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Abstract

The electron gas in electric discharge can be described by a set of one-dimensional fluid dynamical equations. The
fundamental equations are those of a three-component (electrons, ions, and neutral particles) fluid,different from the treatment

of the problem inplasma physics, a fully ionized two-component case. The leading edge of the wave is treated as a shock front
driven mainly by the electron gas pressure. Integrating the one-dimensional global differential equations for mass balance,
conservation of momentum and energy, and evaluating the constant of integration at the wave front permits derivation of
boundary conditions on electron temperature and electron velocity. Using the boundary conditions on electron temperature
and electron velocity we have been able to calculate the initialboundary condition onenergy terms due to the electron random
and directed motions. Using the initialboundary conditions we have been able to integrate the set of electron fluid dynamical
equations through the dynamical transition region of the wave. We willpresent the derivation of the boundary conditions as
well as the wave profile for the electric field,electron velocity, electron temperature, electron number density, and ionization
rate within the dynamical transition region of the wave for a fast moving wave.

Introduction

Breakdown waves are the propagating processes which
convert ion-less gas into neutral plasma. Lightning is
probably the best example of breakdown waves. Although
people have been searching for thousands of years for the
cause of this phenomenon, ithas only been in somewhat
recent decades that ithas been scientifically studied.

The first person to study these breakdown waves was
Hauksbee (1706), who studied luminous pulses inevacuated
chambers. Thompson (1893) made measurements on the
velocity of breakdown waves and concluded that velocities
of these waves may reach up to one half the speed of light.
These early experimental data, however, were not reliable
due to limited equipment capabilities in making accurate

measurements of wave velocities.
Animportant finding of these early experiments was the

ack of Doppler shift inemitted radiation from breakdown
waves reported by Von Zahn (1879). This means that there
s negligible mass motion, and thus heavy particles cannot

account for the movement of the waves. This indicates that
he electrons are the main element driving the wave.

Following Thompson's (1893) experiments and after
extensive experimental investigations, Snoody et al. (1937)
concluded that the ionization process must be of the
Townsend type. Through their experimental data inboth an
18 mm and a 5 mm diameter tube, they showed that if a
constant potential is supplied across each tube, then the
change in pressure would be of the same ratio (3.6 in their
case). The change in pressure as a function of diameter
demonstrates the fundamental principle of similarity. In

other words, this experiment showed that the pressure has a
linear relationship with tube diameter in an equally applied
potential. Their experiments also showed that the waves
traveled at a speed of approximately 10"' cm/sec and their
speed did not vary with tube diameter. These
measurements on breakdown wave speeds confirmed
Thompson's findings.

Paxton and Fowler (1962) employed a hydrodynamical
model for theoretical explanation of breakdown waves.
They used a one-dimensional, steady-state model that
included the equations ofconservation ofmass, momentum,
and energy and considered these waves to be electron shock
waves (discontinuous or shock solutions). Based on this
model many investigators (Shelton, 1968) continued
research by adding relevant terms particularly to the
equations of conservation of momentum and energy, terms
which were neglected in Paxton and Fowler's (1962)
investigation.

Due to negligible Doppler shift in emitted radiation,
Shelton and Fowler (1968) considered the electrons to be
the main element in the propagation of the wave and gave
the appropriate name of Electron Fluid Dynamical Waves to
breakdown waves. This title is appropriately given
considering that these waves, as stated above, are fluid in
nature and are shown to be shock waves. Shelton advanced
the equations of conservation of mass, momentum, and
energy for electrons, ions, and neutral particles and also
added Poisson's equation to the set of equations. His
equations take into account both electrons and heavy
particles. He formulated equations for calculating the
boundary values for electron temperature and velocity at
the leading edge of the wave.
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Fowler et al. (1984) introduced additional relevant terms
to the equation of conservation of energy, the most
important of which was the heat conduction term. They
also introduced a discontinuity condition in the electron
temperature derivative at the shock front. The addition of
new terms in the equation of conservation of energy and the
acceptance of a temperature derivative discontinuity at the
shock front resulted ina different set of boundary condition
equations.

The non-dimensional symbols used in the above
equations are as follows

E 2e(p v Tck xeE0 2e<b'•*•"-TX-""1"^e= w-i' T̂
' a=^'

mV „ (3 2m
k = K, U=—, co = —

eEn K M

where rj,v,\|/, 9, u, and w are non-dimensional net electric
field, electron number density, electron velocity, electron
temperature, electron position, ionization rate, and mass
ratio of electrons to heavy particles, respectively, a is ratio
of [ecp, energy required for each electron during the
ionizationprocess] to the kinetic energy of electron traveling
at wave speed, k relates wave velocity to the electric field at

the wave front. The dimensional variables used in the
above equations are as follows: m is the electron mass, Mis
the neutral particle mass, e is the electron charge, Eq is the
electric field at the shock front, E is the electric field inside
the sheath region, n is the electron number density, v is the
electron velocity, Te is the electron temperature, k is
Boltzman's constant, Kis the elastic collision frequency, xis
the position in the wave profile, /? is the ionization
frequency, (p is the ionization potential, and Kis the wave
velocity.

A year later, Hemmati and Fowler (1985) were able to

solve the general set of equations for both proforce and
antiforce waves. Proforce and antiforce refer to breakdown
waves in which the electric field force on electrons is in the
same direction and opposite direction of wave propagation,
respectively. Proforce waves correspond to dart leaders in
lightning, while antiforce waves correspond to return
strokes of lightning. They introduced a computer program
in their numerical integration of the set of equations through
the dynamical transition region of the wave. Their solutions
conformed with the expected conditions at the trailing edge
of the wave and also with the experimental results.

Analysis

In Fowler and Shelton's (1973) attempt to solve the
electron fluid dynamical equations using approximate
methods, they considered the energy losses by the electrons
n their random and directed motion to be negligible and

also neglected the heat conduction term in the equation of
onservation ofenergy. Fowler et al. (1984) introduced a set

of electron fluid dynamical equations for a multi-fluid
ystem consisting of neutral atoms, positive ions, and
lectrons subjected to an electric field (the applied fieldplus
lie space charge field) applied in the negative x direction.
"heir set consisted of the equations of conservation of mass,

momentum, and energy coupled with Poisson's equation.
"heir (Fowler et al., 1984) set of equations (conservation of

mass, momentum, energy, and Poisson's equation,
espectively), in its complete, non-dimensional form is

Assuming that the electron gas pressure is much larger
than the partial pressures of the other species, Fowler and
Shelton (1973) proposed that the breakdown waves
consisted of a shock front, followed by a transition region,
and a quasi-neutral region. A transition region, in which the
electric field is reduced to zero (E~> 0; rj

—
>0) and the electrons

come to rest relative to the ions and neutral particles (v—>V;
\|/-» 1), follows the shock front. This thin region is called the
sheath region. The sheath region is followed by a relatively
thick thermal layer, in which the electron and heavy particle
velocities are equal (\|/ ~ 1) and the electric field is zero (r\ =

0). In this layer, ionizing additional neutral particles, the
high temperature electron gas will cool to approximately
room temperature. This region is called the quasi-neutral
region.

d (vw)—
-7T-

=KIJV'
dc,

(1)

The equation representing electron temperature at the
shock front employed byFowler and Shelton (1973) in terms
of our non-dimensional variables is

—
[vy/(y/-\)+avd] = -vrj-Kv(y/-\), (2)

0,=fO-VO- (•r>)

In non-dimensional form the heat conduction term is as
follows (Fowler, 1984)

= -cokv(3cc6 +(!//-!)-), (3)

!=>-»¦ H)
-5crv0 d6

(6)k d$'
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Including the heat conduction term in the equation of
conservation of energy (equation 3), integrating the resultant
equation and calculating the constant of integration at the
shock front, and using equation 5 for electron temperature
at the shock front results in the following equation

ViVi(V.-l)2+W, (l-V/,)(5V/,-2)+av,^1+a(77r-l)
(7)5av.ii/,, >. ,

K V
'

where 9\ and i//jare the electron temperature derivative and
electron velocity at the shock front, respectively. Using the
requirement that at the wave front [E = Eo ,r/| = 1], the
above equation reduces to

K K
(8)

Solving this quadratic equation for i//jresults in the initial
condition on electron velocity.

*('^>Jhf-T+i«« (9)
v,=

8

Since 16a > 0 and i//jhas to be less than one (|v| < |V|), the
negative sign in the above equation is accepted, which
results in

<' +f-]-Jhf-T+i*« (10)
V,=

s

Solving for 0j from equation 8 results in

Q
._ 4^l

:-5y/l+l-a
(11)

f(v,-l)

Using the substitution

dK= -o)Kv(3ae+(y/-\y)

in the energy equation (equation 3) and integrating the
resultant equation with respect to position results in

v\i/(y/-\)2+ave(5y/-2) +avy/ +an 2--^^-^= tV+c, (12)

where c is the constant ofintegration. Atthe shock front this
equation becomes

v]¥(yrtf+av]ei5 ]y/-2)+avM+an;--^&d;=lVn+c. (13)

Using the requirement that 771
= 1 at the wave front and

using equations 5 and 11 to simplify equation 13 reduces itto

MW(w-02+MW(«-Vi)(5y-2)+a^ +«

5oty,y,(l-V,) 4yy- 5!//,+!-« = + c (14)
5a / ,\

which simplifies to

(15)Wu + c=a.

Wn is a constant; therefore, the constant c can be absorbed
into Wn resulting in the value of W at the shock front of

(16)W, =a.

Substituting a for the constant of integration in equation 12
and solving the resultant equation for

— results in

¦^ = -\)2 +av8(5y/ -2)+avy/ +a(ri 2 -\)-w] (17)
d£, 5erv0 L J

Results

Expanding the equation of conservation of momentum

and substituting for -—
from the equation of conservation of

mass results in l'

dd
d\ff xvO-WV+W-WO-riV-aVdJ
d% y/ 2-a6

(18)

Replacing the equations of conservation of momentum
(equation 2) and energy (equation 3) with equations 18 and
17 respectively, using equations 5 and 10 to determine
electron temperature and velocity at the shock front, and
using W\ = a as the wave front value for energy losses due
to random and directed motion of electrons combined, we
were able to successfully integrate the set of electron fluid
dynamical equations through the dynamical transition
region of the wave. For antiforce waves our exact numerical
solutions of the set of equations resulted in the expected
conditions at the trailing edge of the wave. For a fast
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moving wave(a= .01,V=3 x107 'ys)the successful integration
of the set of equations required the following initial
conditions for electron number density and velocity.

(/. Oi vV

.01 .379750013.04 ,65

I

The following graphs show the wave profile for electric
field, rj, electron velocity, \j/, electron temperature, 0,
electron concentration, v, and ionization rate, |i, within the
dynamical transition region of the wave.

Figure 1 shows a graph ofelectric field versus electron
velocity within the sheath region. This graph shows that the
required conditions at the trailing edge of the wave have
been met. The electron velocity goes to one, and the net
electric field reduces to zero at the end of the sheath.
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Fig. 1. Electric field, rj, as a function of electron velocity, Vj/,

inside the sheath region.

Figure 2 is a graph of the net electric field, T|, as a
unction of position within the sheath region of the wave.

As expected, the net electric field reduces to zero at the
railing edge of the wave.
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Eig. 2. Net electric field, r), as a function of position, £,
iside the sheath region.

Figure 3 is a graph of the electron velocity, \|/, as a
function of position inside the sheath region. This graph
shows that, at the end of the sheath region, as expected, the
electron non-dimensional velocity approaches one (\j/ —> 1),
indicating that the electrons come to rest relative to ions and
neutral particles.
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Fig. 3. Electron velocity, vj/, as a function of position, £,
inside the sheath region.

Figure 4 is a graph of electron temperature, 0, as a
function of position, inside the sheath region. From this
graph it can be noted that the temperature continues to

increase throughout the sheath region.
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Fig. 4. Electron temperature, 0, as a function of position,
inside the sheath region.
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Figure 5 shows a graph of the electron number density,
v, plotted versus position in the sheath region. From this
plot one can note that the electron number density varies
throughout the sheath region.
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Fig. 5. Electron number density, v as a function of position
£, inside the sheath region.

Figure 6 shows the ionization rate, a, plotted versus
position inside the sheath region. The ionization rate has
been calculated from adouble integral (Fowler, 1983), based
on free trajectory theory. From this graph itcan be seen that
the ionization rate continues to increase and varies
throughout the sheath region.
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Fig. 6. Ionization rate, |li, as function of position, t,, inside
the sheath region.

Conclusions

The initial condition for the energy loss terms due to

random and directed motion of electrons in the equation of
conservation of energy was successfully found. Antiforce
wave propagation can in fact be modeled by the electron
luid dynamical equations. Numerical integration of the
electron fluid dynamical equations through the sheath

region has been successful, meeting the required conditions
at the end of the sheath region. The ionization rate was
calculated from a double integral based on free trajectory
theory which takes ionization due to random and directed
motion of electrons into consideration. The set of electron
fluid dynamical equations were successfully integrated for
an antiforce wave moving into a non-ionized medium. Our
results conform to the experimental results reported by
Rakov et al. (1998). This is another confirmation of the
validity of the application of fluid equations to breakdown
waves.
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