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Electrostatic Charge Polarity Effect on Respiratory Deposition
in the Glass Bead Tracheobronchial Airways Model
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morphometric data, Ewald R. Weibel model, International Commission on Radiological Protection, Andersen Cascade Impactor
(ACI),

Abstract.-The effects of unipolar and bipolar electrostatic charges on the deposition efficiency of therapeutic aerosols in the
physical model of human tracheobronchial (TB) airways have been investigated. Respirable size aerosol particles were generated by a
commonly prescribed and commercially available nebulizer and charged by a corona charger and then their size and charge distributions
were characterized by an Electronic Single ParticleAerodynamic Relaxation Time analyzer to study the drug aerosol particles' deposition
pattern. The experiments were performed with a glass bead tracheobronchial model (GBTBM) (physical model) which was designed
and developed based upon widely used and adopted dichotomous lung morphometric data presented in the Ewald R. Weibel model. The
model was validated with the respiratory deposition data predicted by the International Commission on Radiological Protection and
the United States Pharmacopeia (USP) approved Andersen Cascade Impactor (ACI). Unipolarly and bipolarly charged particles were
characterized for two configurations: a) without TB model in place and b) with TB model in place. Findings showed that the deposition
of unipolarly charged particles was about 3 times of the bipolarly charged particles. It was also found that bioengineered therapeutic
aerosols with good combinations ofaerodynamic size and electrostatic charge are good candidates for the administration of respiratory
medicinal drugs.

Inertial
ll!ljlaction

Fig. 1. Electromechanical deposition mechanisms of drug
aerosols in the human lung.

2 L. Their model had several limitations. (A) It possessed a
single passageway to simulate all respiratory airways though
parameters of successive branching airways differ widely. (B)
It was geometrically dissimilar with in vim anatomy, and (C)

Introduction

A physical lung model that closely approximates the flow
characteristics, surface area, and aerosol deposition patterns
of the human lung could serve as a surrogate lung for in-vitro
studies during the development of respiratory medicines and
inhalation drug-delivery devices. The model will not only be
beneficial for studies of regional lung deposition but wiII also
eliminate safety issues and variabilities that are inherent with
the use of human subjects. The human respiratory tract is an
aerodynamic classifying system for inhaled particles (USEPA
1998). A sampling device can be used as a substitute for the
respiratory tract as a particle collector, and it can effectively
simulate the mechanisms of electromechanical deposition of
the inhaled particles including inertial impaction, gravitational
settling, interception, diffusion, and electrostatic force (Fig. 1).

Others have shown that a physical lung model simulated by
a multi-layer granular bead filter provides a good approximation
of the deposition detected in the in vivo experimental data
(Altshuler et al. 1957). Gebhart and Heyder (1985a) developed
the first granular bead filter to use as a surrogate for human
subjects in their study ofaerosol deposition. The filter consisted
of a 3O-Cm long by 15.24-cm diameter acrylic cylinder, sealed
by a cone at each end. The cone and cylinder were packed with
2.5-mm glass beads, resulting in airspace of approximately
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(2) Superficial velocity due to the packed bed, v. = vme

(3) Volumetric flow rate through the Stage, qv= (1rI4)lY vm

(6) Total surface area of the beads = mt d 2
g

Table 1. Summary of the design parameters of the of the glass bead
tracheobronchial model.

(1)

Stage 2: Main and
Stage 1: Trachea Lobar Bronchus

Re= 2 Dbvsii
3 i (1- 11)

Design parameter

Flow rate through Stage, Q, llmin 28.3 28.3
Bed PorosiIy, e 0.38 0.36
Mean velociIy on packed bed. vrn, cmJs 383.5 234.53
Superficial velociIy through Slage, vs, cmJs 145.73 84.43
Stage diameter, D, em 2.03 2.67
Slage Length, L, em 18.875 18.733
Volume ofthe inside Stage, Vp, em3 61.09 104.65
Total volume ofbeads needed, Vg, em3 37.88 66.98
Bead diameter, dg, em 1.37 I.l
Number ofglass beads, n 28 50
Surface area ofpacked bed. em' 165.88 293.33
Reynolds number ofpacked bed. Re 2135 1198
Reynolds number in Weibel's model, Re 2213 1241

Where vm is the average velocity of aerosol flow through
the packed bed an approximation based on the range of air
velocity from Weibel's model, dg = glass bead diameter, D = bed
(Stage) diameter, and L = Stage length. Table 1 shows the design
parameters of the GBTBM Stages 1 and 2.

where Re = Reynolds number, Db = packed bed diameter, v. =

superficial velocity through the pipe, p = aerosol particle density,
p = aerosol viscosity, and e = bed porosity. The other parameters
ofthe GBTBM were calculated from Equations 2 - 6.

(4) Volume of glass beads, Vg = (1rI4)lY L(l - e)

(5) Number ofbeads, n = V/ (1rI6)dg
J

both particle size and non-dimensional settling velocity were also
simulated as well. Since the flow Reynolds number determines
the nature ofthe flow, it can simulate the characteristics of2 fluid
flows and the flow profiles irrespective of the actual dimensions
of the aerosol flows. Therefore, various regions of the lung can
be classified according to the Reynolds numbers ofthe air flows
in the respiratory airways for a given inhalation flow rate. Our
calculations, beginning from the Reynolds numbers can be used
to calculate the diameter and the number ofglass beads for each
Stage. Mathematically, the Reynolds number of a fluid flow can
be determined from Equation 1.

Materials and Methods

it was unable to test site-specific deposition for corresponding
regions of the respiratory tract (Gao 1994).

Numerical analyses show that only 31% of 0.5 !lm, 61%
of 2 !lm, and 63% of 5 !lm drug particles deposit due to inertial
impaction when the particles contain no elementary charge
(Hinds 1998, p. 241). Besides, in-vitro investigation ofmetered
dose inhaler and dry powder inhaler aerosols demonstrated
that both respiratory drug delivery devices generate bipolarly
charged particles (Glover and Chan 2003). Additionally, several
studies have found that the electrostatic charge force influences
particle deposition in the human lung along with other deposition
mechanisms (Yu 1977, Gebhart and Heyder 1985b, Melandri et
al. 1983, Hashish et al. 1994, Balachandran 1997, Bailey et al.
1998, Cohen et al. 1998).

In order to study the regional deposition of aerosol
particles, it was necessary to design a multi-Stage models to
simulate various regions of the lung anatomy. We designed and
developed a physical tracheobronchial model using a USP metal
throat, and 2 packed beds (Stages) of glass beads in the shape
of a wedding cake (Figure 2), hereafter referred to as the Glass
Bead Tracheobronchial Model (GBTBM). Since the GBTBM
was constructed to mimic flow parameters and dimensions ofthe
lung airways, it could simulate all 5 mechanisms of deposition
of inhaled aerosol particles. The objectives of the current work
were to (a) design and develop 2 layers of glass-bead filters to
serve as a surrogate for tracheobronchial regions of respiratory
airways, (b) investigate the particle deposition ofpharmaceutical
aerosols generated by a commercially available nebulizer, (c)
validate the deposition efficiencies proposed by the International
Commission on Radiological Protection (ICRP) deposition
model, and (d) study the combined effects of aerosol particle
size and charge on deposition in the GBTBM.

Mathematical Model.-A mathematical model was first
developed to establish the basis for the design and construction of
the GBTBM. Motion of a spherical particle in a given geometry
is affected by the Stokes number Stk, particle size, flow Reynolds
number Rejlow' and non-dimensional settling velocity (Zhang and
Finlay 2005, Kim et al. 1994, Schlesinger et al. 1917, Chan &
Schreck 1980). It is notable that Stokes number was originated
from Stokes's law by solving the unsolvable Navier-Stokes
equation based upon several assumptions (Hinds 1998). One
of them was that the fluid should be incompressible, which is
unlikely in case of drug aerosols. Additionally, in practice,
Stokes law is restricted to situations in which flow Reynolds
number is less than 1.0 (Hinds 1998). For an inhalation rate of
28.3 L/min, the flow Reynolds number in the tracheobronchial
region is very high (Rejlow » 1.0). Therefore, the simulation of
Stokes number in this study was not considered. Besides, like an
asthmatic patient the similar kind ofdrug aerosols and inhalation
rate were used in the GBTBM experiments, which conform that
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Fig. 2. Two Stage glass bead tracheobronchial model simulates
trachea, main, and lobar bronchus regions of the human
respiratory system.

Glass Bead Tracheobronchial Physical Model.-Figure 2
shows the GBTBM and the corresponding simulated regions of
the human respiratory tract. The dimensions of the lung airway
regions were based upon widely used and adopted symmetric
and dichotomous lung morphological data in Ewald R. Weibel
lung model with some modification due to the more recently
published data of Horsfield et al. (Weibel 1963, Horsfield et aL
1971).

Weibel's model portrays the common and standard
understanding of human lung anatomy. It divides the human
respiratory tract into 24 generations (from GO to G23). Since
inception, it has been regarded as a detailed anatomical approach
to lung morphology, the model was tested and validated with
experimental results. Weibel's morphometric data provide
specific length, diameter, area, and volume for each generation.
In our model, Stage I simulated the trachea, the first generation
(GO) of the respiratory tract (Figure 2). Stage 2 simulated the
main and lobar bronchi, the second, third, and fourth generations
(GI-G3) of the respiratory tract. Each of these Stages was
stacked one on top of the other with wire-mesh supports to
maintain the flow of aerosol for uniform distribution over each
Stage. Each lung region was represented by a glass-bead-packed
bed with a diameter that simulated the surface area of the region
and the flow Reynolds number at an inspiratory flow rate of28.3
IImin.

Ideally, each generation of the respiratory system should be
simulated by a single bed of glass beads of relevant size and
thickness. However, for expediency in constructing the physical
model, three generations ofbronchi were represented by Stage 2
in such a way that particle deposition should not have changed
significantly. In order to obtain a Reynolds number as close
as possible to that of the tracheal region (2235), we made the
surface area of packed bed in Stage I 166 em!. The surface
area of packed bed in Stage 2 was made 293 cm! to achieve
a Re}1101ds number (1241) as close as possible to that of the
bronchial region. The circular cylinders of the Stages I and 2
were made from 2.03-cm and 2.67-cm PVC pipes, respectively

(a) Weibel's symmetric and
dichotomous lung morphology

(b) Glass Bead Tracheobronchial
Model Stage I and 2

(American Valve'M, 3/4" and I" Fix-It Coupling PVC, Model:
P232, Lowe's Companies, Inc. North Wilkesboro, NC). The
sizes ofthe glass beads were based upon the required bed porosity
in order to achieve the closest possible Reynolds numbers for a
fixed inhalation flow rate (Glen Mills Inc., Clifton, NJ). The
copper wire mesh supported the glass beads and maintained a
uniform flow (TWP Inc., Berkeley, CAl,

Experimental Setllp.-Figure 3 depicts the experimental
system, which consisted of several components addressed
below.

1. In order to generate therapeutic grade aerosols, we used a
nebulizer (PARI LC Plus®, Midlothian, VA) and sodium chloride
solution (7 glml) aerosols with mass median aerodynamic
diameters (MMAD) ranging between 4.0 ~m and 5.5 ~m,

2. A corona charger was used to charge aerosols before
inhalation through the GBTBM. The charger also acted as an
aerosol holding chamber (AHC) with dimensions of2l cm x 18
em x 21 cm (LxWx H).

3. The USP induction port was used for introducing aerosols
into the GBTBM. Manufacturers also specifY the use of such
a USP port for introducing aerosols into the Andersen Cascade
Impactor (e.g., 8 Stage Non-Viable Cascade Impactor of New
Star Environmental LLC, Roswell, GA).

4. The Glass Bead Tracheobronchial Model was placed
between the USP port and the aerosol isokinetic sampling
chamber (ISC). The Stages 1 and 2 could be separated or
connected (together or individually) with the USP port and the
ISC.

5. The Electronic Single Particle Aerodynamic Relaxation
Time (ESPART) analyzer was used to measure aerodynamic
sizes and electrostatic charges in real time (Mazumder and Ware
1987). Its working principle was by Mazumder et al. (1989).

6. An aerosol isokinetic sampling chamber (ISC) was used
to facilitate the characterization ofaerosols isokinetically (Figure
3). The suction mouth of the ESPART analyzer was placed at
the center of the chamber and always pointed in the direction
opposite of the aerosol flow.

External clean and dry air (18.3 IImin) and nebulized aerosol
(10 l/min) were delivered to theAHC to simulate a light physical
activity inhalation flow rate of 28.3 l/min through the GBTBM.
The flow rate was measured using an Extech Heavy Duty Hot
Wire Thermo-Anemometer™ (Extech Instruments, Waltham,
Massachusetts, USA). The constant inhalation rate of 28.3 IImin
served two purposes. (I) The manufacturer-specified flow rate
for a Mark II Andersen Cascade Impactor (ACI) is 28.3 Lim,
which enabled GBTBM comparability \'lith the ACI. (2) The
vacuum pump and the ESPART could have drawn 27.3 l/min
and I l/min, respectively. The environmental conditions such
as lab temperature (20"C) and humidity (51.2%) were recorded
using Test0625™ (Testo GmbH & Co., Lenzkirch, Germany)
thermo-anemometer.

In order to find the aerosol particle aerodynamic size, the
electrostatic charge distributions and the charging effects upon
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Fig. 4. Comparison of the aerosol particle collection efficiency
curves of the glass bead tracheobronchial model Stages 1,2 and
without the GBTBM.

Results

in each case. Raw data was acquired through LabVIEW'M
(National Instruments, Austin, TX, USA) and mined by Aerosol
Particle Data Analyzer software (developed at the Aerosol
Drug Delivery Research Lab of the University of Arkansas
at Little Rock, Little Rock, AR, USA). Our study focused on
particles in the aerodynamic diameter range of 0.5 J.lm - 10 J.lm
with a geometric standard deviation greater than 1.5 because
therapeutic aerosols known at present or anticipated to be of
primary practical importance for predicting lung deposition have
aerodynamic diameters in the range of 0.5 J.lm - 10 J.lm (Swift
1996).

100 r-----------------=-:::"---,

We assumed that the both Stages of the glass bead
tracheobronchial model would operate on I basic principle.
Particles whose inertia exceeds a certain value (cutoff size)
would be unable to follow the streamlines and will impact
upon the packed bed. In addition, particles would deposit on
the bead surfaces due to diffusion, sedimentation, interception.
and electrostatic force. Thus, each Stage of the GBTBM would
separate aerosol particles into 2 size ranges; particles larger
than the cutoff size will be removed from the aerosol stream,
and particles smaller than that size will remain airborne and
pass through the Stage. As a result, each Stage of the GBTBM
will be characterized by a cutoff diameter. Figure 4 shows the
cutoff curves, or collection-efficiency curves, of the glass bead
tracheobronchial model Stages 1 and 2.

The deposition fraction will be defined as the ratio of the
number of particles removed from the aerosol (i.e., deposited)
while traveling through the GBTBM to the number of particles
originally entering it. Table 2 shows the normalized data from

Slage2

Fig. 3. Schematic of the experimental arrangement designed
to measure aerodynamic diameters and electrostatic charges of
the aerosol particles with and without passing through the glass
bead tracheobronchial model.

Electronic Single
Partide

Aerod)'llamic
RdaxationTime

Analyzer

Corona Dmmet / Aerosol
HolJing Cb~ber

GI3SSIkad
Tracheobronchial

Model

particle deposition in the GBTBM, the investigation was divided
into 6 experimental treatments of the aerosol:

(Ia) not charged or passed through the GBTBM (the charger
was OFF and the USP port was directly connected to ISC)
(lb) charged but not passed through the GBTBM (the
charger was ON and the USP port was directly connected
to ISC)
(2a) not charged but passed through the GBTBM Stage
l(the charger was OFF and the USP port was connected to
the GBTBM Stage 1)
(2b) charged and passed through the GBTBM Stage I
(charger was ON and the USP port was connected to the
GBTBM Stage I)
(3a) not charged but passed through the GBTBM Stages 1
and 2 (the charger was OFF and the USP port was connected
to the GBTBM Stages 1 and 2) and
(3.b) charged and passed through the GBTBM Stages I and
2 (charger was ON and the USP port was connected to the
GBTBM Stages I and 2).
Before starting each run of the experiment, the aerosol­

sampling chamber and the charger were cleaned thoroughly.
The GBTBM was washed with distilled water. The high-voltage
power supply was adjustable and the corona charger could either
be turned OFF or ON. The generation and sampling of the
aerosol particles started simultaneously. Each run continued for
5 minutes and was then stopped. The AHC, USP port, GBTBM,
and the ISC were cleaned again. To ensure our assumption of
equal particle losses each time in the USP induction port (throat),
the port was in place for all of the scenarios described above.
The procedure was repeated for 10 consecutive runs for each
treatment. The sizes and charge distributions were measured
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10 runs for uncharged particles for experimental scenarios l.a,
2.a, and 3.a. Table 2 also summarizes the coefficient ofvariation
(COY), count median aerodynamic diameter (CMAD), mass
median aerodynamic diameter (MMAD), and the deposition
fraction of uncharged particles in the GBTBM Stages I and 2.

Table 2. Summary of the normalized data of uncharged particle and deposition
efficiency in the glass bead tracheobronchial model (GBTBM).

developed for particles in the size range of 0.001 ~m - 100 ~m,

we have compared our GBTBM with the ICRP's respirable
(therapeutic) size range (0.5 ~m - 10 ~m) portion only.

Table 3 shows the nonnalized data from 10 runs of
charged particles for experimental treatments Iband 3b. It also
summarizes the coefficient of variation (COV), count median
aerodynamic diameter (CMAD), mass median aerodynamic
diameter (MMAD), electrostatic net charge-to-mass ratio, and the
deposition fraction in the GBTBM Stages I and 2 combined.

Figure 5 shows a comparison of the respiratory deposition
fraction in the GBTBM airways to the respiratory deposition
fraction in the ICRP model for the respirable range aerosol
particles. Although the basic ICRP deposition curve was

COy' +ve (/lm) (/lm)

-ve SlY SlY
(I.a) By-passed 6470 21 3.21 4.31 N/A
GBTBM Stages

0.01 8 0.1 0.19

13
(2.a) Inhaled 5085 27 3.18 3.43 0.21
through GBTBM

0.002 14 0.005 0.03Stage 1
13

(3.a) Inhaled 4466 47 3.08 3.51 0.31
through GBTBM

0.004 22 0.02 0.04Stage 1 & 2
25

'See Materials and Methods section.

~OV = coefficient of variation

'CMAD = count median aerod}namic diameter

4MMAD = mass median aerod}namic diameter

'SO = standard deviation

"OF = deposition fraction.

Table 3. Slumnary of the normalized data ofcharged particle and deposition
efficiency in the glass bead tracheobronchial model (GBTBM).

Figure 6 shows the comparison ofthe cumulative respiratory
deposition fraction of bipolar-charged versus unipolar-charged
aerosols in the GBTBM ainvays.

Charged Net Charge CMADJ MMAD' OF"
Particle to mass

ratio

Experimental
Scenario l

'See Materials and Methods section.

'COV = coefficient of variation

JCMAD = count median aerodynamic diameter

4~IMAD= mass median aerodynamic diameter

'SO = standard deviation

"OF = deposition fraction.

COY' (/lC/g) (/lm) (/lm)

+ve SO' SO'

-ve
(l.b) By-passed 3563 -19.84 2.25 4.17 N/A
GBTBM Slages

0.01 0.03 0.09

3

3560
(3.b) Inhaled 592 -7.06 2.63 6.25 0.83
through GBTBM

0.02 0.01 0.02Slages
(both Stage I and 18
2 were in place) 574

Uncharged Charged CMAI}' MMAD' OF"
Particle particle

E:<perimental
Scenario'

0.10 ,-------------------,

Fig. 5. Comparison ofthe respiratory deposition fraction ofthe
glass bead tracheobronchial model airways and the International
Commission on Radiological Protection tracheobronchial (ICRP
TB) ainvays for the respirable range aerosol particles.

Fig. 6. Comparison of the respiratory deposition fraction of
bipolar charged versus unipolar charged aerosols in the glass
bead tracheobronchial model airways.
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Discussion

In this study, we are reporting physical simulations of the
tracheobronchial airways of the human lung were reported. We
have demonstrated the model's design and development validity.
Secondly, our model showed a consistency with the ICRP66
Model in particle deposition for particles in the therapeutic
aerosol particle size range. Finally, it showed the deposition
pattern of bipolar versus unipolar-charged aerosol particles in
theGBTBM.

Validation of the Design and Development of the
GBTBM.-A 2-Stage GBTBM was designed and developed to
simulate the human respiratory tract Generation 0 (trachea, GO)
and Generations 1,2, and 3 (main and lobar bronchi, G1-G3),
respectively. The first Stage simulated Reynolds number was
2135, which was in close approximation with the flow Reynolds
number in the trachea of 2213 (ideal case) for an inhalation
flow rate of 28.3 11m. The second Stage simulated Reynolds
number was 1198, which was also in close approximation with
the average Reynolds number of 1241 for the first, second, and
third bronchi for the given inhalation flow rate. However, for
convenience in constructing the physical model and to achieve
the closest possible flow parameters, the surface areas of the
packed bead Stages were 5 and 17 times the in vivo surface
areas, respectively. In spite of these differences in surface
areas between the actual tracheobronchial morphology and the
GBTBM, simulated depositions are in accordance with previous
studies conducted by the ICRP (ICRP66 1994). The collection
efficiency or cutoffpoints ofthe GBTBM Stages are in the range
(Figure 4) that has been specified by the manufacturer of the
ACI (NSE 2004).

Comparison with the ICRP66 TB Model.-RegionaI
respiratory deposition predictions made by the ICRP Publication
66 (ICRP66 1994) are based upon both empirical analyses
(Rudolf et a1. 1990) and a theoretical model developed by
Egan et a1. (1989). The ICRP66 model takes into account
particle parameters such as size, shape, and density, as well
as anatomical parameters such as airway dimensions and flow
rates. Our GBTBM was a physical model for in-vitro studies. In
addition to all the considerations taken by ICRP66, we took into
account the electrical properties of aerosols and environmental
parameters (e.g., temperature, humidity). Although our model
predicted deposition for each aerodynamic size about 5% lower,
overall, results were fairly consistent with the ICRP depositions
for the particle size range of 0.5 Ilm - 10 Ilm (Figure 5). The
difference could be due to different assumptions and methods
used in the derivation ofthe formulae such as, ICRP Model is an
empirical lung deposition model which considered aerodynamic
and thermodynamic deposition formulas to derive respiratory
deposition of radionuclide particles, whereas our GBTBM
is a physical model simulating integrated electromechanical
deposition mechanisms as stated in Figure 1.

Comparison ofthe Charge Polarity Effect.-The respiratory
deposition patterns of bipolarly charged (e.g., negligible net

charge-to-mass ratio) particles clearly demonstrates the trend
of unipolarly charged particles to be deposited in the upper
airways (Figure 6). Data revealed that uncharged-particle­
deposition efficiency in the GBTBM was 31 % (Tables 3 and
4). In contrast the deposition efficiency was 83% when the
particles were charged. The net charge-to-mass ratio also
dropped from 19.84 IlC/g (negative) to 7.06 IlC/g (negative).
Hence, there were some electrostatic force situations. First
of all, the unipolarly charged particles induced greater space
charge forces and mutual repulsion. As a result, particles came
closer to the surfaces of the glass bead and were captured. This
feature, which is due to electromagnetic forces, is consistent
with Yu's (1977) theory and the experimental observations by
Bailey et al. (1998). Secondly, since uncharged particles are
without charge, electromagnetic forces have no effect on them.
Furthermore, there were only a few (2%) bipolar symmetrically
charged particles, they became neutralized over the course of
travel through the Stages due to the Coulombic attractive forces
among themselves. It was our observation that the aerosol
particles with symmetrical bipolar charge distributions traversed
efficiently through the tracheobronchial regions. We observed
that the most efficient bipolar charged particles were in the size
range of 1 Ilm - 3 Ilm, which showed the lowest deposition in the
tracheobronchial region (Figure 6). This finding suggests that
bioengineered therapeutic aerosols with good combinations of
aerodynamic size and electrostatic charge are good candidates
for the administration ofpulmonary medicinal drugs.

Compared to the commonly used ACI aerodynamic
classifying system, which provides a quick estimation for
aerosol depositions, the GBTBM described in this paper offers a
more detailed description of aerodynamic size and electrostatic
charge distribution of the deposited particles (Figures 4, 5, and
6). Whereas the ACI Stages are made of electrically conductive
materials, the GBTBM Stages are not. This is a limitation
that can be overcome in the production of future GBTBMs by
constructing Stage cylinders of similarly conductive materials.

Conclusions

Atwo-Stage GBTBM ofthe upper airways ofthe human lung
has been designed, developed, and realized. It is comparable to
the Mark II ACI. In addition, the GBTBM simulated by packed
bed media is simple, inexpensive, and a prospective model
for the in-vitro investigation of aerosolized drug delivery. The
respirable size range for therapeutic aerosols deposition in the
GBTBM is comparable with the mathematical and theoretical
results reported in the ICRP66 model. Bipolar aerosol particles,
or particles balanced \vith positive and negative polarity, pass
through the tracheobronchial regions more successfully than the
unipolar charged aerosol particles and provide better delivery
to the bronchiolar and alveolar regions of the human lung.
Our study is an important step in finding an alternative to the
ACI, which is unable to simulate the interactive behaviors of
deposition mechanisms in respiratory airways.
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