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Abstract

Laser beams are wave-like optical disturbances. They are characterized by a dominant direction of

propagation and a finite extent transverse to the direction of propagation. Many characteristics of

laser beams can be described in terms of a scalar function multiplied by a constant vector, which

can be real (for linear polarization) or complex (for elliptical polarization). The scalar function is a

solution to the paraxial scalar wave equation. This scalar description, however, fails to describe the

polarization and focusing characteristics of laser beams correctly. For a correct accounting of these

characteristics, the electric and magnetic fields associated with laser beams must satisfy not only

the wave equation but also the Maxwell’s equations. We show that, due to the finite transverse

size of laser beams, Maxwell’s equations require that the electric field (as well as the magnetic

field) associated with laser beams will possess all three nonzero Cartesian components even in free

space. Each component can be expressed in terms of the scalar solutions of the paraxial wave

equation. We construct three-component solutions giving expressions for the dominant, cross, and

longitudinal-polarization components, for linearly polarized Hermite-Gauss and Laguerre-Gauss

beams. Such a description correctly accounts for focusing as well as polarization properties of

laser beams. We demonstrate the validity of this description experimentally by generating two

families of laser beams and verify the existence of cross-polarization field components and their

evolution in propagation.

We generate experimental higher-order Hermite-Gauss laser beams intracavity via a pair of crossed

fibers. Laguerre-Gauss laser beams were generated by converting Hermite-Gauss beams into

Laguerre-Gauss beams of the same order by using a pair of cylindrical lenses to manipulate Guoy’s

phase of the beams. Intensity profiles of the dominant and cross-polarization components of lin-

early polarized Hermite-Gauss and Laguerre-Gauss beams are measured and their evolution as the

beam propagates away from its focal region was studied. The transverse profiles of the cross-



polarization components of these beams undergo an evolution with propagation. The theoretically

expected and experimentally observed intensity profiles are in reasonable agreement confirming

the field structure of laser beams derived in this thesis.
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Chapter 1

Introduction

In the physical science community, the term polarization of light or any other type of electro-

magnetic radiation refers to the direction of the electric field associated with the electromagnetic

radiation. Before the advent of lasers most directed electromagnetic disturbances were modeled in

terms of plane waves which, of course, have a definite direction of propagation. For such a field,

the direction of the electric field can be specified in terms of constant vectors. This is no longer

the case when one is dealing with electromagnetic beams which are electromagnetic disturbances

with a finite transverse size. A consequence of this is that the direction of the electric field is not

constant in space, similar to the field of a spherical wave. Typically, laser beams are described in

terms of a single component electric field that is written as the product of a constant unit vector

and a scalar function, which must satisfy the paraxial scalar wave equation. While this description

describes many characteristics of laser beams it fails to properly describe their polarization and

propagation characteristics. This is true even for linearly polarized laser beams. As will be shown,

the result is that there are three nonzero components of the electric field; in addition to the compo-

nent of the field in direction of (dominant) polarization the field will also have a cross-polarization

and longitudinal polarization component.

In the past few decades, special cases of the cross and longitudinal components of the field have

been investigated [1–12]. Recently, there has been an increase in interest in the generation and

characteristics of different types of laser beams [12–20]. This chapter serves as a brief introduction

to this research and present a servery of related work in the field.
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1.1 Applications

To fully appreciate the propagation and polarization characteristics of laser beams. Here, a few

applications of Gaussian laser beams are discussed. This is by no means a complete list but is

meant to illustrate the significance of laser beam propagation and polarization characteristics on

their applications.

Particle acceleration

The basic principle behind accelerating particles is the force exerted by the longitudinal electric

field component possessed by polarized laser beams [1]. This field, as we will show in the follow-

ing chapter, depends inversely on the spot size of the beam. Therefore, the more tightly focused the

beam, the stronger the longitudinal component [21–25]. A lens wave guide setup is suggested by

Scully [26] and Scully and Zubairy [24] that would create a sufficiently intense longitudinal elec-

tric field to accelerate a beam of charged particles. Proof of principle for this type of laser linear

accelerator is reported by Bochove et. al. using a asymmetric radially polarized Hermite-Gaussian

laser beam [27]. This type of laser linear accelerator injects a beam of electrons in the laser beam

leading to an increase in energy on the order of GeV/m [28].

Bahari and Shahriari report charged particle acceleration using a similar method by using two

orthogonal Hermite-Gaussian modes [29]. They suggest that, unlike the conclusion reached by

Scully and Zubairy [24], the change in energy of the accelerated electrons does not depend linearly

on the radius of the beam but there is an ideal beam size for electron acceleration. They calculated

optimal laser beam parameters, including polarization, beam radius, and intensity, for laser linear

accelerators.

2



Orbital angular momentum

As first suggested in 1909 by Poynting [30] and demonstrated by Beth [31], nearly thirty years

later, laser beams that are circularly polarized have ±~ spin angular momentum per photon for

left or right circular polarization, respectively. Laguerre-Gaussian beams possess an interesting

property that Hermite-Gaussian beams do not: each photon in a LG beam carries l~ orbital angular

momentum (OAM) and therefore (l±1)~ total angular momentum for a circularly polarized beam

[16, 32–34]. It is important to note here that even a linearly polarized LG beam can carry orbital

angular momentum [32].

Not only is the study of the orbital angular momentum possessed by light, in itself, fundamentally

interesting but OAM is the basis for many other applications. For example, more information can

be carried by a beam with orbital angular momentum per than by the spin of the beam alone [35].

Thus being able to control OAM could lead to better optical communication methods [36–38].

Additionally, a better understanding leads to improvement of microscopic particle manipulation

methods, such in optical tweezers [39–44].

1.2 Solution Families

Laser beams can be modeled by the paraxial wave equation (PWE). In Chapter 2 we examine two

complete sets of solutions to the PWE. The most common coordinate systems used to construct

beam like solutions to the PWE are Cartesian and circular cylindrical, which give the Hermite-

Gaussian (HG) and Laguerre-Gaussian families of beam solutions, respectively. Both families of

solutions have been studied comprehensively [17–20] and they are of practical importance since

lasers tend to operate in these modes due to the fact that corresponding symmetries are realized in

of stable cavities [45, 46].

For several years HG and LG beams were the only known sets of solutions to the wave equa-

3



tion. Recently, there has been an upsurge of interest in other stable beam solutions. Several new

solutions have been theoretically proposed and experimentally observed. These include: Hermite-

Laguerre-Gaussian beams [47, 48], Spiral beams [49, 50], Airy-Gaussian beams [51, 52], and Hy-

pergeometric beams [53]. Another, particularly interesting family of complete solutions to the

PWE, the one with elliptical symmetry, is known as Ince-Gaussian (IG) beams [43, 54, 55]. IG

beams are the continuous “connection” between HG and LG beams [54]. Like the Hermite and

Laguerre-Gaussian families of solutions, the Ince-Gaussian family forms a complete set of solu-

tions with elliptic symmetry and are eigenmodes of stable resonators (i.e. are natural resonating

modes of stable resonators) [54, 55].

While the Hermite and Laguerre-Gaussian solutions are discussed in detail in the following chap-

ters Ince-Gaussian beams are discussed only here. At this time, little is known about Ince poly-

nomials and, according to Bandres et. al. [54], have not received the attention that they deserve.

A particularly interesting property of IG beams is that they represent a continuous set of modes

between Hermite and Laguerre-Gaussian beams. HG and LG beams are special extreme cases

of IG beams [54]. The IG beam solution is similar to that of HG and LG beams (see Chapter 2

sections 1.1 and 1.2), save that the Hermite and Laguerre polynomials are replaced by Ince polyno-

mials. The radius of curvature of the wave front is the same for IG beams as that of a fundamental

Gaussian beam. Therefore, the propagation of IG beams through optical elements can be described

in terms of the well know ABCD matrix formalization [45, 54]. Additionally, the beam diameter

depends on propagation distance and the magnitude of the intensity varies in the same way as the

intensity of a fundamental Gaussian beam.

Schwarz et. al were the first to report experimental generation of Ince-Gaussian beams in a stable

resonating cavity [56]. They report that by breaking the symmetry of a solid state, diode pumped

laser, high order IG beams with high quality can be produced. By using two different output cou-

plers with differing radii of curvature, adjusting the pump power, and changing the symmetry by

translating the output coupler, different orders and degrees of IG beams are produced. Additional
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cavity modifications, such as crossed fibers in the cavity can be introduced to change the output

mode [43, 56, 57].

Ince-Gaussian beams can also be generated using a pair of carefully aligned and specifically placed

cylindrical lenses [43]. This pair of cylindrical lenses is known as an astigmatic mode converter

(AMC) which will be discussed in Chapter 2 in detail. The number of hyperbolic and nodal lines

(or, in this case, the order of a HG mode) will be determined by the degree of alignment of the

laser cavity and or with the use of a pair of crossed fibers inside the cavity, forcing non-fundamental

mode operation. The structure of the corresponding mode changes as the angle between the mode

axis and the mode converter changes, altering the elipticity of the mode [43].

Figure 1.1: Example of HG, LG, and IG beams of the same order. From left to right: HG02, LG20,

and IG20.

Figure 1.1 gives an example of second order HG, LG, and IG beams. If the HG beam, depicted on

the far left, was sent through an AMC with its axis parallel to the mode converter axis the output

of the AMC would be the same HG beam. If the same beam was sent through the mode converter

with its axis 45o to the AMC the output would be the LG mode given in the middle. On the other

hand, if the beam was sent into the mode converter with its axis at a small angle to the mode

converter axis then the output would be similar to the IG beam given on the right.
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1.3 Mode Generation

1.3.1 Present Research

Chapters 3 and 4 discuss how HG and LG beams are generated for this study. For this research

we chose to generate Hermite-Gaussian beams by inserting a pair of crossed fibers in the laser

cavity [15]. There are other ways to generate these beams. This method was chosen due to its

effectiveness and simplicity. Additionally, the crossed fibers method did not require acquisition of

any new equipment. Laguerre-Gaussian modes are generated by sending the HG modes generated

from the laser through an astigmatic mode converter [32]. This type of mode converter consists

of two cylindrical lenses and two spherical lenses, with proper alignment and separation the mode

converter will convert a Hermite-Gaussian beam into a Laguerre-Gaussian beam of the same order.

Figure 1.2 depicts this type of mode converter. This method of generation for LG beams was

chosen because the components of the converter were readily available and the high purity of

modes that can be generated. The quality of mode generated by the astigmatic mode converter is

limited by the quality of the input HG beam [58] and proper alignment and placement of the mode

converter.

Figure 1.2: Astigmatic mode converter: two appropriately separated identical cylindrical lenses to

convert a Hermite-Gaussian mode into a Laguerre-Gaussian mode of the same order.
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1.3.2 Other Methods

While the present investigation uses the above mentioned methods for higher-order Hermite-

Gaussian and Laguerre-Gaussian mode generation, there are other notable methods that will be

mentioned in this section.

Generalization of an astigmatic mode converter: variable phase mode converter

O’Neil and Courtial advocate that the cylindrical lens mode converter briefly described above is a

specific arrangement of the general variable phase mode converter (VPMC) [59]. The basis of the

VPMC is the matrix formulation given by Allen et. al. [60], which describes phase and intensity

structure of Laguerre-Gaussian beams as they propagate through an optical system, with Hermite-

Gaussian modes as the basis set of orthogonal modes. Allen draws a parallel between how a

waveplate treats polarized light and a mode converter converts between mode families: a waveplate

introduces a phase shift between two orthogonally polarized light beams and a mode converter

introduces a phase shift between orthogonal modes. O’Neil and Courtial generalize Allen’s matrix

formulation and additionally write a matrix describing Hermite-Gaussian modes with Laguerre-

Gaussian modes as the basis set of orthogonal modes. Analyzing the two formulations (one with

HG basis and the other with LG basis) a connection was found between rotation in one set and

mode conversion in the other. This connection forms the operating basis of the VPMC. The VPMC

consists of two sets of astigmatic mode converters rotated at 90o and two dove prisms (that are

rotated to change phase) between the two sets of converters that serve as an image rotator (Fig. 1.3

A) [59]. In addition to the analogy between this mode converter and polarizers that leads to a very

intuitive connection between HG and LG modes another advantage, in some applications, in using

such a mode converter is that the pattern of conversion is repeated every 180o of rotation of the

mode converter (as opposed to every 90o for the astigmatic mode converter).
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Figure 1.3: Variable phase mode converter consisting of two astigmatic mode converters (AMC)

and two dove prisms that are rotated to change phase. The astigmatic mode converters consisting

of two cylindrical lenses are depicted as cylinders.

Laguerre-Gaussian modes via holograms

Laguerre-Gaussian beams, of theoretically any order, can also be generated using a hologram. The

pattern on the holographic plate is an interference pattern of the mode that is desired and a reference

field which is the output of the laser that is to be used to generate the LG beam [61, 62]. There are

two general methods for generating Laguerre-Gaussian beams holographically, one dynamic and

the other static. The static method involves printing the computer generated interference pattern

on a transparency. A reference Gaussian beam is sent through the hologram generating the desired

Laguerre-Gaussian beam. The dynamic system uses liquid crystals to display a cross section of

the phase pattern of the desired LG mode on silicon (LCOS) [63, 64]. The liquid crystals can be

electrically manipulated allowing dynamic control of the mode to be generated. LCOS also has the

advantage of being able to actively correct phase distortions leading to a higher quality beam [63].

The Laguerre-Gaussian modes generated via holograms are typically of significantly lower purity

then those generated from an astigmatic mode converter or the dynamic method [65]. On the
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other hand, to convert a higher order Hermite-Gaussian beam to Laguerre-Gaussian beam with a

astigmatic mode converter it is necessary to be able to generate the Hermite-Gaussian beam of

the desired order. Generally, it is desired to have a laser beam operating in only the fundamental

mode. Thus, lasers are typically designed so that they are forced to operate in the fundamental

mode, making it difficult or impossible to force the laser to operate in a higher order mode, making

the holography scheme advantageous in such situations.

Spot-defect mirror Laguerre-Gaussian mode generation

The previously discussed methods for Laguerre-Gaussian beam generation all have one thing in

common and that could be considered a disadvantage in generating high quality beams, they are

all extra-cavity methods. An innovative, and beautifully simple, intracavity method is presented by

Ito et. al. [66]. They suppress the operation of lower order modes by replacing the high-reflectivity

mirror at the rear of the cavity with one that has a low reflectivity spot defect. A defect on the

mirror can be achieved by focusing a high intensity laser pulse at the center of a typical high-

reflectivity dielectric mirror. Using a laser to create the spot defect allows for controlled size of the

spot. While an aperture can be used inside the laser cavity to suppress higher order modes from

oscillating, the spot defect on the mirror works in the opposite manner. The operating principle is

rather straight forward, the losses induced by the low reflectivity spot forces the laser to operate in

a higher-order Laguerre-Gaussian mode, similar to the cross-fiber method used to generate higher-

order Hermite-Gaussian modes. This method can only be used to generate beams with a radial

index of zero (p = 0), the radial index dictates the number of rings the beam possesses, where

the number of rings is p + 1. Also, since this method generates sanding waves in the azimuthal

direction, the LG +` and LG −` will be generated at the same time. Therefore, the output of the

laser will be an interference pattern of the two modes.

The length of the laser cavity and the radii of curvature of the cavity mirrors determine the beam

diameter. With increase in order of the beam there is an increase of the relative size of the null in
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the center of the beam. Ito et. al. [66] report changing the length of the cavity, keeping the defect

on the mirror the same size, to change the ratio of the spot defect to beam radius for mode selection.

Kano et. al. [67] describe another approach to change the spot defect size to beam diameter ratio,

change the defect spot size, the larger the defect size the higher the order of the mode generated.

1.4 Longitudinal Field Observation

Apart from the aforementioned particle acceleration there are other uses for the longitudinal field

component of a laser beam such as single molecule orientation determination [68]. It has been

suggested that the direction of the field could also be of use in near-field optical microscopy [69].

The observation of the longitudinal field is beyond the scope of this research. It is, however, a well

researched and interesting topic. This section gives a few examples of methods used to observe the

longitudinal field.

1.4.1 Direct measurement via photoresist

Hao and Leger report a method to directly measure the longitudinal component of radially po-

larized beams by recording the profiles in photoresist [70]. A silica substrate was coated with

photoresist and placed in the focal plane of a microscope objective, the location of the focus of the

beam. This method takes advantage of the fascinating characteristic that a very tightly focused,

radially polarized beam’s longitudinal component can have a larger intensity then its transverse

component [70]. After exposing the photoresist to the beam, the photoresist is developed and the

depth of the photoresist is measured. The depth is directly proportional to the intensity of the beam,

the profile of the longitudinal component can thus be directly observed.

The method used by Hao and Leger is convenient because the longitudinal component can be

measured in a straight forward way but it has disadvantages. First, there is a high cost associated
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with acquiring the profiles, the mask required for the photoresist deposition requires electron-

beam mask fabrication techniques. Second, since the longitudinal component is only going to be

appreciable if the beam is tightly focused, the area recorded in the photoresist will be very small

(on the order of the wavelength of the light used) so it is necessary to use something such as an

Atomic Force Microscope to measure the surface profile.

1.4.2 Probing

Another arrangement for longitudinal field observation is presented by Novonty et. al. [71],

they verify theoretical profiles for the longitudinal-polarization component of a radially polarized

Laguerre-Gaussian beam by using a fluorescing molecule as a probe. Single molecules with known

dipole orientation are scanned through the focus of the laser. Fluorescence rate of the molecule

and laser location data is compiled to generate an image of the field.

Bouhelier et. al. [69] report using the tip of near field optical microscope to scan the longitudinal

field. This method scans the focus of the field with a metallic or dielectric tip which scatters the

electric field. The field profile can be determined by recording the scattering field as function of

the tip position.

1.5 Other polarizations

While this thesis focuses on linearly polarized Hermite and Laguerre-Gaussian beams, it is worth

noting here that for other types of polarization, Maxwell’s equations will also require three non-

zero field components. For example, a right circularly polarized beam will have a small longi-

tudinal component and a smaller left circular polarization component [72]. The experimental ar-

rangement required to generate a circularly polarized beam consists of sending a linearly polarized

beam through a quarter wave plate. To observe the cross-polarization component of a circularly
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polarized beam would then require another quarter wave plate. The addition of the second quarter

wave plate to the already circularly polarized beam is the same as introducing a half wave plate to

a linearly polarized beam, i.e. it will simply rotate the linear polarization. The result is that the

setup to experimentally observe the cross-polarization component of a circularly polarized beam

reproduces the setup used here to generate the cross-polarization profiles of a linearly polarized

beam [14]. For beams that are radially and azimuthally polarized the longitudinal and cross po-

larization components will be more significant when beams do not have circular symmetry about

direction of propagation [21, 70, 72].

1.6 Experiment

Chapter 3 describes Hermite-Gaussian laser beams. We compare experimental and theoretical

transverse HG intensity profiles for several orders of modes and demonstrate the change in their

shape with propagation. Laguerre-Gaussian beams are discussed in Chapter 4 along the same

lines as described for HG beams in Chapter 3. Additionally, the rotation of the cross-polarization

components of the LG beams is quantitatively verified.

In the final chapter, conclusions and recommendation for further research are given. Included in

the appendix are the Maple work sheet used to generate the theoretical transverse intensity profiles

and the MATLab programs used to compare theoretical and experimental profiles and to analyze

the rotation of the cross-polarization components of the Laguerre-Gauss beams.
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Chapter 2

Paraxial Beam Solutions to Maxwell’s Equations

This chapter begins with a discussion of the solutions to the wave equation and the failure of the

typically used scalar paraxial wave approximation in describing the polarization and focusing of

laser beams. For linearly polarized beams it is typically assumed that the electric field can be

written as a constant vector (possibly complex) multiplied by a scalar function. Therefore, only

one component to the electric field is necessary. We will show that there must be three nonzero

components to the electric field, leading to vector solutions. Solutions to Maxwell’s equations in

Cartesian and circular cylindrical coordinates, which give rise to the Hermite-Gauss and Laguerre-

Gauss beams, respectively, are then discussed. The discussion of an astigmatic mode converter

capable of converting Hermite-Gauss beam into a Laguerre-Gauss beam of the same order can be

found in Chapter 3.

2.1 Beam Solutions to Maxwell’s Equations

Since laser beams are electromagnetic radiation, we naturally start this section with Maxwell’s

equations in free space:

~∇ · ~E = 0, (2.1)

~∇× ~E = −∂
~B

∂t
, (2.2)

~∇ · ~B = 0, (2.3)

~∇× ~B = µ0ε0
∂ ~E

∂t
, (2.4)
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where ~E and ~B are the electric field and magnetic field, respectively. µ0 and ε0 are the permeability

and permittivity of free space. On taking the curl of Eq. (2.2) we get:

~∇×
(

~∇× ~E
)

= − ∂

∂t

(

~∇× ~B
)

. (2.5)

Combining Eq. (2.5) with Eq. (2.4), using the vector identity

~∇×
(

~∇× ~E
)

= ~∇
(

~∇ · ~E
)

−∇2 ~E,

and Eqs. (2.1) and (2.4) to eliminate ~∇× ~B we find that the equation satisfied by the field is

[

~∇2 − µ0ε0
∂2

∂t2

]

~E = 0. (2.6)

Equation (2.6) is known as the wave equation. Following the same method we find the same

equation for the magnetic field,
[

~∇2 − µ0ε0
∂2

∂t2

]

~B = 0. (2.7)

Note that each cartesian component of the electric and magnetic fields satisfies Eqs. (2.6) and

(2.7), respectively.

2.1.1 Hermite-Gauss solutions of the scalar wave equation

In many situations it is assumed that there is only one nonzero Cartesian component of the electric

field (polarization direction). In this section we will consider solutions in cartesian coordinates.

Assuming only one nonzero Cartesian field component, Eq. (2.6) reduces to the scalar wave

equation,
[

∇2 − 1

c2
∂2

∂t2

]

ψ(~r, t) = 0, (2.8)
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where ψ(~r, t) represents a cartesian component of the field amplitude and

c =
1√
µ0ε0

(2.9)

is the speed of light in vacuum. Assuming quasimonochromatic waves of angular frequency ω,

propagating in the z direction, we seek a solution with a finite transverse extent,

ψ(~r, t) = ψ(~r)ei(kz−ωt), (2.10)

where k = ω
c
= 2π

λ
is the magnitude of the wave vector and λ is the wavelength. The ψ(~r) term

describes the transverse variation in the wave amplitude. Since we are in search of a solution with

a slow change in the transverse profile ψ(~r) over a few wavelengths we look for fields that satisfy,

1

k

∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

=
λ

2π

∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

� |ψ(~r)| (2.11)

and

1

k

∣

∣

∣

∣

∂

∂z

(

∂ψ(~r)

∂z

)∣

∣

∣

∣

=
λ

2π

∣

∣

∣

∣

∂

∂z

(

∂ψ(~r)

∂z

)∣

∣

∣

∣

�
∣

∣

∣

∣

∂ψ(~r)

∂z

∣

∣

∣

∣

. (2.12)

These equations state what is known as the paraxial approximation. Substituting Eq. (2.10) into

Eq. (2.8) gives,

[

∇2 − 1

c2
∂2

∂t2

]

ψ(~r, t) =

[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

]

ψ(~r)ei(kz−ωt)

=

[

∂2

∂x2
+

∂2

∂y2

]

ψ(~r)ei(kz−ωt) +
∂

∂z

(

∂ψ(~r)

∂z
ei(kz−ωt) + ikψ(~r)ei(kz−ωt)

)

+
ω2

c2
ψ(~r)ei(kz−ωt)

=

[

∂2

∂x2
+

∂2

∂y2

]

ψ(~r)ei(kz−ωt) +
∂2ψ(~r)

∂z2
ei(kz−ωt)

+ 2ik
∂ψ(~r)

∂z
ei(kz−ωt) + (ik)2ψ(~r)ei(kz−ωt) + k2ψ(~r)ei(kz−ωt),
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where ω2/c2 = k2 is used. Dropping the second order derivative with respect to z, in accordance

with Eq. (2.12), and simplifying we arrive at the scalar paraxial wave equation,

[

∂2ψ(~r)

∂x2
+
∂2ψ(~r)

∂y2
+ 2ik

∂ψ(~r)

∂z

]

= 0. (2.13)

The well known solutions in cartesian coordinates to Eq. (2.13) can be realized via separation of

variables by assuming a solution as a product of two functions depending on x and z and y and z,

respectively [12, 45]

ψmn(x, y, z) = ψm(x, z)× ψn(y, z). (2.14)

We can then write the paraxial wave equation as,

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

+

[

∂2ψm(y, z)

∂y2
+ 2ik

∂ψm(y, z)

∂z

]

= 0. (2.15)

Since the x, z and y, z parts of Eq. (2.15) must independently equal zero we can find the solution

in one transverse direction and then use it to find the solution in the other coordinate. Focusing

only on the x, z dependent solutions we can write the paraxial wave equation as

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

= 0. (2.16)

Since we seek a wave-like solution that will describe laser beams which have a definite direction

of propagation and a finite transverse area we assume a general solution of the form [46]

ψm = hm

(

x
√
2

w(z)

)

· ei
(

k x2

2q(z)
+P (z)

)

, (2.17)

where hm, q(z), w(z), and P (z) are to be determined. w(z) is a z dependent function that will be

shown to be related to beam size and q is a complex function that will be referred to as the complex
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beam parameter. Inserting Eq. (2.16) into Eq. (2.17) yields,

[

∂2ψm(x, z)

∂x2
+ 2ik

∂ψm(x, z)

∂z

]

=

{

2

w2(z)
h′′m +

[

i2kx
√
2w(z)

q(z)
− 2ikx

√
2

q2(z)

dw(z)

dz

]

h′m +

[

ik

q(z)
− 2ki

dP (z)

dz

]

hm

}

e
i
(

k x2

2q(z)
+P (z)

)

= 0, (2.18)

where the argument of hm is suppressed for simplicity and we have imposed the requirement

dq

dz
= 1. (2.19)

A single prime on hm is used to denote a first order derivative with respect to its argument and a

double prime to represent a second order derivative with respect to its argument:

h′m (X) =
dhm (X)

dX
, (2.20)

h′′m (X) =
d2hm (X)

dX2
. (2.21)

where

X =
x
√
2

w(z)
.

Upon simplifying the left hand side of Eq. (2.18) we are left with the following differential equation

h′′m + ik

[

1

q(z)
− 1

q2(z)

d

dz
w(z)

]
√
2x

w(z)
h′m +

[

ikw2(z)

2q(z)
− kw2(z)i

dP (z)

dz

]

hm = 0, (2.22)

If we choose w and P to satisfy

ikw2(z)

2q(z)
− kw2(z)

idP (z)

dz
= m (2.23)
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and

ik

q(z)
− 1

q2(z)

d

dz
w(z) = −2, (2.24)

Eq. (2.22) becomes:

d2hm(x)

dx2
− 2x

dhm(x)

dx
+mhm(x) = 0. (2.25)

Equation(2.25) has the form of the Hermite differential equation [73]. This approach then leads to

what is often called the standard Hermite equation [45]. The function hm is therefore a Hermite

polynomial, Hm. The Hermite polynomial is given by

Hm(µ) = (−1)meµ2 dm

dmµ
e−µ

2

. (2.26)

A few lower order Hermite polynomials are as follows:

H0(µ) =1 (2.27)

H1(µ) =2µ (2.28)

H2(µ) =4µ2 − 2 (2.29)

H3(µ) =8µ3 − 12µ (2.30)

H4(µ) =16µ4 − 48µ2 + 12 (2.31)

H5(µ) =32µ5 − 160µ3 + 120µ (2.32)

(2.33)

P (z) must be found so that Eqs. (2.23) and (2.24) are satisfied. Since we required

dq/dz = 1, q is given by

q(z) = q0 + z, (2.34)

where q0 = q(0). With expectation of q being complex we will write

q(z) = z − iz
R
, (2.35)
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Figure 4.9: Dominant (I1) and cross-polarization (I2) intensity profiles for LG beams with (`, p) =
(0, 1), and (`, p) = (±3, 0) at z = 0, z = 1
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, z = z
R

, and z = 4z
R

. The dominant-polarization

intensity profile for ` = −|`| is the same as the ` = +|`| profile.
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Figure 4.10: Dominant (I1) and cross-polarization (I2) intensity profiles for an LG beam with

` = −1 and p = 1, at z = 0, z = 1
2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity

profile for ` = −|`| is the same as the ` = +|`| profile.
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Figure 4.11: Dominant (I1) and cross-polarization (I2) intensity profiles for LG with ` = ±4 and

p = 0, at z = 0, z = 1
2
z
R

, z = z
R

, and z = 4z
R

. The dominant-polarization intensity profile for

` = −|`| is the same as the ` = +|`| profile.

The shape of the dominant polarization profiles are not affected by propagation. Conversely, All of

the cross-polarization intensity profiles have a four fold symmetry in the near field that rotates as

they propagate away from their waist, after several Rayleigh ranges the profiles stabilize to a four

lobed patterns.
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4.4 Results and Discussion

Here we consider the difference between the theoretical and experimental cross-polarization pro-

files. Similar to the HG modes, the cross-polarization components of the intensity profiles change

shape with propagation while the dominant-polarization profiles only undergo a change in scale.

The the cross-polarization components of the LG intensity profiles rotate with propagation. This

rotation is analytically examined in this section.

4.4.1 Rotation of the cross-polarization profiles

First, we examine the rotation that the cross-polarization profiles go through during propagation

[14]. It should be noted that beams with ` = 0 do not exhibit rotation (Fig. 4.9). We begin the

discussion of rotation by introducing δ, the angle of rotation of the cross-polarization profiles. The

angle δ is defined as the angle between the radius vector from the center of the beam to the center

of a lobe to the horizontal axis, as shown in Fig. 4.12.

Figure 4.12: Define angle of rotation, δ.

The rotation of the profiles readily be can be observed in Figs. 4.7, 4.8, and 4.10-4.11. The

angle of rotation is measured via a Matlab program (see appendix for code, LG rotate.m ) for both

experimental and theoretical profiles. The procedure for determining δ is as follows,
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1. Crop: The edge of the intensity profile is determined and the intensity profile is cropped to

the region of interest.

2. Find locations of maximum intensity: The built-in function find(max) is used to locate the

maximum intensity of the lobes in the theoretical profiles. To find the location of maximum

intensity of the lobes in experimental profiles it is necessary to first reduce the noise in the

profiles. This is achieved by converting the grey-scale experimental images to binary using

the maximum threshold for the conversion that allows the remaining regions of each lobe to

remain connected.

3. Centroid of the lobe: The regionprops command is then used to find the location of the

maximum of each lobe in the experimental profiles.

4. Knowing the location of each of the maxima and the center of the entire profile the angle of

rotation is readily calculated.

Note that finding the largest possible threshold for the binary conversion, in the second step, allows

for the smallest uncertainty in the locations of maximum intensity. This is seen by considering

a theoretical image, the location of the maximum intensities of the blades is well defined. By

increasing the threshold level one observes that the location of the center of the blade (of the

binary image) approaches the location of the maximum intensity.

A graph of the rotation results are given in Fig. 4.13, experimental data are given as points and the

theoretical data is given as a line. Each experimental point is the average of at least six different sets

of data. The experimental data is in reasonable agreement with the theoretical data. The change in

the Laguerre-Gauss cross-polarization profiles change little after several Rayleigh ranges.
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It is also interesting to note that the beam profile rotates slower for higher azimuthal index, `. Fig.

4.14 gives the angle of rotation with respect to `, in agreement with Vyas et. al [72]. Once again,

the experimental and theoretical data are in reasonable agreement with each other.
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Figure 4.14: Angle of rotation, δ, at z = z
R

as a function of l for p = 0.

Another very interesting property is evident when the cross-polarization profiles for polarized

beams of different topological charge, ±`, of the same order, are compared, see the second and

third rows Figs. 4.7 and 4.8. The cross-polarization profile for beams with ` = −|`| rotates

counter-clockwise with propagation, conversely the beams ` = +|`| rotates in the clockwise di-

rection with propagation. This property can be explained by considering the fact that changing the

sign of the topological charge (`), effectively, interchanges the x and y axes, causing the change in

direction of rotation. Another way to make this change in chirality conspicuous is to realize that

there is two primary ways that one can change the sign of `, the first is to use a dove prim which,

when inserted in to the LG beam path, changes the transverse profile of the output beam to the

mirror image of the transverse profile of the input beam. Another way to change the sign of ` is
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to change the HG beam to be converted to the LG beam from HGnm to HGmn, that is rotate the

angle between the HG beam and the mode converter axis by 90o. Either of the options described

facilitate an exchange of x and y coordinates leading to a change in the direction of helicity of the

LG beam. There is no visible change of the dominant polarization profiles for different charges of

`.

4.4.2 Figure of merit of observed intensity profiles

In order to quantify how closely the experimentally recorded LG profiles match the theoretically

expected profiles, the same algorithm as described in Chapter 3 to analyze the HG beam profiles

is used. Table 4.3 gives the figure of merit for the cross-polarization components of the LG beam

profiles, at different distances from the beam waist.

z/z
R

LG10 LG20 LG30 LG40

0 0.103 0.101 0.109 0.123

0.5 0.077 0.095 0.060 0.068

1 0.068 0.114 0.050 0.070

2 0.102 0.167 0.072 0.001

4 0.064 0.164 0.034 0.016

Table 4.3: Figure of merit (FM).

Again, FM = 0 corresponds to perfect agreement and FM = 1 no agreement. The results of the

difference data indicate that the experimental profiles are in good agreement with the theoretical

ones, as is evident in Figs. 4.7-4.11.

4.4.3 Beam growth

The theoretical intensity profiles presented in Figs. 4.7-4.11 are scaled so that they are the same

size as the experimental profiles causing beam growth as a function of distance data to be lost.

Here we give size of the beam profiles that the CCD records in number of pixels as a function of
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distance from the waist. Figures 4.15 and 4.16 give the size of the beam with propagation distance

for both the theoretically expected and the experimentally observed growth. The theoretical and

experimental spot size data is retrieved by following the same procedure as for the Hermite-Gauss

beams described in Chapter 3. Figure 4.15 shows the growth of the dominant-polarization compo-

nent profile for the LG10 mode and Fig. 4.16 for the growth of LG30 mode with propagation.

Figure 4.15: Beam size growth with propagation for the cross-polarization component of LG10.

The diamonds are experimental results and theoretically expected results are drawn as a continuous

curve.

As can be seen from the plots given in Figs. 4.15 and 4.16 the experimentally measured beam

growth data is in reasonable agreement with the theoretically expected growth.

4.5 Chapter summary

This chapter discusses the astigmatic mode converter and the principles behind how it converts HG

beams to LG beams of the same order and alignment considerations specific to this research. Gen-

eration of LG modes and acquisition of the intensity profiles of dominant and cross-polarization

components profiles is discussed. Experimental profiles for several orders of LG beams were

presented and compared to the theoretical profiles. The two show reasonable agreement. The in-
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Figure 4.16: Beam size growth with propagation for the cross-polarization component of LG30.

The squares are experimental results and theoretically expected results are drawn as a continuous

curve.

teresting rotational behavior of the cross-polarization component of LG beams for nonzero ` was

discussed. The rotation is found to be slower for larger values of `. The rotation is in opposite

directions for different topological charges, ±`. The the experimental rate of rotation is in good

agreement with the theoretical data.
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Chapter 5

Conclusions

5.1 Summary

This thesis presents a description of laser beams consistent with Maxwell’s equations. Such beams

are examples of wave-like electromagnetic disturbance that have a dominant direction of propa-

gation their extent in directions transverse to the direction of propagation is finite. As the beam

propagates, it retains the dominant direction of propagation but its transverse extent changes. Laser

beams thus have an intermediate status between a plane wave, which has a definite direction of en-

ergy flow but infinite extent and a spherical wave where energy flows uniformly in all directions.

Since laser beams are electromagnetic radiation, electric and magnetic fields associated with them

must satisfy not only the wave equation but also the Maxwell’s equations. Only such a description

will correctly describe their propagation characteristics including their focusing and polarization

properties. Although for many applications it is adequate to describe laser beams in terms of an

electric field that can be written as a constant vector multiplied by a scalar function which is a

solution of scalar wave equation. This description is termed scalar approximation. It is clear that

a scalar description assumes that beam polarization is uniform. Such a description can account for

overall energy transport but it cannot account for focusing or defocusing of laser beams as they

propagate and, as we have shown in this thesis, it also fails to properly describe the polarization

properties of laser beams. We have shown that a correct description of laser beams emerges only

when we insist that the electric and magnetic field associated with laser beams satisfy not only

the wave equation but also the Maxwell’s equations. We show that in order to satisfy Maxwell’s

equations, the electric field of a linearly polarized laser beam must have three non-zero field com-
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ponents. It should be recalled that wave like solutions with more than one electric field components

are well known in waveguides. This is a consequence of boundary conditions that must be satisfied

by the field components. This thesis shows that even in free-space, with no boundaries present, the

correct description of laser beams leads to an electric field that has all three Cartesian components

nonzero. This means that beams with uniform polarization do not exist. However, if one particular

component of the electric field is dominant and the other two are weak, we can still speak of a

beam linearly polarized in the direction of the dominant component. Similarly, we can speak of

a left circularly (or right circularly) polarized beam if the beam has a dominant left circular po-

larization component and a weaker longitudinal and cross-polarization (right circular in this case)

components. Since a circularly polarized wave can be considered to be a coherent super-position

of two orthogonal linearly polarized wave, we have confined our attention to linear polarization

in this thesis. We have considered two families of laser beams - linearly polarized Hermite-Gauss

(HG) and Laguerre-Gauss (LG) beams - and derived expressions for the electric field components

of these beams.

Theoretical derivation leading to the expressions for the field components of linearly polarized HG

and LG beams was given in Chapter 2. The chapter begins by introducing the conventionally used

scalar description of laser beams in the paraxial approximation. It uses paraxial scalar wave equa-

tion to derive the expressions for Hermite-Gauss and Laguerre-Gauss beams. Problems with the

scalar solution for describing laser beams are then pointed out motivating the search for a correct

description. This search begins by assuming a three-component electric field and linear polariza-

tion (one dominant component). Maxwell’s equations are then solved with this assumption in both

Cartesian and circular cylindrical coordinates giving the three components of linearly polarized

Hermite-Gauss and Laguerre-Gauss beams, respectively. Only the electric components are explic-

itly given. The components of the magnetic associated with these beams can be calculated using

the Maxwell’s equations.

In Chapter 3, we describe the generation of HG beams by an Ar-ion laser and experimental verifi-
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cation of the polarization structure of HG beams. In particular, the transverse intensity distribution

of the dominant and cross-polarization components of Hermite-Gauss beams of several orders

were experimentally verified. Higher order HG beams are generated from an argon-ion laser by

inserting a pair of crossed fibers into the laser cavity. By carefully placing the fibers relative to

the axis of the laser cavity, we were able to generate several higher order HG modes. The output

from the laser was passed through a pair of linear polarizers. Light transmitted by the polarizers

was recorded by a CCD camera. It was found that unlike the intensity profiles of the dominant

polarization component, the intensity profiles of the cross polarization component, for all but the

fundamental mode, undergo an evolution with propagation. Experimentally recorded HG beam

profiles were found to be in agreement with the theoretically calculated profiles both in shape and

in their evolution with propagation.

Chapter 4 describes experiments with Laguerre-Gauss beam similar to those carried out with HG

beams. Different order LG beams were generated by converting HG beams of the same order from

the laser, via a pair of identical cylindrical lenses separated by a distance equal to
√
2 times the

focal length (astigmatic mode converter). This allows us to manipulate the Guoy’s phase of inci-

dent HG beams turning them into LG modes. The LG cross-polarization component was found to

have the interesting property that the intensity profile has noticeable rotation with propagation over

a distance of few Rayleigh ranges. The rotation of the intensity profile for beams with opposite

topological charge ` is in opposite directions. The size, shape, and degree of rotation of the exper-

imental and theoretical cross-polarization component of LG beams are all directly comparable and

are in reasonable agreement within the error associated with mode generation and image capture.

Finally, we mention that although the experiments confirmed the detailed beam intensity profiles

and their evolution with propagation away from the waist predicted by the theory, the power car-

ried by the cross-polarization component was measured to be substantially higher than predicted

by the theory. This discrepancy is not fully understood and merits further study of the polarization

and spectral content of laser background fluorescence and spectral response of the polarizer itself.
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5.2 Future work

An immediately applicable use of knowing the structure of the cross-polarization component of

Laguerre-Gaussian beams is determine the radial index p and azimuthal index `, also known as

the topological charge of the beam. A determination of these indices, especially of the azimuthal

index, requires a Mach Zehnder type of interferometer, which can be a laborious undertaking

[15]. Our work suggests a method for determining these indices. The value of the index p is

readily determined by counting the number of rings present in the intensity profile of the dominant

component in an LG beam (p − 1 = number of rings). Determining the value and sign of ` is not

as straight forward. The intensity profiles of LG beams with the same p value but different ` values

appear similar. Since the direction of rotation of the cross-polarization intensity profiles with

propagation for different charges is in opposite directions, observation of the cross-polarization

intensity profiles near the waist immediately gives the sign of charge of the beam. Since the rate of

rotation of the cross-polarization intensity pattern is different for different azimuthal orders of LG

beams, analysis of the rate of rotation of the cross-polarization intensity profiles can give the order

of the beam. In practice, this is likely to work for low values of `.

There are several related investigations, which would be interesting to carry out. In the experi-

ments described here only the dominant and cross-polarization components of laser beams were

observed. Observation of the longitudinal-polarization component of the field was beyond the

scope of available instrumentation for this project. Longitudinal component of a laser plays an

important role in particle accelerators based on focused laser beams. There have been a number of

investigations of the longitudinal component using nano structures [24, 71, 81]. By appropriately

orienting a collection of nano-crystals, their response can be tailored to respond to a particular

polarization component. This has been used to record the spatial profile of the longitudinal com-

ponent of a focused laser beam. A knowledge of the longitudinal component of laser beam is useful

in laser tweezers where highly focused laser beams with spot size comparable to laser wavelength
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are used [16,68]. Since the strength of longitudinal component relative to the dominant component

is of order (λ/wo)
2 [12], the longitudinal components will be a significant presence in such appli-

cations. Other applications involving highly focused beam include confocal and super resolution

microscopy.

In this thesis we have confined our attention to linearly polarized beams. It would be of interest to

investigate other states of polarizations such as circular, radial, and azimuthal polarizations. There

are no straight forward methods to directly observe these states of polarization or the corresponding

cross-polarization components analogous to those used in this thesis to observe the dominant and

cross-polarization component of linearly polarized beams. Determining a method to experimen-

tally investigate the dominant as well cross-polarization component of other states of polarizations

directly is an open and intriguing problem.

Investigations similar to those described in this thesis can also be extended to other types of beams.

In addition to Cartesian and circular cylindrical coordinates, the paraxial wave equation has separa-

ble transverse beam profiles in parabolic and elliptical cylindrical coordinates. These beams have

been discussed in the paraxial approximation [54]. Description of these beams consistent with

Maxwell’s equations for different polarizations would add to the diversity of beam like solutions

of Maxwell’s equation. In addition to the theoretical description, new methods for generating these

beams would also be of interest from an application point of view. We have used an astigmatic

mode converter for transforming HG beams into LG beams and mentioned the use of holography

and spatial light modulators (SLMs). Other methods to generate these modes directly in a laser

could be explored. Such methods have the potential for generating higher powers and better beam

quality as both the holographic and SLM methods are limited by power and efficiency consid-

erations [63, 64]. For example, due to its potential simplicity, an attractive option for LG beam

generation is to insert an opaque spot in the laser cavity that would act similar to the fibers used in

HG beam generation. The non-transparent spot would force the laser to operate in a higher order

LG mode with a dark center to minimize losses. This has the same principle as the previously
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reported method of using laser cavity mirrors with a spot defect [66] but has the advantage of not

destroying costly mirrors. A key difference of LG modes generated in this way compared to ones

generated via the AMC is that the output of the laser will be an interference pattern of the plus and

minus topological charge (±`). Polarization and propagation investigations on these beams should

also prove fascinating. Furthermore, with minor modifications, the experimental setup used to in-

vestigate polarization properties of linearly polarized LG beams similar properties of Ince-Gauss

beams could also be investigated [43]. Other types of laser beams should similarly be researched.

Polarization, like phase, is an intrinsic property of electromagnetic waves. Evolution of phase in

propagation is well known and is what is normally emphasized. Indeed in free-space propagation

of laser beams we assume that polarization remains unchanged and we rarely talk about the evolu-

tion of polarization. This in fact is the basis of scalar description. Our investigations demonstrate

that like phase, polarization can and does evolve even in free-space. Without this complete descrip-

tion the outcome of a simple experiment involving crossed-linear polarization cannot be correctly

predicted. A description of laser beams consistent with Maxwell’s equations has practical impli-

cations too. Non-uniform polarization and its variation in propagation will be specially important

in the focal region. In applications of laser beams that involve highly focused beams such as mi-

croscopy, optical tweezers, and nonlinear optics, therefore, a careful analysis of polarization and

its evolution may reveal novel phenomena.
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Appendix A

subtract.m

%Name: Jessica Conry

%Prog. Name: SUBTRACT

%Date: 2-14-12

%Notes:

%Use: Rescales intensity and size of an image (with even index) to

%that of another image (stored with an odd index), finds the

%difference of the two and saves the result as a new image.

clear; % clear variables form memory

clf;

% Initialize Variables

n=10; % n is the total number of images

filename = {zeros(n,1)}; % empty filename vector (strings)

MinPerMat = zeros(n/2,1); %

MaxPerMat= zeros(n/2,1);

% Read Data In and Processing

for i=1:1:n

i

filename(i,1) = {[ num2str(i) ’.png’]};

% loop creates filenames for images

I_i = imread(cell2mat(filename(i,1)));

% fill vector images with filenames

imcrop(I_i) % Select crop area in figure, select "copy location"

% then "crop", first crop selects a general region of interest

reply = input(’Crop Boundaries?’);

%paste crop area and location at prompt

M=reply;

I_i=imcrop(I_i,M);% save cropped image

J=imshow(I_i); %shows croped image

attrs = imattributes(J)% shows the attributes of the cropped image

MaxI = input(’Max Intensity?’);

% input the max intensity from the attribute output

MinI = input(’Min Intensity?’);

%input the min intensity from the attribute output
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MinPer= MinI/252; %finds the percentage of 252 of the min intensity

MaxPer = MaxI/252; %finds the percentage of 252 of the max intensity

v= (MinPer+MaxPer)/2 ;

%calculates the threshold to be used in converting the image to

binary

bw=im2bw(I_i,v);

%converts image to binary with the above calculated threshold

imshow(bw);

if mod(i,2)==1

% for odd i, The experimental images are saved

%with odd numbered indexes

m=(i+1)/2;

MaxPerMat(m,1) = MaxPer;

MinPerMat(m,1) = MinPer;

end

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

% ask if the threshold is ok or if it should be more or less

E= reply;

if (E==1)

%if the threshold of the binary image is satisfactory then enter ’1’

v= (MinPer+MaxPer)/2 ;

bw=im2bw(I_i,v);

elseif (E==2)

% If the threshold is too low then enter ’2’, will start loop

%to get a satisfactory threshold

while(E==2)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2-t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

elseif (E==3) % If the threshold is too high then enter ’3’, will

% start loop to get a satisfactory threshold

while (E==3)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2+t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less
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E= reply;

end

end

bw1= edge(bw);%finds edges of the binary image

[r,c]=find(bw1);

fun=[r,c];

allx=fun(:,2);

ally=fun(:,1);

minx= min(allx); % smallest x pixel location for a ’1’ in image

maxx= max(allx); % largest x pixel location for a ’1’ in image

miny= min(ally);% smallest y pixel location for a ’1’ in image

maxy=max(ally); % Largest y pixel location for a ’1’ in image

width=maxx-minx; %width of image

length=maxy-miny; % lenght of image

bw=imcrop(bw, [minx miny width length]);

%crops edge of binary image

I_i=imcrop(I_i, [minx miny width length]);

% Crops the original image with the same boundaries

% as the binary image

if mod(i,2)==1

A_i=size(I_i); %finds size of the experimental image

x_i=A_i(1);

y_i=A_i(2);

end

if mod(i,2)==1 %if i is odd

imwrite(I_i,[’Io’ num2str(i) ’.bmp’]); %rename image

else

I_i = rgb2gray(I_i);

I_i=imresize(I_i, [x_i y_i]);

%resizes the even indexed images (theory)

p=i/2;

I_i = imadjust(I_i,[0 1],[MinPerMat(p,1) MaxPerMat(p,1)]);

imwrite(I_i, [’Ie’ num2str(i) ’.bmp’]);

%adjust theoretical image to have same intensity range as the

%experimental images

end

if mod(i,2)==1

Io= imread([ ’Io’ num2str(i) ’.bmp’]);

%rename experimental images

eval([’Io_’ num2str(i) ’=Io;’]);

else

Ie= imread([ ’Ie’ num2str(i) ’.bmp’]);
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% rename scaled and intensity adjusted theoretical images

eval([’Ie_’ num2str(i) ’=Ie;’]);

end

end

for i=1:2:n

eval([ ’Io = Io_’ num2str(i)]);

s=i+1;

eval([ ’Ie = Ie_’ num2str(s)]);

IS=Io-Ie; % Subtract theory and experiment

imwrite(IS, [’Is’ num2str(i) ’.bmp’]);

%saves the difference of exp and theory image as ISi.bmp

end
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Appendix B

figureofmerit.m

%Name: Jessica Conry

%Prog. Name: LG rotation

%Date: 2-16-12

%

%

%

%Notes:

%

%

%Use: Calculates figure of merit of experemental images

%

clf; %clear functions

clear; % Initialize Variables%

n=10; %n is the total number of images

filename1 = {zeros(n,1)}; % empty filename vector (strings)

filename2 = {zeros(n,1)};

SUM=zeros(n/2,1);

for i=1:2:n

filename1(i,1) = {[ ’Is’ num2str(i) ’.bmp’]};

% loop creates filenames for images

I1 = imread(cell2mat(filename1(i,1)));

filename2(i,1) = {[ ’Io’ num2str(i) ’.bmp’]};

% loop creates filenames for images

I2 = imread(cell2mat(filename2(i,1)));

m1=max(max(I1)); % Finds max pixel intensity of difference image

size2=size(I2); % Size of excremental image

m2=max(max(I2)); % Finds max pixel intensity of experimental image

TotPix= size2(1)*size2(2); % total number of pixels in the

%experimental image

NumPix= zeros(m1,1);

%vector filled with same number of elements as

% the max pixel value in the experimental image

NumPixScale= zeros(m1,1);

PixVal=zeros(m1,1);

RelPix=zeros(m1,1);
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for t=1:m1

PixVal(t,:)=t;

% vector with integers 1 through max pixel value

end

%this for loop counts how many of each pixel values there

% are in difference image

for q=1:m1

l=find(I1==q);

[r,c] = size(l);

NumPix(q,:)=r;

end

NumPixscale=NumPix./TotPix;

%scales pixel values with total number of pixels

MAX=double(m2);

RelPix=PixVal./MAX;

% scales value of pixel with the max pixel value

Total=NumPixscale.*RelPix;

p=(i+1)/2;

SUM(p,1)=sum(Total); %Figure of merit

xlswrite(’dataanaly.xls’,NumPix,’A2’);

%writes data in exel file

end
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Appendix C

LGrot.m

%Name: Jessica Conry

%Prog. Name: LG rotation

%Date: 8-30-11

%

%

%

%Notes:

%

%

%Use: Takes experimental or theoretical the cross-polarization

%component of linearly polarized Laguerre-Gauss laser beam profile

%images, finds the angle from the center of the profile and the

%center of each of the lobes of the profile.

%

clear; % clear variables form memory

clf; % clear figures

clc; % clear command window

workspace; % display workspace window

% Constants

%bmpext = ’.ext’; % .bmp extension string

% Initialize Variables

n=5; %n is the total number of images

filename = {zeros(n,1)}; % empty filename vector (strings)

theta = zeros(n,1);

thetad = zeros(n,1);

thetad2 = zeros(n,1);

thetad3 = zeros(n,1);

thetad4 = zeros(n,1);

centroidlist = zeros(n,1);

center= zeros(n,2);
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centroidslist=zeros(4,2*n);

% Read Data In and Processing

for i=1:1:n

i

filename(i,1) = {[ num2str(i) ’.jpg’]};

% loop creates filenames for images

I_i = imread(cell2mat(filename(i,1)));

% fill vector images with filenames

imcrop(I_i)

% Select crop area in figure, select "copy location" then "crop"

reply = input(’Crop Boundaries?’); %paste location at prompt

M=reply;

I_i=imcrop(I_i,M);% save cropped image

J=imshow(I_i);

attrs = imattributes(J)

% shows the attributes of the cropped image

MaxI = input(’Max Intesisty?’);

% input the max intensity from the attribute output

MinI = input(’Min Intesisty?’);

%input the min intensity from the attribute output

MinPer= MinI/255;

%finds the percentage of 255 of the min intensity

MaxPer = MaxI/255;

%finds the percentage of 255 of the max intensity

v= (MinPer+MaxPer)/2 ;

%calculates the threshold to be used in

%converting the image to binary

bw=im2bw(I_i,v);

%converts image to binary with the above calculated threshold

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

if (E==1)

v= (MinPer+MaxPer)/2 ;

bw=im2bw(I_i,v);

elseif (E==2)

while(E==2)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2-t ;

bw=im2bw(I_i,v);

imshow(bw)
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reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

elseif (E==3)

while (E==3)

reply=input(’How much do you want to change? [0..0.1]’);

t=reply;

v= (MinPer+MaxPer)/2+t ;

bw=im2bw(I_i,v);

imshow(bw)

reply =input(’Threshold ok? [1=yes, 2=more, 3=less]’);

%ask if the threshold is ok or if it should be more or less

E= reply;

end

end

bw1= edge(bw);%finds edges of the binary image

[r,c]=find(bw1);

fun=[r,c];

allx=fun(:,2);

ally=fun(:,1);

minx= min(allx);

maxx= max(allx);

miny= min(ally);

maxy=max(ally);

width=maxx-minx;

length=maxy-miny;

bw=imcrop(bw, [minx miny width length]);

I_i=imcrop(I_i, [minx miny width length]);

%bw=im2bw(I); %%converts grey scale image to bianary

s= regionprops(bw,’centroid’);

%finds the center of each bright spot (the "blades")

%and the center of the image

centroids_i= cat(1,s.Centroid);

%gives vetors describing the the location of the centers

%locate the center

[y,x,planes]= size(bw);

%gives number of pixels in the x and y directions

nx= x/2; %gives the center pixel in x direction

ny= y/2 ; % gives the center pixel in the y direction

%[min_diff, array_pos]=min(abs(nx-centroids(:,1)));

%gives the array position of the centroid in the middle

center_i=[nx, ny]; % gives the location of the center
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center(i,:)= center_i;

%find the upper left centroid

[L,W] = size(centroids_i);

[q,p]=size(centroids_i);

clear x1 %initalizing variables

clear y1 %initalizing variables

%for loop finds the upper left centroid

centx=centroids_i(:,1);

%writes all of the x coordinates of the centroid to centx

minx=min(centx); % finds minimum x coordinate

centy=centroids_i(:,2);

%writes all of the y coordinates of the centroid to centy

miny=min(centy); % finds minimum y coordinate

maxx=max(centx); % finds maximum x coordinate

maxy=max(centy); % finds maximum y coordinate

centroidslist(1:q,2*i-1)=centx;

centroidslist(1:q,2*i)=centy;

for k=1:L

if (centroidslist(k,2*i-1) == minx)

x1 = centroidslist(k,2*i-1);

%x1 is the x coordinate of the most left lobe

y1 = centroidslist(k,2*i);

end

end

for k=1:L

if (centroidslist(k,2*i) == miny)

x2 = centroidslist(k,2*i-1);

y2 = centroidslist(k,2*i);

%y2 is the y coordinate of the uppermost lobe

end

end

for k=1:L

if (centroidslist(k,2*i-1) == maxx)

x3 = centroidslist(k,2*i-1);

%x3 is the x coordinate of the right most lobe

y3 = centroidslist(k,2*i);

end

end

for k=1:L

if (centroids_i(k,2) == maxy)

x4 = centroids_i(k,1);

y4 = centroids_i(k,2);

% y4 is the y coordinate of the lobe

%closest to the bottom of the figure

end
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end

a1=abs(y1-center(i,2));

%gives the length of the "opposite" side of the triangle

a2=abs(x1-center(i,1));

% gives the length of the "adjacent" side of the triangle

theta(i)= atan(a1/a2);

% gives angle of the upper left lobe from

% the center of the image.

thetad(i)= radtodeg(theta(i));

% converts angle to degrees.

a3=abs(center(i,2)-y2);

a4=abs(x2-center(i,1));

theta2(i)= atan(a3/a4);

% gives angle of the upper right lobe from

% the center of the image.

thetad2(i)= radtodeg(theta2(i));

%converts angle to degrees.

a5=abs(y3-center(i,2));

a6=abs(x3-center(i,1));

theta3(i)= atan(a5/a6);

% gives angle of the lower left lobe from the

%center of the image.

thetad3(i)= radtodeg(theta3(i));

% converts angle to degrees.

a7=abs(y4-center(i,2));

a8=abs(x4-center(i,1));

theta4(i)= atan(a7/a8);

% gives angle of the upper left lobe from the center

%of the image.

thetad4(i)= radtodeg(theta4(i)); % converts angle to degrees.

imwrite(I_i, [ ’LG20y’ num2str(i) ’crop.bmp’]);

%writes image I_i to file NOTE change file name

%for different orders!

imwrite(bw, [ ’LG20y’ num2str(i) ’cropbw.bmp’]);

close all

end

%the Following plots all cropped images on one figure with blue

%stars indicating the centroids used and red stars on the center

%of the image. Note subplot(n,m,i) gives the number of rows and
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%columns of images... this can be changed according to how many

%images there are.

for i=1:2:n

I_i=imread([ ’LG20y’ num2str(i) ’crop.bmp’]);

subplot(6,6,i)

subimage(I_i)

hold on

plot(centroidslist(:,2*i-1), centroidslist(:,2*i), ’b*’);

%plots the centroids on the original image.;

plot(center(i,1), center(i,2), ’r*’)

axis off

hold off

end

figure

for i=1:2:n

bw_i=imread([ ’LG20y’ num2str(i) ’cropbw.bmp’]);

subplot(6,6,i)

subimage(bw_i)

hold on

plot(centroidslist(:,2*i-1), centroidslist(:,2*i), ’b*’);

%plots the centroids on the original image.;

plot(center(i,1), center(i,2), ’r*’)

axis off

hold off

end

%Write data to excel files

xlswrite(’data10a.xls’,center,’center’);

xlswrite(’data10a.xls’,centroidslist,’centroid’);

xlswrite(’data10a.xls’,thetad,’theta’,’A1’);

xlswrite(’data10a.xls’,thetad2,’theta’,’B1’);

xlswrite(’data10a.xls’,thetad3,’theta’,’c1’);

xlswrite(’data10a.xls’,thetad4,’theta’,’d1’);
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