such polypeptides may be a portion of a polypeptide or may comprise a mutation. Antagonist activity with the PTH/PTHrP receptor can be assayed as described in Example 3 below by a cAMP stimulation assay. An antagonist will inhibit stimulation of cAMP synthesis by PTH(1-34). Preferably, when mixed with PTH(1-34), the antagonist can inhibit activation of the receptor by PTH(1-34) by at least 50%. In contrast, when not mixed with PTH, the antagonist activates the receptor by less than 5% of the receptor’s maximal activation by PTH(1-34).

In the fusion proteins containing a PTH/PTHrP receptor antagonist, the collagen-binding polypeptide segment can be the same segments as found in the fusions containing a PTH/PTHrP receptor agonist.

In some embodiments, the PTH/PTHrP receptor antagonist is a PTH or PTHrP polypeptide segment.

The PTH/PTHrP receptor antagonist can include in one embodiment PTH(7-34), i.e., residues 7-34 of PTH (SEQ ID NO:7). In another embodiment, it is or includes residues 7-33 of PTH (SEQ ID NO:7). In other embodiments, it is a fragment of residues 7-34 of SEQ ID NO:8.

In another embodiment, the PTH/PTHrP receptor antagonist includes PTH(7-14), i.e., residues 7-14 of PTH (SEQ ID NO:7).

In another embodiment, the PTH/PTHrP receptor antagonists include residues 1-14 of PTH with an N-terminal extension. Adding an N-terminal extension to PTH or active N-terminal fragments of PTH converts the PTH peptides to antagonists. The N-terminal extension can be 1, 2, 3, 4, 5, or more amino acids in length. The identity of the amino acids in the N-terminal extension is typically not important. In one embodiment, the PTH/PTHrP receptor antagonist includes residues 1-33 of PTH with a Gly-Ser extension at the N-terminus (SEQ ID NO: 11).

In another embodiment, the PTH/PTHrP receptor antagonist includes PTHrP(7-34), i.e., residues 7-34 of SEQ ID NO:8, or a fragment of residues 7-34 of SEQ ID NO:8.

In another embodiment, the PTH/PTHrP receptor antagonist includes mouse TIP(7-39) (reference 18). Other PTH/PTHrP receptor antagonists that may be used in the fusion proteins are also disclosed in reference (18).

In one embodiment, the PTH/PTHrP receptor antagonist polypeptide segment is N terminal to the collagen-binding polypeptide segment in the antagonist fusion protein. That is, the two polypeptide segments each have an N-terminal and a C-terminal, and the N-terminal of the collagen-binding polypeptide segment is linked directly or through a linker polypeptide segment to the C-terminal of the PTH/PTHrP antagonist polypeptide segment.

As with the agonist, the two polypeptide segments of the antagonist fusion proteins can be linked directly or indirectly.

This disclosure also provides a method of promoting bone growth in a mammal involving administering to the mammal a fusion protein comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP agonist polypeptide segment.

In particular embodiments, administering the fusion protein to the mammal increases trabecular bone mineral volume and/or trabecular bone mineral density or slows loss of trabecular bone mineral volume and/or trabecular bone mineral density.

In particular embodiments, administering the fusion protein to the mammal increases cortical bone mineral volume and/or cortical bone mineral density or slows loss of cortical bone mineral volume and/or cortical bone mineral density. Bone mineral volume is visible from histologic staining of slides. The term “bone mineral volume” as used herein refers to the volume occupied by mineralized bone. “Bone mineral density” as used herein refers to areal bone density, i.e., the amount of bone mineral per unit 2-dimensional area of bone. It can be measured by x-rays, or DEXA (Example 4 below).

The inventors have found that the PTH-CBD fusion protein increases both the bone mineral volume and density of both trabecular and cortical bone. The effect on cortical bone is surprising, because PTH(1-34) has been shown to
have little effect on cortical bone mineral density or even decrease cortical bone mineral density, even as it increases trabecular bone mineral density (25-27).

The fusion protein can be administered systemically, e.g., by intravenous injection. The inventors have found that when administering the fusion protein subcutaneously it binds locally at the site of injection if the fusion protein is dissolved in neutral pH buffer. But if the fusion protein is dissolved in pH 4.5 or below buffer, the collagen-binding domain does not bind collagen, and the fusion protein has time to disperse systemically before it binds collagen elsewhere in the body at neutral pH. Thus, in one embodiment, systemic administration of the fusion proteins involves administering the fusion protein dissolved in buffer or aqueous solution at a pH lower than about 5.0 or at pH 4.5 or below. In another embodiment, systemic administration of the fusion proteins involves administering the fusion proteins dissolved in aqueous solution at pH lower than about 6.0.

In particular embodiments, the fusion protein is administered by injection, e.g., intravenous or subcutaneous or intraperitoneal injection. Administration by injection may be systemic administration or local administration. In particular embodiments, the fusion protein is administered in an orthopedic implant. Examples of orthopedic implants in which the fusion protein may be administered include an orthopedic bone void filler, an adjunct to bone fracture stabilization, an intramedullary fixation device, a joint augmentation/replacement device, a bone fixation plate, a screw, a tack, a clip, a staple, a nail, a pin, a rod, an anchor, a screw augmentation device, or a cranial reconstruction device. Another example of an orthopedic implant is a dental implant. Examples of dental implants include an artificial tooth root replacement, implant-supported bridges and dentures. Other examples will be known to those of skill in the art.

To be administered in an implant, as used herein, means that the fusion protein may be associated with the implant, by for instance, adhesion, covalent or non-covalent bonding to the surface of the implant, entrapment in pores of a polymer coating of an implant, or mixing with a component of the implant, such as ceramic particles. If the ceramic particles are porous, the fusion protein can be entrapped in the pores. By “entrapped in the pores” it is meant that diffusion of the fusion protein out of the material is slowed due to the pore structure, not necessarily that the fusion protein cannot diffuse out of the material until the material breaks down.

For instance, the fusion protein can be entrapped in a biodegradable polymer as described in U.S. Pat. No. 7,060,299. It may be formed into particles with a polyelectrolyte gum, and then the particles entrapped in a matrix of a polymer as described in U.S. Pat. No. 7,060,299. The polymer can be formed as a coating on the surface of an implant.

The fusion protein can also be bonded to a surface such as gold on an implant through sulhydryls of the protein, as described in U.S. Pat. No. 6,428,579.

The fusion protein can be mixed with a ceramic or with ceramic particles, including for example hydroxyapatite or tri-calcium phosphate, both of which are often used as fillers for bone remodeling (U.S. Published Patent Application No. 20030091609).

A porous polymer can be formed by forming the polymer in an organic solvent with particles of a material that is not soluble in the organic solvent, such as salt or sugar crystals. After the polymer is cured, the particles can be removed to expose the open pores by washing the polymer matrix in an aqueous solution that solubilizes the salt or sugar particles. Incubating the polymer matrix with a solution of the fusion protein can allow the fusion protein to diffuse into the pores of the polymer and become entrapped therein (U.S. Published Patent Application No. 20030091609).

Other methods of adhering proteins to a surface of a material are disclosed in U.S. Pat. No. 6,617,142. Still other methods are available to those of skill in the art.

The fusion protein can be mixed with demineralized bone matrix (DBM). Demineralized bone matrices are prepared by acid extraction of allograft bone, resulting in loss of most of the mineralized component but retention of collagen and noncollagenous proteins, including growth factors. DBM is used as a bone-graft substitute or extender. Since DBM contains extensive amounts of collagen, the fusion proteins will bind to the collagen of DBM if mixed with DBM in binding buffer.

In specific embodiments, the orthopedic implant includes hydroxyapatite, tricalcium phosphate, or demineralized bone matrix. In other embodiments, the orthopedic implant includes a polymer. Many natural and synthetic polymers may be included in an orthopedic implant (e.g., as a coating). Examples of natural porous polymers include gelatin, fibrin, collagen, elastin, hyaluronic acid, chondroitin sulfate, dermal sulfate, heparin sulfate, heparin, cellulose, chitin, chitosan, mixtures or copolymers thereof, or a wide variety of others typically disclosed as being useful in implantable medical devices. Examples of synthetic porous polymers include silicone, polyurethane, polysulfone, polylethylene, polypolycarbonate, polycarboxylic acid, polyvinylpyrrolidone (PVP), maleic anhydride polymers, polyanhydrides, polynyl vinyl alcohol (PVA), polylethylene oxides, polyacrylic acid polymers, polytetrafluoroethylene, polyhydroxyethylmethacrylic acid (PHEMA), polylaminopropylmethacrylamide (PAPMA), polyacrylamido-2-methylpropansulfonic acid (PAMPS), polycrylamide, polycrylic acid, mixtures or copolymers thereof, or a wide variety of others typically disclosed as being useful in implantable medical devices. Additional examples of synthetic porous polymers include biodegradable synthetic porous polymers, such as polyglycolic acid, polylactic acid, polylactoonone, poly(--caprolactone), polyanhydrides, poly(3-hydroxybutyrate), poly(ortho esters), poly(amine acids), polyiminocarbonates, and mixtures or copolymers thereof.

Thus, another embodiment provides a method of promoting tissue growth around an implant in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment. Before, during, or after the step of administering the fusion protein, the mammal receives an implant placed in contact with tissue in the mammal; and the step of administering the fusion protein is effective to promote tissue growth around the implant. The tissue growth promoted around the implant may be bone, cartilage, or other tissue. In one embodiment, it may be skin.

In a particular embodiment, the step of administering the fusion protein comprises placing an implant in contact with tissue in the mammal, wherein the implant comprises the fusion protein.

In a particular embodiment, the implant is a dental implant.

In another embodiment, the implant is a bone graft.

In other embodiments, the implant is an orthopedic bone void filler, an adjunct to bone fracture stabilization, an intramedullary fixation device, a joint augmentation/re-
placement device, a bone fixation plate, a screw, a tack, a clip, a staple, a nail, a pin, a rod, an anchor, a screw augmentation device, or a cranial reconstruction device.

In specific embodiments, the implant comprises intact bone. Here, in one embodiment, the implant is incubated with the fusion protein for a time sufficient to allow the fusion protein to bind to collagen in the intact bone before implanting the implant in the mammal.

In specific embodiments, the implant comprises bone cement, hydroxyapatite, or demineralized bone.

In specific embodiments, the implant comprises osteoblasts.

In specific embodiments, the implant is predominantly plastic, metal, or ceramic (i.e., the majority of its mass is plastic, metal, or ceramic material).

Another embodiment provides a method of promoting hair growth in a mammal comprising: administering to the mammal a fusion protein comprising: a collagen-binding polypeptide segment; linked to a PTH/PTHrP receptor agonist polypeptide segment.

We have found that fusion proteins containing the receptor agonists were more effective than those containing receptor antagonists in promoting hair growth in mice treated with cyclophosphamide to induce chemotherapy-induced alopecia (Example 8 below). A fusion protein containing a PTH/PTHrP receptor agonist was also tested and also induced some hair growth, but the hair that grew appeared less thick (data not shown). Thus, fusion proteins containing either a PTH/PTHrP receptor agonist or antagonist can be used to promote hair growth, but fusion proteins containing a receptor agonist are preferred for chemotherapy-induced alopecia.

To promote hair growth, the fusion proteins may be administered locally at a desired site of hair growth, e.g., by subcutaneous or intradermal injection. The fusion proteins will bind to collagen in the skin near the site of subcutaneous or intradermal injection and remain bound at the site for long-lasting effect. The fusion proteins can also be administered systemically to promote hair growth. This is preferred to treat chemotherapy-induced alopecia.

In one embodiment of the method of promoting hair growth, the mammal is afflicted with chemotherapy-induced alopecia.

Another embodiment provides a method of promoting immune reconstitution in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment; wherein before, during, or after administering the fusion protein, the mammal receives an administration of bone marrow stem cells. As used here, the term “bone marrow stem cells” may refer to any stem cells that can implant in bone marrow and differentiate into a variety of types of lymphocytes. Thus, the stem cells may be obtained, for instance, from umbilical cord blood, embryos, the mammal’s own blood or bone marrow, or another mammal’s blood or bone marrow. Administration of the fusion protein is expected to show an increase in survival following bone marrow ablation and a stem cell transplant in mice. It is also expected to increase the rate of neutrophil number increase—i.e., neutrophil numbers are greater at specific time points (e.g., 7, 14, 21, or 30 days) after transplant in patients or experimental animals receiving the fusion protein in conjunction with the stem cell transplant than in a comparison group not receiving the fusion protein.

In one embodiment, the stem cells will be umbilical cord blood stem cells. Umbilical cord blood is an especially useful alternative for patients in need of a stem cell transplant who do not have an MHC-matched related or unrelated donor. But the number of stem cells in a single unit of umbilical cord blood is often insufficient for successful engraftment after a bone marrow stem cell transplant (10). Administration of the fusion protein disclosed herein containing a PTH/PTHrP receptor agonist is expected to improve grafting of the stem cells and increase the odds of a successful graft with one or two units of umbilical cord blood.

In another embodiment, the stem cells will be autologous blood stem cells. Often too few stem cells are mobilized from a patient to support autologous stem cell transplant. Administering the fusion protein is expected to enhance the chance of successful engraftment when the number of stem cells transplanted is less than optimal. It also is expected to enhance the chance of successful engraftment when the number of stem cells transplanted is considered adequate. Preferably the fusion protein would be administered before or together with administration of the stem cells to promote engraftment of stem cells in the bone marrow. But it may also be administered after administration of the stem cells.

Another embodiment provides a method of promoting bone marrow stem cell mobilization in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment. Administering the fusion protein is expected to increase the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or 30 days after administering the fusion protein). In a specific embodiment, this method further comprises collecting stem cells from blood of the mammal after the step of administering the fusion protein to the mammal.

Autologous stem cell transplantation cures lymphomas in many patients and improves survival in multiple myeloma. But approximately 20% of patients do not mobilize sufficient stem cells to safely support autologous stem cell transplantation (11). The fusion protein described herein containing a PTH/PTHrP receptor agonist is expected to promote stem cell mobilization.

Another embodiment is expected to provide a method of treating myocardial infarction in a mammal comprising: administering to a mammal after the mammal suffers a myocardial infarction a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method of treating or preventing renal osteodystrophy in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment.

Another embodiment provides a method of treating or preventing renal osteodystrophy or renal disease. In this embodiment, the fusion protein is expected to be effective to reduce bone loss in the mammal.

One embodiment is expected to provide a method of treating or reducing incidence of bone metastasis of cancer in a mammal comprising: administering to the mammal a fusion protein comprising: (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment.

PTHrP is positively associated with bone metastasis (15, 16, 17). Breast carcinoma metastatic to bone expresses PTHrP in more than 90% of cases, compared with 17% in metastases to nonbone sites (15). In a mouse model, human tumor cells transfected with a cDNA to overexpress human
PTHrP had increased metastasis to bone (15). Conversely, administration of an anti-PTHrP antibody decreased bone metastases (15, 17).

Binding of PTHrP to its receptor alters the microenvironment of bone favorably to promote metastasis. A fusion protein containing a CBD segment and a PTH/PTHrP receptor antagonist will likely occupy the receptor in bone and thus decrease the occurrence of metastasis. It is expected to slow the growth of metastatic tumors in bone.

In all the embodiments described herein, fusion proteins comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor agonist polypeptide segment can be replaced by pharmaceutical agents comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor agonist or a non-peptidyl PTH/PTHrP receptor agonist. An example of a non-peptidyl PTH/PTHrP receptor agonist is compound AH3960 (19).

![Chemical Structure](image)

AH3960 contains two amino groups. These can be used to cross-link the compound to amino groups on the collagen-binding polypeptide segment through a cross-linker such as DSG (disuccinimidyl glutarate) or through the combination of SANH (succinimidyl-4-hydrazinonicotinate acetone hydrazone) and SFB (succinimidyl-4-formyl benzoxate). AH3960 can be cross-linked through its amino group to a carboxyl group of the collagen-binding polypeptide segment by EDC (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride). These products are available from Pierce (piercenet.com, Thermo Fisher Scientific Inc., Rockford, III.). Protocols and reaction conditions are also available in the product literature from Pierce (piercenet.com).

Likewise, in the embodiments described herein involving receptor antagonist fusion proteins, fusion proteins comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist polypeptide segment can be replaced by pharmaceutical agents comprising (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist or a non-peptidyl PTH/PTHrP receptor antagonist.

Thus, another embodiment provides a pharmaceutical agent comprising: (a) a collagen-binding polypeptide segment linked to (b) a PTH/PTHrP receptor antagonist, where the antagonist may be non-peptidyl. Non-peptidyl antagonists of the PTH/PTHrP receptor include compounds disclosed in (20), including compound 2 below:

![Chemical Structure](image)

Compound 2 can be coupled through its amino group to amino or carboxyl groups of the collagen-binding polypeptide segment as described above for compound AH3960. In compound 3 of reference (20), the amino group of compound 2 is replaced with a 5 carboxyl group. This can be coupled to amino groups of the collagen-binding polypeptide segment with EDC.

In another embodiment of the pharmaceutical agents comprising (a) a collagen-binding polypeptide segment; linked to (b) a PTH/PTHrP receptor agonist polypeptide segment or antagonist polypeptide segment, segment (a) and segment (b) are separate polypeptides, and the two polypeptides are linked by chemical cross-linking. The two polypeptides can be cross-linked through amino groups by reagents including DSG (disuccinimidyl glutarate) or glutaraldehyde. They can also be cross-linked through amino groups by derivatizing one polypeptide with SANH (succinimidyl-4-hydrazinonicotinate acetone hydrazone) and the other with SFB (succinimidyl-4-formyl benzoxate), and then mixing the two derivatized polypeptides to cross-link. The two polypeptides can be cross-linked between an amino group of one polypeptide and a carboxyl of the other by reaction with EDC (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride). The polypeptides can also be cross-linked (e.g., covalently coupled) by any other suitable method known to a person of ordinary skill in the art. These cross-linking reagents are available from Pierce (piercenet.com, Thermo Fisher Scientific Inc., Rockford, Ill.). Protocols and reaction conditions are also available in the product literature from Pierce (piercenet.com). These and other applicable cross-linking methods are described in U.S. published patent applications 20060258569 and 20070224119.

Based on the data herein, the individual doses of pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor agonist polypeptide segment can be approximately the same on a molar basis as doses used for PTH (1-34). But the pharmaceutical agents comprising a collagen-binding polypeptide segment linked to a PTH/PTHrP receptor antagonist polypeptide segment can be administered less frequently, because linking the agonist to the collagen-binding polypeptide segment gives it much more prolonged activity in vivo.

The following examples are presented to illustrate various aspects of the disclosure without limiting the scope thereof.
EXAMPLES

Example 1

Expression of PTH-Collagen-Binding Domain Fusion Proteins

A plasmid expressing a PTH-CBD fusion protein was constructed by inserting the PTH-CBD coding sequence into pGEX-5X-1 (GE Lifeiences). The sequence of the resulting plasmid is SEQ ID NO:3. Nucleotides 258 to 1409 of SEQ ID NO:3 encode a fusion protein containing glutathione-S-transferase (GST) fused at its C terminus to a PTH-CBD fusion protein. SEQ ID NO:4 is the full encoded GST-PTH-CBD fusion protein. Residues 222-225 are EQR (SEQ ID NO:5), a factor Xa protease recognition site. Residues 226-233 correspond to NGQ ID NO:1 and are the PTH-CBD fusion protein. Factor Xa cleaves after the Arg that is amino acid residue 225 of SEQ ID NO:4 to release SEQ ID NO:1, the PTH-CBD fusion protein. Residues 1-33 of SEQ ID NO:1 are the N-terminal 33 residues of PTH. Residues 34-158 are a collagen-binding domain (CBD) of the CoH collagenase of Clodatrum histolyticum. The CBD of the fusion protein corresponds to residues 901-1021 of CoH (SEQ ID NO:6). Residues 34-107 of SEQ ID NO:1 are a linker segment.

A second PTH-CBD fusion protein, PTH-PKD-CBD (SEQ ID NO:2), was expressed from the a plasmid otherwise identical to SEQ ID NO:3 with a longer insert segment from the coH gene to express. Like SEQ ID NO:1, it was expressed as part of a GST fusion protein and cleaved from GST by Factor Xa. Residues 1-33 of SEQ ID NO:2 are the N-terminal 33 residues of PTH. Residues 34-107 are a linker segment. And residues 158-222 are residues 307-1021 of CoH. This fusion protein includes a polycystic kidney disease (PKD) domain of CoH (residues 307-900 of CoH), in addition to the collagen binding domain of residues 901-1021 of CoH found in both SEQ ID NO:1 and SEQ ID NO:2. It was thought that including the PKD domain might minimize domain-domain interferences or other steric hindrances between the PTH domain and CBD domain.

Purification of CBD Fusion Proteins—

E. coli BL21 was transformed with the recombinant plasmids. Each clone was grown in one liter of 2YT-G medium to an optical density at 600 nm of 0.7. Isopropyl-1-thio-beta-D-galactopyranoside was added to a final concentration of 0.1 mM, and cells were grown for another 2 hours. In order to prevent proteolysis during the purification procedures, phenylmethylsulfonylfluoride was added to the culture to a final concentration of 1 mM. Cells were harvested by centrifugation, and disrupted in a French pressure cell. Cell debris was removed by centrifugation, and the cleared lysate was used for the purification of the fusion protein by a batch method using glutathione-SEPHAROSE 4B beads (volume: 4-ml; GE Lifeiences) as described by the manufacturer. The GST-tag of each fusion protein was cleaved by incubation with Factor Xa (New England Biolabs, 0.2 μg/mg of fusion protein) for 20 h at room temperature. The cleaved protein fractions were dialyzed three times against 1 liter of 50 mM Tris-HCl (pH 7.5), 100 mM NaCl at 4° C. to remove glutathione. The N-terminal GST fragment was removed by applying the fraction to a glutathione-SEPHAROSE 4B column (bed volume, 2 ml). Ten amino acid residues from the N terminus were confirmed for each fragment on an automatic protein sequencer (Model 492, Perkin-Elmer). The molecular mass of the purified C-terminal fragment was confirmed by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS).

Example 2

Demonstration of Collagen Binding by the PTH-CBD Fusion Proteins

Five mg insoluble collagen type I (C-9879; Sigma) was added to an ULTRA FREE micro centrifugal device, 0.22 micrometer low-binding DURAPOR membrane (Millipore, Bedford, Mass.) and placed in a micro centrifuge tube (Catalogue No: U5000GV00-Millipore). All steps were carried at room temperature unless otherwise specified. Collagen binding buffer (200 microliters) (50 mM Tris-HCl, pH 7.5, 5 mM CaCl2) was added to swell the collagen fibers. After incubation for 30 minutes, the tube was centrifuged at 15,000 g for 15 minutes. Centrifugation was repeated after changing the direction of the tube in the rotor. The collagen precipitate was resuspended in 60 μl of collagen binding buffer containing 100 pmole of fusion protein and incubated for 30 minutes. The mixture was then centrifuged through the device at 15,000×g for 15 minutes. Proteins bound to the collagen would be retained by the filter along with the collagen. Proteins that do not bind to collagen would pass through in the filtrate. The filtrate was analyzed by SDS-PAGE.

FIG. 1 shows a photograph of the SDS-PAGE gel. Lane 1 on the left is molecular weight markers. Lane 2 is the filtrate of a mixture containing PTH-PKD-CBD fusion protein filtered without collagen. Lane 3 shows the filtrate of a mixture of PTH-PKD-CBD fusion protein with collagen. Lanes 4 and 5 show the filtrate of the PTH-CBD fusion protein incubated without and with collagen, respectively. The result shows that both fusion proteins failed to pass through the filter when incubated with collagen, but did pass through when incubated without collagen. This shows both fusion proteins bound to collagen.

Example 3

In Vitro Biological Activity of PTH-CBD Fusion Proteins

HKrK-B7 cells, which are LLCPK cells stably transfected with the human PTH1R, were kindly provided by Tom Gardella, Endocrine Unit, Massachusetts General Hospital. The cells are described in reference (7). HKrK-B7 cells were grown in 24 well plates to 90 percent confluence, which was typically achieved 2-3 days after initial seeding. The culture media was DMEM (with L-glutamine)+10% fetal bovine serum (FBS).

When the cells reached 90% confluence, the cells were rinsed once with 0.5 ml binding buffer (50 mM Tris-HCl, pH 7.8, 100 mM NaCl, 2 mM CaCl2, 5 mM KCl, 0.25% horse serum, 0.0025% fetal bovine serum). The plate was placed on ice, and 200 microliters IBMX buffer (DMEM without antibiotic and FBS, 35 mM HEPES, pH 7.4, 3-isobutyl-1-methylxanthine (IBMX), 1 mg/ml bovine serum albumin) was added per well. IBMX is a phosphodiesterase inhibitor. Peptide or PTH was added at the indicated concentrations in 100 microliters binding buffer. The cells were then incubated with the peptide, PTH, or no addition (control) for 1 hour at room temperature. The media was then removed and the plates were placed on dry ice to freeze the cells for 5
minutes. 500 microliters 50 mM HCl was next added to each well. The plates were kept frozen until the immunnoassay.

cAMP concentration was measured by immunoassay (Biomedical Technologies, Inc., Stoughton, Mass., USA; cAMP EIA kit, #BT-730).

The results of the cAMP concentration from the lysed cells in the wells is shown in FIG. 2 for cells incubated with from 1x10^{-12} M to 1x10^{-7} M fusion peptide or PTH(1-34), PTH(1-34), PTH-CBD (SEQ ID NO: 1), and PTH-PKD-CBD (SEQ ID NO:2) all stimulated cAMP synthesis to a similar extent.

Example 4

In Vivo Activity of PTH-CBD Fusion Proteins

Healthy female C57BL/6J mice, 5-8 weeks age and 13-18 grams, were purchased from the Jackson laboratory (Bar Harbor, Me., USA) and they were housed in cages at the Animal facility in Ochsner Clinic Foundation under standard conditions. Animals were maintained for a 2-week acclimation period prior to experiments.

Baseline whole body DEXA (dual emission x-ray absorptiometry) measurements were obtained in duplicate for each animal using a Hologic QDR-1000plus instrument adapted for application in the mouse as follows. An ultrahigh resolution mode (line spacing 0.03950 cm and resolution 0.03749 cm) was used. The animals were anesthetized with pentobarbital and positioned in the prone position for DEXA scanning. Bone mineral density (BMD) was determined within an 8x16 pixel box covering the region of the lumbar spine. BMD for each single pixel vertical stripe was measured, and the peak values were determined. Validity for this technique was ascertained by comparing the duplicate measurements in each mouse.

Animals were injected intraperitoneally weekly for eight weeks with either vehicle alone (collagen binding buffer, pH 7.5, 50 mM Tris HCl, 5 mM CaCl2) or vehicle containing PTH analogs as follows:

Group A (8 animals): vehicle
Group B (6 animals): 80 μg/kg/dose of human PTH(1-34)
Group C (6 animals): 546 μg/kg/dose of PTH-PKD-CBD (SEQ ID NO:2)
Group D (6 animals): 344 μg/kg/dose of PTH-CBD (SEQ ID NO: 1)

The doses of the three PTH compounds were adjusted based on their molecular weights, such that each was given at the same molar equivalent (0.02 micromoles/kg/dose).

One week after the 8th injection, animals were sacrificed with a lethal dose of pentobarbital. Duplicate BMD measurements were obtained for each mouse by the technique described above. Percent increase in BMD for each mouse was calculated, and the results (average±s=standard error) are shown in FIG. 3. Statistical significance was determined using a one-tailed paired T test. Statistically significant differences from vehicle control are shown by * (p<0.05) and ** (p<0.01) in FIGS. 3 and 4.

At the conclusion of the study, lumbar spine segments of the mice were also excised from the soft tissue and BMD measurements of the excised spine segments were taken. The BMD results of the excised spine segments are the average for the entire bone segment, not peak BMD measurements like those that were obtained from the whole animal scans.

The statistical comparisons used were ANOVA across groups (p<0.05), and Bonferroni comparisons of each group vs. control.

Example 5

Monthly Administration of PTH-CBD In Vivo

With the encouraging results showing efficacy of PTH-CBD to increase bone mineral density after weekly administration, we next tested the efficacy of this fusion protein with monthly administration. Mice received intraperitoneal injection of PTH-CBD (344 μg/kg/dose), PTH (80 μg/kg/dose), or vehicle alone monthly in buffer as described in Example 4. There were 10 mice in each group. Bone mineral density (BMD) was measured by DEXA as described in Example 4 every 2 months. DEXA measurements were correlated to absolute bone mineral density by correlation between DEXA measurements and measurements from excised tissue in the weekly study of Example 4.

Serial measurements of BMD every 2 months showed that monthly administration of PTH-CBD resulted in significant increases in BMD after 4 months of therapy, which were sustained for 6 months of therapy (FIG. 8) (p<0.01, shown by ** in FIG. 8). Not surprisingly, monthly administration of PTH(1-34) had no effect on bone mineral density. After 6 months (as indicated by the arrow in FIG. 8), we discontinued administration of PTH-CBD, and subjected the animals in the PTH(1-34) group 2 weeks of daily therapy.
Measurement of BMD 2 months later showed that the gains in bone mineral density after PTH-CBD administration were sustained (despite the decline in BMD in the vehicle control group, expected for age), and that the daily administration of PTH(1-34) resulted in increases in BMD which approached but did not reach those of the PTH-CBD group.

The mice were then followed for another 6 months, and the data showed that the BMD of the PTH(1-34) and PTH-CBD groups declined in parallel and remained higher than the untreated vehicle control mice.

Serum concentration of alkaline phosphatase was also measured in these groups of mice at the 48-week time point. The results are shown in FIG. 10. Even at 48 weeks, 22 weeks after the last administration of the PTH-CBD fusion protein, alkaline phosphatase concentration was elevated in the group receiving the PTH-CBD fusion protein compared to the vehicle control mice and mice that received PTH(1-34).

Conclusion:
Together with the data in Example 4, these data indicate that monthly administration of PTH-CBD showed at least equal efficacy to daily injection of PTH in promoting an increase in bone mineral density. Importantly, the dose of PTH-CBD given in each injection is the molar equivalent of the daily dose of PTH(1-34); thus, the total administered dose is actually \(\frac{1}{34} \) of the dose with PTH(1-34). The data suggests that even longer dosing intervals than monthly may be effective, and that the effects on BMD are sustained for a longer time after cessation of therapy with PTH-CBD than with PTH(1-34).

Example 6

3- and 6-Monthly Administration of PTH-CBD In Vivo

With the encouraging results showing efficacy of PTH-CBD to increase bone mineral density after monthly administration, we next tested the efficacy of this fusion protein with administration every 3 or every 6 months. Mice received intraperitoneal injection of PTH-CBD (344 \(\mu \)g/kg dose/\(x \)) (FIG. 9), PTH(1-34) (344 \(\mu \)g/kg dose at 0 and 3 months) (FIG. 9), PTH(1-34) (80 \(\mu \)g/kg/dose daily for 2 weeks), or vehicle alone (x1) in buffer as described in Example 4. There were fifteen mice in each group. Bone mineral density (BMD) was measured by DEXA at 3 months and monthly thereafter. The study is ongoing, and data are available up to the 5 month time point.

Serial measurements of BMD showed that a single dose of PTH-CBD resulted in significant increases in BMD after 4 months of therapy (FIG. 9). Administration of the second dose of PTH-CBD at the 3 month time point did not cause further increases in BMD at the 4 and 5 month time points. Daily administration of PTH(1-34) for 2 weeks caused the expected increase in BMD at 3 months, but by 5 months the BMD had declined back to control levels. The mice in this study will be followed for an additional 7 months.

Conclusion:
Together with the data in Examples 4 and 5, these data suggest that a single dose of PTH-CBD is sufficient to promote sustained increases in bone mineral density. Importantly, the dose of PTH-CBD given in each injection is the molar equivalent of the daily dose of PTH(1-34); thus, the total administered dose is actually \(\frac{1}{34} \) of the dose of PTH(1-34) over the 5 month interval for which we have data at this time. We will continue to collect data on this study for another 7 months. The data also indicate that the effects on BMD are sustained for a longer time after cessation of therapy with PTH-CBD than with PTH(1-34).

Example 7

Preliminary Dose and Time Response Study

To determine roughly the optimal dose of PTH-CBD, a single dose of the fusion protein was given by subcutaneous administration to mice at a range of doses from 2 to 8,000 micrograms/kg and the BMD of the mice was tested by DEXA every 4 weeks for 20 weeks. At the highest dose, the BMD decreased between 4 weeks and 12 weeks and then increased. It thus appeared to have a transient catabolic effect and then a possible anabolic effect. Intermediate doses of 40-400 micrograms/kg, which spans the dose of 344 micrograms/kg used in Example 4 and 5, appeared to have the greatest anabolic effect over the first 8 weeks. The lowest dose tested, 2 micrograms/kg appeared to have less anabolic effect over the first 16 weeks. (FIG. 11)

Example 8

Use of PTH-CBD to Promote Hair Growth

There are reports that PTHI agonists and antagonists can modulate hair growth in animal models of genetic hair loss and after administration of chemotherapy (8,9). We tested whether PTH-CBD could, after subcutaneous administration, alter the pattern of hair growth after chemotherapy-induced hair loss with cyclophosphamide.

Materials and Methods:
Healthy female C57BL/6J mice (as in Example 4) were treated with 150 mg/kg cyclophosphamide every month for 3 months. The chemotherapeutic agent caused hair thinning and color change from black to white. We additionally shaved a spot on the back. At the spot of hair removal, we injected PTH-CBD subcutaneously at a dose of 320 mg/kg. We also tested injection of a CBD fusion protein containing a PTH1R receptor antagonist (SEQ ID NO.9). This fusion protein was made by inserting a thrombin cleavage sequence (Leu-Val-Pro-Ang-Gly-Ser, SEQ ID NO: 12) between the GST and PTH(1-33) segments of the fusion protein of SEQ ID NO:1. The resultant GST-PTH-CBD fusion protein is cleaved by thrombin between the Arg and Gly residues of the thrombin cleavage sequence to release the Gly-Ser-PTH-CBD fusion protein of SEQ ID NO:9.

Results:
The PTH-CBD treated animals showed rapid regrowth of hair at the spot of removal, and the chemotherapy-induced thinning and color change of the hair were both reversed, even at sites distant from the PTH-CBD injection site (FIG. 12). A CBD fusion protein containing a PTH1R receptor antagonist was also tested in pilot studies. But the antagonist fusion protein produced only peach fuzz hair at the site of injection and did not work as well as the PTH-CBD agonist fusion protein (results not shown). The antagonist fusion protein produced more hair than vehicle control treatment (results not shown).

Conclusion:
PTH-CBD can reverse chemotherapy-induced alopecia, and the effects are not restricted to the site of injection.

Example 9

Use of PTH-CBD to Promote Immune Reconstitution

Female C57BL/6 mice are irradiated with 10 Gy of radiation (\(_{137} \)Cs source). 24 hours later, mice are injected with
21

2x10^7 bone marrow mononuclear cells (BMMNC) from a donor B6.SJL mouse. Immediately before receiving the BMMNC, the recipient mice are also injected with saline (vehicle control), 344 g/kg PTH-CBD (SEQ ID NO: 1), or 80 g/kg PTH(1-34).

A portion or all of the mice receiving BMMNC alone are expected to die. A greater percentage of mice receiving PTH(1-34) are expected to survive. A still greater percentage of mice receiving PTH-CBD are expected to survive.

It is also expected that neutrophil count will increase faster in mice receiving the PTH-CBD fusion than in mice receiving an equimolar amount of PTH or receiving vehicle control.

Example 10

Use of PTH-CBD to Promote Bone Marrow Stem Cell Mobilization

Six to 8-week old male C57BL/6 mice are injected subcutaneously with a single dose of 80 mcg/kg PTH(1-34) or 344 mcg/kg PTH-CBD (SEQ ID NO: 1) or saline (vehicle control). Fourteen days later, peripheral blood is collected from the mice, and c-KIT/Scal-1 cells are determined by fluorescence activated cell sorting (FACS) (21). It is determined that PTH-CBD causes a greater increase in c-KIT/Scal-1 double positive cells than a single dose of PTH(1-34).

To test the ability of stem cells mobilized with PTH-CBD to repopulate, blood is collected 14 days after treatment with PTH, PTH-CBD, or vehicle control as described above. Red cells are lysed as described in (22). Total collected cells from 900 ml of blood is transfused into a mouse that was subjected to a lethal dose of radiation (900 cGy) 24 hours before. A larger percentage of recipient mice are expected to survive when given blood cells from a donor mouse treated with PTH-CBD than from a mouse treated with PTH(1-34) or vehicle control. Further, it is expected that administering the fusion protein will increase the number of stem cells in circulating blood of the mammal (e.g., 7, 14, or 30 days after administering the fusion protein).

Example 11

Use of a CBD-PTH/PThrP Receptor Antagonist Fusion Protein for the Prevention and Treatment of Bone Metastasis of Breast Cancer

When administered as a daily injection, PTH(1-34) stimulates bone growth in various species and in osteoporotic women. However, continuous administration of PTH as an infusion (i.e., parathyroid adenoma) results in bone loss. Breast cancer metastasizes to bone by producing a factor, PTH-related peptide (PThrP), which activates the PTH/PThrP receptor, increasing bone turnover in the local region. The removal of bone tissues which results from this cascade creates a void in the bone where cancer cells can grow and causes release of growth factors from the remodelled collagen matrix which promote tumor growth. In this study, we show that a PTH-CBD antagonist peptide has the ability to treat or prevent (reduce incidence of) bone metastasis of breast cancer. The model used is the immunodeficient nude mouse.

Animals receive a single injection of PTH-CBD or vehicle control. Weekly imaging is continued for an additional 2 months to monitor growth of existing metastases and appearance of new metastases.

Experimental Methods:

22 Nude mice, aged 3-5 weeks and 13-18 grams are obtained. Initial weight of the animals is recorded along with their general health condition. Animals are maintained for a 2 week acclimation period prior to experiments (final age 5-8 weeks).

Baseline images are obtained from each animal using the Bioimage Microfluorescent Imaging (Xenogen Biosciences, Cranbury, N.J.) whole body imager after isoflurane anesthesia. Animals then receive a single injection of MCF-7 cells stably transfected with a plasmid expressing firefly luciferase (23, 24). Animals are re-imaged following the injection and on a weekly basis thereafter to monitor for bone metastasis.

When 2 or more metastatic lesions are presenting the bones of each mouse, the animals will be divided randomly into 2 groups:

Group 1: 11 animals—is administered with vehicle intraperitoneally once.

Group 2: 11 animals—is administered with 344 mcg/kg of PTH(7-33)-CBD (SEQ ID NO:10) intraperitoneally once.

Animals are sedated with isoflurane and whole body images are obtained on a weekly basis for a 2 month period.

Data Analysis:

During the experimental period, animals are weighed and examined weekly to detect any signs of illness. Whole body images are analyzed to determine the number of metastatic lesions and intensity of the luminescent light emmission from each lesion.

At the end of the experimental period the animals will be sacrificed by injecting a lethal dose of pentobarbital (100 mg/kg). Regions of the bone which contain(ed) metastatic lesions at any point during the study are prepared for histological examination.

Results:

Mice injected with PTH(7-33)-CBD are expected to develop fewer metastatic bone lesions and have slower growth of metastatic bone lesions than mice receiving vehicle control.

Example 12

Use of a CBD-PTH/PThrP Receptor Antagonist Fusion Protein for the Prevention and Treatment of Renal Osteodystrophy

Renal osteodystrophy is a bone disease that occurs when kidneys fail to maintain the proper levels of calcium and phosphorus in the blood. It’s a common problem in people with kidney disease and affects 90 percent of dialysis patients. Renal osteodystrophy is a key cause of fractures in patients with chronic kidney disease. In this study, we show that PTH-CBD antagonist peptide has the ability to treat or prevent osteodystrophy. The model used is normal female mice fed with a high phosphorus diet to induce renal osteodystrophy.

Animals then receive a single injection of PTH(7-33)-CBD or vehicle control. Animals are maintained for 6 months after the initial dosing period to assess the duration of the therapeutic effects. Bone mineral density and alkaline phosphatase levels are measured on a monthly basis.

Experimental Plan:

Healthy female normal C57BL/6J mouse, aged 3-5 weeks and 13-18 grams are obtained. Initial weight of the animals...
is recorded along with their general health condition. Animals are maintained for a 2 week acclimation period prior to experiments (final age 5-8 weeks).

Animals are fed with high phosphorus diet to induce renal osteodystrophy (ROD). The animals are checked periodically for their health status. The blood samples are collected to assess the calcium, phosphorus, PTH and Vitamin D levels. Renal osteodystrophy results from an abnormally elevated serum phosphate (hyperphosphatemia) and low serum calcium (hypocalcemia), both of which are due to decreased excretion of phosphate by the damaged kidney, low vitamin D levels or tertiary hyperparathyroidism (dysfunction of the parathyroid gland due to constant stimulation).

Baseline bone mineral density measurements are also be made.

The animals are divided into the following groups:
Group 1: 11 animals— administered vehicle intraperitoneally once.
Group 2: 11 animals— administered with 344 mcg/kg of PTH(7-33)-CBD (SEQ ID NO:10) intraperitoneally once.

Animals are sedated with pentobarbital and bone mineral density (BMD) is measured at the start of the study and monthly for the duration of the study (6 months). Blood samples are obtained from tail clipping at the start of the study and every month (under sedation as above).

Data Analysis:
During the experimental period, animals are weighed and examined weekly to detect any signs of illness. Bone mineral density measurements are analyzed by ANOVA at each time point. Alkaline phosphatase and calcium values are measured from each blood sample and analyzed by ANOVA at each time point.

At the end of the experimental period the animals are sacrificed by injecting a lethal dose of pentobarbital (100 mg/kg). Blood samples are collected to perform biochemical assays (intact PTH, calcium, phosphorus, alkaline phosphatase, osteocalcin). Quantitative bone assays include histomorphometry, BMC and BMD of the total body and excised spine, and assessment of biomechanical properties. Data is analyzed by ANOVA.

Results:
The animals injected with PTH(7-33)-CBD are expected to respond with increases or slower decreases in all measures of bone mineral density as compared to mice receiving vehicle control. Mice injected with PTH(7-33)-CBD are expected also to show trabecular bone growth or slower loss of trabecular bone than mice receiving vehicle control.

Sequence Listing Summary
SEQ ID NO:1 PTH-CBD fusion protein
SEQ ID NO:2 PTH-PKD-CBD fusion protein
SEQ ID NO:3 vector expressing PTH-CBD fusion protein precursor.
SEQ ID NO:4 GST-PTH-CBD fusion protein expressed by vector.
SEQ ID NO:5 Factor Xa recognition sequence.
SEQ ID NO:6 CoH collagenase.
SEQ ID NO:7 PTH.
SEQ ID NO:8 PTHrP.
SEQ ID NO:9 CBD fusion protein with PTH receptor antagonist.
SEQ ID NO:10 PTH(7-33)-CBD fusion protein
SEQ ID NO: 11 PTH/PTHrP antagonist Gly-Ser-PTH(1-33) fusion protein
SEQ ID NO: 12 Thrombin recognition sequence.

REFERENCES
34. Crine et al., U.S. published patent application 20060014687.

All patents, patent documents, and other references cited are incorporated by reference.

SEQUENCE LISTING
polycystic kidney disease domain of ColW.

<400> SEQUENCE: 2
Ser Val Ser Glu Ile Gln Leu Met Asn Leu Leu Gly Lys His Leu Asn
 1 5 10 15
Ser Met Glu Arg Val Glu Trp Leu Arg Lys Leu Gln Asp Val His
20
Ann Gly Ile Pro Glu Ile Lys Asp Leu Ser Glu Asn Lys Leu Pro Val
35 40 45
Ile Tyr Met His Val Pro Lys Ser Gly Ala Leu Asn Gln Lys Lys Val
50 55 60
Phe Tyr Gly Lys Gly Thr Tyr Asp Pro Asp Gly Ser Ile Ala Gly Tyr
65
Gln Trp Asp Phe Gly Asp Gly Ser Asp Phe Ser Ser Glu Gln Asn Pro
85
90
95
Ser His Val Tyr Thr Lys Gly Glu Tyr Thr Val Thr Leu Arg Val
100
105
110
Met Asp Ser Ser Gly Glu Met Ser Glu Lys Thr Met Lys Ile Lys Ile
115
120
125
Thr Asp Pro Val Tyr Pro Ile Gly Thr Glu Lys Glu Pro Asn Asn Ser
130
135
Lys Glu Thr Ala Ser Gly Pro Ile Val Pro Gly Ile Pro Val Ser Gly
145
150
155
160
Thr Ile Glu Asn Thr Ser Asp Gln Asp Tyr Phe Tyr Phe Asp Val Ile
165
170
175
Thr Pro Gly Glu Val Lys Ile Asp Ile Asn Lys Leu Gly Tyr Gly Gly
180
185
190
Ala Thr Trp Val Val Tyr Asp Glu Asn Asn Ala Val Ser Tyr Ala
195
200
205
Thr Asp Gly Glu Asn Leu Ser Gly Lys Phe Lys Ala Asp Lys Pro
210
215
220
Gly Arg Tyr Tyr Ile His Leu Tyr Met Phe Asn Gly Ser Tyr Met Pro
225
230
235
240
Tyr Arg Ile Asn Ile Glu Gly Ser Val Gly Arg
245
250

<210> SEQ ID NO 3
<211> LENGTH: 5464
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: Expression vector
<400> SEQUENCE: 3
agcttatga ctgcacgggt gcacaaatgtctctgacgctc gccagcccactc ggaagcctgtg
 60
gtattcggtg gcaggtcgta aaactactga taattcggtg cgtocaaggg gcactccogt
120
tcttgataa ttataaattgc cgcacatcat aacggttcctg gcacattttc tgaattgacg
180
ttggtacat taactctcag ctcgtataaattgttggaatt gtagcggat aacaaatttc
240
cacaggaac agtaatcatg tccctatatc tagttattg gsaattaag ggcctgtgtgc
300
aacccactgc actcttttctg gaaatattg aagagaataata gaagagcaatt tgaattgacg
360
gcgatatgga ttagaaatgg cgacaaaaaa agttggaatt gggtttggag tttcccaatc
420
ttccctatata tatttgattg gatgttaaat taacacactc tagtggcactc atacgttata
480
tagctgacac gcacaaatgtc tggggtggtg gtcacaagag gcgtgcagag atttccatg
540
ttgaagagcc ggttttggat attagatacg ggttttcggag aatgcgatct atgtaagact 600
ttgaacacttc caaagtgcag tttcttagca agctaccctga aatgctgaa aatgttgaag 660
atgattttatct ataatataaa tatttaaatg gtacactcatg aacatcattat gacatcag 720
tgtatatgaagc tgtgattggt gttttatatca tggacccaat gttgctggag gctgattc 780
aattagttg tttttttttttttt gattatatg ccattccccca aattgataag tacattaat 840
cagctcgtgc tatatagtcgg cctttgtcagg gctggcgaag ccagttttgt ggtggcacc 900
atcctcaca atggtagctg gttcagttgag tgaatataac ctttatgcta 960
accttgagaa acaatcctgaac tcaaatgcaag aagtattatg gttcgtgaag aagctcagg 1020
atgtgcacaa tgaaataattac cccccgtttac aatacatatgg caactgaaaaa gaaaccaata 1080
acagtaaaaga aacatgcaagt gttcataaat taccagctat acctgtgtag cgaaccatag 1140
aataacataa gtagtatgatt attttcatct ttatatgatt taaaccagga gaagttaaaa 1200
tagatatataa aatattggg cagctggtgg tagttggatg atatataatg gaaataataa 1260
atgcgattac tgtgacccatt gttagtgggc aansatttaa gttgaatttt aagggcagta 1320
aaccagtttag atattatacta ccatctttca tgtttaatgag tagttatattag cattataa 1380
attatatag aagatcaatt atattatatg ttgagtttaac tccactctcga 1440
ttggtcagat gtagacgccg catattgcat gatagcaaat cctgctctcag cgtttccgtg 1500
atgacggtga aaaccccttcga ccaactgacag cccccggcagac ggtccacagt ttgctgtgaag 1560
cggatgaggcg acaagcggaa ggcggctcag gggcgctgag gggtgctggc ggtgcctgag 1620
gcgcagcctc gacccagctga cgtacgata gcggagttga taactcctga aagggcagta 1680
gaattctatg acgctttacgt ttatatagtt aatgtatagat ataatagttt ttttagctgt 1740
caggttggcag ttttccggga aatgtgctcg gacccctatc ttgttttttt ttttttttaa 1800
attcaaatg aacgccctca atgagacgat aaccctgata aatgttccaa taatattgaa 1860
aaaggagagc tagtattattt caacactttcc gttgctcccttatttatttt cttggccagat 1920
tttggttcccct ttgagtatttt gaacagaaaag cgggtgctga aataaaaaat gttgaaatgc 1980
agtaggttgcc aagagagggcgt tanatcatac cttgaattca ccggcgttga aatcccttaga 2040
gtttttgccc ggagagcaagt tttcctcattg tggagctttt ttaagttcttg atctgctggc 2100
cggtttatttc cttgagtttc gcgggagqsa agcagatcctt gctgcgctaca cactttttctt 2160
agagatcctt gttgcgtatc tccacagtcga cagaaagca attttccgat ggcagtcgacag 2220
tagagaaatt atgcagctgt gcctaacca tgaattgataa caatcgcggc aactattctttt 2280
tggcataacag cggacgacgcc aagggctttt ccgacacattg ggggattctg 2340
taatccctgt tattgggttc gcgattatatg ctactgctga ctaaattacc ccggcgcgtt 2400
aacaccagatt gcgggcgcaat atgcaaatca ggtgcggcag aaacctatc atttttc 2460
ctgcttacgc cccctcggca caattatag acggatttgg ggcggatataa gttgtagggcag 2520
caccttggctcttggcattt cctggttttt cttttatttt gcagctgtg 2580
aggtggtgctc tcggctcattc ttgcttgatc tattttgctgt cttttttgt 2640
tatgatctcca cccagctggag atctgctgca acgtggtgctg cgtgctgctg 2700
agataggggc ctcctcgattt aagcttggct aactggctgca ccaagagctc ttttagtttag 2760
tttcaggtca ttttaatact cattctttttt cttttaaatct ctagggataag atccttttttc 2820
atatcctat gcacaaaact cccccGCCgg aatgtttctc tcataaagct gcagagccggc 2880
Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro	1	5	10	15
Thr Arg Leu Leu Leu Glu Tyr Leu Glu Gly Leu Glu His Leu	20	25	30	
Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu	35	40	45	
Gly Leu Glu Phe Pro Asn Leu Pro Tyr Ile Asp Gly Asp Val Lys	50	55	60	
Leu Thr Gln Ser Met Ala Ile Arg Tyr Ile Ala Asp Lys His Asn	65	70	75	80
Met Leu Gly Gly Cys Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu	85	90	95	
Gly Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser	100	105	110	
Lys Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu	115	120	125	
Met Leu Lys Met Phe Glu Asp Arg Leu Cys His Lys Thr Tyr Leu Asn	130	135	140	
Gly Asp His Val Thr His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp	145	150	155	160
Val Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu	165	170	175	
Val Cys Phe Lys Lys Arg Ile Glu Ala Ile Pro Glu Ile Asp Lys Tyr	180	185	190	
Leu Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala	195	200	205	
Thr Phe Gly Gly Asp His Pro Pro Lys Ser Asp Leu Ile Glu Gly	210	215	220	
Arg Ser Val Ser Glu Ile Glu Met His Asn Leu Gly Lys His Leu	225	230	235	240
Asn Ser Met Glu Arg Val Glu Trp Leu Arg Lys Leu Gln Asp Val	245	250	255	
His Asn Gly Ile Asn Ser Pro Val Tyr Pro Ile Gly Thr Glu Lys Glu	260	265	270	
Pro Asn Asn Ser Lys Glu Thr Ala Ser Gly Pro Ile Val Pro Gly Ile	275	280	285	
Pro Val Ser Gly Thr Ile Glu Asn Thr Ser Asp Glu Asp Tyr Phe Tyr	290	295	300	
Phe Asp Val Ile Thr Pro Gly Glu Val Lys Ile Asp Asp Asn Lys Leu	305	310	315	320
Gly Tyr Gly Gly Ala Thr Trp Val Val Tyr Asp Glu Aen Aen Aen Ala 325 326 327
Val Ser Tyr Ala Thr Asp Asp Gly Gln Aen Leu Ser Gly Lys Phe Lys 340 341 342
Ala Asp Lys Pro Gly Arg Tyr Tyr Ile His Leu Tyr Met Phe Aen Gly 355 360 365
Ser Tyr Met Pro Tyr Arg Ile Aen Ile Glu Gly Ser Val Gly Arg 370 375 380

<210> SEQ ID NO 5
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: Factor Xa recognition sequence

<400> SEQUENCE: 5
Ile Glu Gly Arg
1

<210> SEQ ID NO 6
<211> LENGTH: 1021
<212> TYPE: PRT
<213> ORGANISM: Clostridium histolyticum

<400> SEQUENCE: 6
Met Lys Arg Lys Cys Leu Ser Lys Arg Leu Met Leu Ala Ile Thr Met 1 5 10 15
Ala Thr Ile Phe Thr Val Aen Ser Thr Leu Pro Ile Tyr Ala Ala Val 20 25 30
Asp Lys Aen Aen Ala Thr Ala Val Gln Aen Glu Ser Lys Arg Tyr 35 40 45
Thr Val Ser Tyr Leu Lys Thr Leu Aen Tyr Tyr Asp Leu Val Aep Leu 50 55 60
Leu Val Lys Thr Glu Ile Glu Aen Leu Pro Asp Leu Phe Gln Tyr Ser 65 70 75 80
Ser Asp Ala Lys Glu Phe Tyr Gly Aen Lys Thr Arg Met Ser Phe Ile 95 99 100
Met Asp Glu Ile Gly Arg Arg Ala Pro Gin Tyr Thr Glu Ile Asp His 105 110 115
Lys Gly Ile Pro Thr Leu Val Glu Val Val Arg Ala Gly Phe Tyr Leu 120 125 130
Gly Phe His Aen Lys Glu Leu Aen Glu Ile Aen Lys Arg Ser Phe Lys 135 140
Glu Arg Val Ile Pro Ser Ile Leu Ala Ile Gln Lys Aen Pro Aen Phe 145 150 155 160
Lys Leu Gly Thr Glu Val Gln Asp Lys Ile Val Ser Ala Thr Gly Leu 165 170 175 180
Leu Ala Gly Aen Glu Thr Ala Pro Pro Glu Val Val Aen Aen Phe Thr 180 185 190
Pro Ile Leu Glu Asp Cys Ile Lys Aen Ile Asp Arg Tyr Ala Leu Asp 195 200 205
Asp Leu Lys Ser Lys Ala Leu Phe Aen Val Leu Ala Ala Pro Thr Tyr 210 215 220
Asp Ile Thr Glu Tyr Leu Arg Ala Thr Lys Glu Lys Pro Glu Aen Thr 225 230 235 240
Pro Trp Tyr Gly Lys Ile Asp Gly Phe Ile Aen Glu Leu Lys Lys Leu
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Ala Leu Tyr Gly Lys Ile Asn Asp Asn Asn Ser Thr Ile Ile Asp Asn</td>
<td>Gly Ile Tyr His Ile Ala Pro Leu Gly Lys Leu His Ser Asn Asn Lys</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Ile Gly Ile Glu Thr Leu Thr Glu Val Met Lys Val Tyr Pro Tyr Leu</td>
<td>Ser Met Gln His Leu Gln Ser Ala Asp Gln Ile Lys Arg His Tyr Asp</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Ser Lys Asp Ala Glu Gly Asn Lys Ile Pro Leu Asp Lys Phe Lys Lys</td>
<td>Glu Gly Lys Glu Lys Tyr Cys Pro Lys Thr Tyr Thr Phe Asp Asp Gly</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td>350</td>
<td>355</td>
</tr>
<tr>
<td>Lys Val Ile Ile Lys Ala Gly Ala Arg Val Glu Glu Glu Lys Val Lys</td>
<td>Arg Leu Tyr Thr Ala Ser Lys Glu Val Asn Ser Gln Phe Phe Arg Val</td>
<td>360</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>375</td>
<td>380</td>
<td>385</td>
</tr>
<tr>
<td>Tyr Gly Ile Asp Lys Pro Leu Glu Gly Asn Pro Asp Ile Leu</td>
<td>Thr Met Val Ile Tyr Asn Ser Pro Glu Gly Tyr Lys Leu Asn Ser Val</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>405</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Leu Tyr Gly Tyr Asp Thr Asn Asn Gly Gly Met Tyr Ile Glu Pro Glu</td>
<td>Gly Thr Phe Phe Thr Tyr Gly Arg Glu Ala Gln Glu Ser Thr Tyr Thr</td>
<td>420</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>435</td>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>Leu Glu Leu Phe Arg His Glu Tyr Thr His Tyr Leu Gln Gly Arg</td>
<td>Tyr Ala Val Pro Gly Gln Trp Gly Arg Thr Lys Leu Tyr Asp Asn Asp</td>
<td>450</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>465</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Arg Leu Thr Trp Tyr Glu Gly Gly Ala Glu Leu Phe Ala Gly Ser</td>
<td>Thr Arg Thr Ser Gly Ile Leu Pro Arg Lys Ser Ile Val Ser Asn Ile</td>
<td>480</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>495</td>
<td>500</td>
<td>505</td>
</tr>
<tr>
<td>His Asn Thr Thr Arg Asn Asn Arg Tyr Lys Leu Ser Asp Thr Val His</td>
<td>Ser Lys Tyr Gly Ala Ser Phe Glu Phe Tyr Asn Tyr Ala Cys Met Phe</td>
<td>510</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>525</td>
<td>530</td>
<td>535</td>
</tr>
<tr>
<td>Met Asp Tyr Met Tyr Asn Lys Asp Met Gly Ile Leu Asn Lys Leu Asn</td>
<td>Met Leu Ala Lys Asn Asn Asp Val Asp Gly Tyr Asn Tyr Ile Arg</td>
<td>540</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>555</td>
<td>560</td>
<td>565</td>
</tr>
<tr>
<td>Asp Leu Ser Ser Asn Tyr Ala Leu Asn Asp Lys Tyr Gln Asp His Met</td>
<td>Asp Leu Ser Ser Asn Tyr Ala Leu Asn Asp Lys Tyr Gln Asp His Met</td>
<td>570</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>585</td>
<td>590</td>
<td>595</td>
</tr>
<tr>
<td>Gln Glu Arg Ile Asp Asn Tyr Glu Asn Leu Thr Val Pro Phe Val Ala</td>
<td>Gln Glu Arg Ile Asp Asn Tyr Glu Asn Leu Thr Val Pro Phe Val Ala</td>
<td>600</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>615</td>
<td>620</td>
<td>625</td>
</tr>
<tr>
<td>Asp Asp Tyr Leu Val Arg His Ala Tyr Lys Asn Pro Asn Glu Ile Tyr</td>
<td>Ser Glu Ile Ser Glu Val Ala Lys Leu Lys Asp Ala Lys Ser Glu Val</td>
<td>630</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>645</td>
<td>650</td>
<td>655</td>
</tr>
<tr>
<td>Lys Lys Ser Glu Tyr Phe Ser Thr Phe Thr Leu Arg Gly Ser Tyr Thr</td>
<td>Gly Gly Ala Ser Lys Gly Lys Leu Glu Asp Gln Lys Ala Met Asn Lys</td>
<td>660</td>
<td>665</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>670</td>
<td>675</td>
<td>680</td>
<td>685</td>
</tr>
</tbody>
</table>
Phe Ile Asp Asp Ser Leu Lys Leu Asp Thr Tyr Ser Trp Ser Gly
675 680 685
Tyr Lys Thr Leu Thr Ala Tyr Phe Thr Asn Tyr Lys Val Asp Ser Ser
690 695 700
Asn Arg Val Thr Tyr Asp Val Phe His Gly Tyr Leu Pro Asn Glu
705 710 715 720
Gly Asp Ser Lys Asn Ser Leu Pro Tyr Gly Lys Ile Asn Gly Thr Tyr
725 730 735
Lys Gly Thr Glu Lys Glu Lys Ile Lys Phe Ser Ser Glu Gly Ser Phe
740 745 750
Asp Pro Asp Gly Lys Ile Val Ser Tyr Glu Trp Asp Phe Gly Asp Gly
755 760 765
Asn Lys Ser Asn Glu Glu Asn Pro Glu His Ser Tyr Asp Lys Val Gly
770 775 780
Thr Tyr Thr Val Lys Leu Lys Val Thr Asp Lys Gly Glu Ser Ser
785 790 795 800
Val Ser Thr Thr Thr Ala Glu Ile Lys Asp Leu Ser Glu Asn Lys Leu
805 810 815
Pro Val Ile Tyr Met His Val Pro Lys Ser Gly Ala Leu Asn Gln Lys
820 825 830
Val Val Phe Tyr Gly Lys Gly Thr Tyr Asp Pro Asp Gly Ser Ile Ala
835 840 845
Gly Tyr Gln Trp Asp Phe Gly Asp Gly Ser Asp Phe Ser Ser Glu Gln
850 855 860
Asn Pro Ser His Val Tyr Thr Lys Gly Glu Tyr Thr Val Thr Leu
865 870 875 880
Arg Val Met Asp Ser Ser Gly Gln Met Ser Glu Lys Thr Met Lys Ile
885 890 895
Lys Ile Thr Asp Pro Val Tyr Pro Ile Gly Thr Glu Lys Glu Pro Asn
900 905 910
Asn Ser Lys Gly Thr Ala Ser Gly Pro Ile Val Pro Gly Ile Pro Val
915 920 925
Ser Gly Thr Ile Glu Asn Thr Ser Asp Glu Asn Tyr Phe Tyr Phe Asp
930 935 940
Val Ile Thr Pro Gly Glu Val Lys Ile Asp Ile Lys Gln Leu Gly Tyr
945 950 955 960
Gly Gly Ala Thr Trp Val Val Tyr Asp Glu Asn Asn Ala Val Ser
965 970 975
Tyr Ala Thr Asp Gly Gln Leu Ser Gly Lys Phe Lys Ala Asp
980 985 990
Lys Pro Gly Arg Tyr Tyr Ile His Leu Tyr Met Phe Asn Gly Ser Tyr
995 1000 1005
Met Pro Tyr Arg Ile Asn Ile Glu Gly Ser Val Gly Arg
1010 1015 1020

<210> SEQ ID NO 7
<211> LENGTH: 84
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 7
Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn
1 5 10 15
Ser Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
AASN PHE VAL ALA LEU GLY ALA PRO ALA PRO ARG ALA GLY SER
35 40 45
Gln Arg pro Arg Lys Lys Glu Asp Asn Val Leu Val Glu Ser His Glu
50 55 60
Lys Ser Leu Gly Glu Ala Asp Lys Ala Asp Val Asn Val Leu Thr Lys
65 70 75 80
Ala Lys Ser Gln

<210> SEQ ID NO 8
<211> LENGTH: 141
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 8
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile Ala Glu Ile His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser Lys Pro
35 40 45
Ser Pro Asn Thr Lys Asn His Pro Val Arg Phe Gly Ser Asp Asp Glu
50 55 60
Gly Arg Tyr Leu Thr Gln Glu Thr Asn Lys Val Glu Thr Tyr Lys Glu
65 70 75 80
Gln Pro Leu Lys Thr Pro Gly Lys Lys Gly Lys Pro Gly Lys
85 90 95
Arg Lys Glu Gln Glu Lys Lys Arg Arg Thr Arg Ser Ala Trp Leu
100 105 110
Asp Ser Gly Val Thr Gly Ser Gly Leu Glu Gly Asp His Leu Ser Asp
115 120 125
Thr Ser Thr Thr Ser Leu Glu Leu Asp Ser Arg Arg His
130 135 140

<210> SEQ ID NO 9
<211> LENGTH: 160
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: Gly-Ser-PTH(1-33)-CBO fusion protein
<400> SEQUENCE: 9
Gly Ser Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His
1 5 10 15
Leu Asn Ser Met Glu Arg Val Glu Trp Leu Arg Lys Leu Gln Asp
20 25 30
Val His Asn Gly Ile Asn Ser Pro Val Tyr Pro Ile Gly Thr Glu Lys
35 40 45
Glu Pro Asn Asn Ser Lys Glu Thr Ala Ser Gly Pro Ile Val Pro Gly
50 55 60
Ile Pro Val Ser Gly Thr Ile Glu Asn Thr Ser Asp Gin Asp Tyr Phe
65 70 75 80
Tyr Phe Asp Val Ile Thr Pro Gly Glu Val Lys Ile Asp Ile Asn Lys
85 90 95
Leu Gly Tyr Gly Gly Ala Thr Trp Val Val Tyr Asp Glu Asn Asn Asn
100 105 110
Ala Val Ser Tyr Ala Thr Asp Asp Gly Gln Asn Leu Ser Gly Lys Phe
115 120 125
Lys Ala Asp Lys Pro Gly Arg Tyr Tyr Ile His Leu Tyr Met Phe Asn
130 135 140
Gly Ser Tyr Met Pro Tyr Arg Ile Asn Ile Glu Gly Ser Val Gly Arg
145 150 155 160

<210> SEQ ID NO 10
<211> LENGTH: 192
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: PTH(7-33)-CBD fusion protein

<400> SEQUENCE: 10
Leu Met His Asn Leu Gly Lys His Leu Asp Ser Met Glu Arg Val Glu
1 5 10 15
Trp Leu Arg Lys Lys Leu Gln Asp Val His Asn Gly Ile Asn Ser Pro
20 25 30
Val Tyr Pro Ile Gly Thr Glu Lys Glu Pro Asn Asn Ser Lys Glu Thr
35 40 45
Ala Ser Gly Pro Ile Val Pro Gly Ile Pro Val Ser Gly Thr Ile Glu
50 55 60
Asn Thr Ser Asp Gln Asp Tyr Phe Tyr Phe Asp Val Ile Thr Pro Gly
65 70 75 80
Glu Val Lys Ile Asp Ile Asn Lys Leu Gly Tyr Gly Gly Ala Thr Trp
85 90 95
Val Val Tyr Asp Glu Asn Asn Ala Val Ser Tyr Ala Thr Asp Arg
100 105 110
Gly Gln Asn Leu Ser Gly Lys Phe Lys Ala Asp Lys Pro Gly Arg Tyr
115 120 125
Tyr Ile His Leu Tyr Met Phe Asn Gly Ser Tyr Met Pro Tyr Arg Ile
130 135 140
Asn Ile Glu Gly Ser Val Gly Arg
145 150

<210> SEQ ID NO 11
<211> LENGTH: 35
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: PTH(1-33) with Gly-Ser amino
terminal extension

<400> SEQUENCE: 11
Gly Ser Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His
1 5 10 15
Leu Asn Ser Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp
20 25 30
Val His Asn
35

<210> SEQ ID NO 12
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: Thrombin cleavage sequence

<400> SEQUENCE: 12
Leu Val Pro Arg Gly Ser
1 5

<210> SEQ ID NO 13
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: ColG 3b

<400> SEQUENCE: 13
Lys Glu Lys Glu Asn Asn Asp Ser Ser Asp Lys Ala Thr Val Ile Pro
1 5 10 15
Asn Phe Asn Thr Thr Met Gln Gly Ser Leu Leu Gly Asp Ser Arg
20 25 30
Asp Tyr Tyr Ser Phe Glu Val Lys Glu Gly Glu Val Asn Ile Glu
35 40 45
Leu Asp Lys Lys Asp Glu Phe Gly Val Thr Thr Leu His Pro Glu
50 55 60
Ser Asn Ile Asn Asp Arg Ile Thr Tyr Glu Glu Val Asp Gly Asn Lys
65 70 75 80
Val Ser Asn Lys Val Lys Leu Arg Pro Gly Lys Tyr Tyr Leu Leu Val
95 100 105 110

<210> SEQ ID NO 14
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: ColA2b

<400> SEQUENCE: 14
Lys Glu Val Glu Asn Asn Asp Phe Asp Lys Ala Met Lys Val Asp
1 5 10 15
Ser Asn Ser Lys Ile Val Gly Thr Leu Ser Ann Asp Asp Leu Lys Asp
20 25 30
Ile Tyr Ser Ile Asp Ile Lys Ann Pro Ser Asp Leu Ann Ile Val
35 40 45
Glu Asn Leu Asp Ann Ile Met Ann Thr Leu Tyr Ser Ala Asp
50 55 60
Asp Leu Ser Asn Tyr Val Asp Tyr Ala Ann Asp Gly Ann Asp Lys Leu
65 70 75 80
Ser Asn Thr Cys Lys Leu Ann Pro Gly Lys Tyr Tyr Leu Cys Val Tyr
95 100 105 110
Gln Phe Glu Ann Ser Gly Thr Gly Ann Tyr Thr Val Ann Leu Glu Asn

Lys

<210> SEQ ID NO 15
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: ColG3a

<400> SEQUENCE: 15
Pro Ile Thr Lys Glu Met Glu Pro Asn Asp Asp Ile Lys Glu Ala Asn
Aam Gly Pro Ile Val Glu Gly Val Thr Val Lys Gly Asp Leu Asn Gly Ser
20 25 30
Asp Asp Ala Asp Thr Phe Tyr Phe Asp Val Lys Glu Asp Gly Asp Val
35 40 45
Thr Ile Glu Leu Pro Tyr Ser Ser Ser Asn Phe Thr Trp Leu Val
50 55 60
Tyr Lys Glu Gly Asp Gln Asn His Ile Ala Ser Gly Ile Asp Lys
65 70 75 80
Asn Asn Ser Lys Val Gly Thr Phe Lys Ser Thr Lys Gly Arg His Tyr
85 90 95
Val Phe Ile Tyr Lys His Asp Ser Ala Ser Asn Ile Ser Tyr Ser Leu
100 105 110
Aam Ile Lys Gly Leu Gln
115

<210> SEQ ID NO 16
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: C0lA3b

<400> SEQUENCE: 16
Aam Glu Ser Glu Pro Asn Asn Asp Phe Glu Lys Ala Asn Gln Ile Ala
1 5 10 15
Lys Ser Asn Met Leu Val Lys Gly Thr Leu Ser Glu Asp Tyr Ser
20 25 30
Asp Lys Tyr Tyr Phe Asp Val Ala Lys Gly Asn Val Lys Ile Thr
35 40 45
Leu Asn Asn Leu Asn Ser Val Gly Ile Thr Trp Thr Leu Tyr Lys Glu
50 55 60
Gly Asp Leu Asn Asn Tyr Val Leu Tyr Ala Thr Gly Asn Glu Gly Thr
65 70 75 80
Val Leu Lys Glu Lys Thr Leu Glu Pro Gly Arg Tyr Tyr Leu Ser
95 90 95
Val Tyr Thr Tyr Asp Asn Gln Ser Gly Ala Tyr Thr Val Asn Val Lys
100 105 110
Gly Asn Leu
115

<210> SEQ ID NO 17
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic: C0lH

<400> SEQUENCE: 17
Pro Ile Gly Thr Glu Lys Glu Pro Asn Asn Ser Lys Glu Thr Ala Ser
1 5 10 15
Gly Pro Ile Val Pro Gly Ile Pro Val Ser Gly Thr Ile Glu Aen Thr
20 25 30
Ser Asp Gln Asp Tyr Phe Tyr Phe Asp Val Ile Thr Pro Gly Glu Val
35 40 45
Lys Ile Asp Ile Aen Lys Leu Gly Tyr Gly Gly Ala Thr Trp Val Val
50 55 60
We claim:
1. A composition comprising:
a collagen-binding polypeptide segment covalently linked
to a PTH/PTHrP receptor agonist;
wherein the collagen-binding polypeptide segment is a
bacterial collagen binding polypeptide segment,
wherein the PTH/PTHrP receptor agonist comprises
residues 1-14 of SEQ ID NO: 1, and wherein the
collagen-binding polypeptide segment comprises a
polypeptide fragment consisting of at least 10 consecutive
amino acids of residues 38-158 of SEQ ID NO: 1.
2. The composition of claim 1, wherein the collagen-
binding polypeptide segment and the PTH/PTHrP receptor
agonist are chemically cross-linked to each other or are
polypeptide portions of a fusion protein.
3. The composition of claim 1, wherein the composition
has at least 50% greater activity than PTH(1-34) as meas-
ured by increased bone mineral density after eight weeks of
weekly administration of the composition to a subject in
need thereof at equal molar doses of the PTH.
4. The composition of claim 1, wherein the PTH/PTHrP
receptor agonist is a polypeptide and the N-terminus of the
collagen-binding polypeptide segment is linked directly or
through a linker polypeptide segment to the C-terminus of
the PTH/PTHrP receptor agonist polypeptide.
5. The composition of claim 1, wherein the PTH/PTHrP
receptor agonist comprises residues 1-33 of SEQ ID NO: 1,
SEQ ID NO: 7, or residues 1-34 of SEQ ID NO: 7.
6. The composition of claim 1, wherein the composition
further comprises residues 37-130 of SEQ ID NO: 2 coval-
ently linked to the collagen-binding polypeptide segment
and the PTH/PTHrP receptor agonist.
7. A method of treating a medical condition comprising
administering an effective amount of the composition of
claim 1 to a mammal in need of treatment for the medical
condition, wherein the medical condition is selected from
the group consisting of promoting bone growth, promoting
hair growth, promoting tissue growth, promoting immune
reconstitution, promoting bone marrow stem cell mobiliza-
tion and treating myocardial infarction.
8. The method of claim 7, wherein administering the
composition to the mammal increases trabecular bone min-
eral density or cortical bone mineral density or trabecular
bone mineral volume or cortical bone mineral volume.
9. The method of claim 7, wherein the composition is
administered before, during or after administration of an
implant or in combination with an implant.
10. The method of claim 7, wherein the implant is a dental
implant or a bone graft.
11. The method of claim 7, wherein the implant comprises
intact bone, bone cement, hydroxyapatite, demineralized
bone, osteoblasts or combinations thereof.
12. The method of claim 7, wherein the composition is
administered by injection.
13. The method of claim 7, wherein the composition is
administered in aqueous solution at pH below about 5.0.
* * * * *