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Abstract

Electrostatic microencapsulation is a dry coating process where two powders, one containing the fines and the other
relatively larger particles, are separately dispersed in air and pre-charged with opposite polarity, using corona charging for
electrostatic coagulation. These oppositely charged core and guest particles experience attractive electrostatic forces and
generate composite particles. Preliminary experiments of electrostatic microencapsulation were performed using Anionic
Exchange Resin (AG 1-X8) as the host particle and Red Toner (Omega 4000) as the guest particles. An electrostatic
microencapsulation tower has been designed for generation of composite particles using particles of different particle size
distribution.

Introduction

Microencapsulation of particles with different sizes and
compositions is widely used in many industrial,
pharmaceutical, agricultural, and consumer product
applications. Examples include controlled-release drugs,
sustained-release pesticides, slow-release fertilizers, and
triggered-release cosmetics. In most cases, the outer shell
protects the encapsulated ingredients until the material is
needed. The release mechanisms include mechanical,
thermal, chemical, dissolution, and other processes. Most of
the products are made from liquid phase dispersion
commonly termed wet particle coating. In some
applications, it is not desirable to have a protective outer

shell completely covering the core material. In those
applications, the encapsulating material must be highly
porous, but stable. The porosity of the outer shell allows the
inner core material to come in contact with the surrounding
fluid. The outer shell and the inner core materials have two
different functions. A cluster of particles from two different
materials, serving as a composite material, can also be used
to perform different functions.

In many cases, the encapsulation of particles must be
made using a dry process. Electrostatic microencapsulation

s a dry process in which core particles can be coated with
ine particles of different materials. The method employs a
mixingprocess (Fig.l) with an oppositely charged relatively
arge size particle (called the host) and a fine particle (called
he guest). The host forms the core and is coated with the

guests, which form the outer layer. The electrostatic
microencapsulation provides dry dispersion of powder and
avoids mechanical mixing of the particles and generates
composite particles by polydisperse coagulation of the

precharged host and guest particles. Research in the field of
dry particle coating shows that simultaneous fluidization
and mixing improve the efficiency of the coating (Pfeffer,
2001) in comparison to many other mechanical devices,
such as Mechanofusion™ or Hybridizer™, which primarily
work by the application of shear force on the host and guest
particles to make them coalesce. The electrostatic
microencapsulation technique demands an effective
precharging of the host and guest particles. Corona charging
is an effective precharging method, which combines both
field and diffusion charging methods. A corona discharge is

Fig. 1. Schematic of electrostatic microencapsulation
technique to generate composite.
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generated by dielectric breakdown of air or other gases due
the to non-uniform electrostatic field generated between a
needle and a grounded plate. The corona discharge
generates electrons, which promote field and diffusion
charging of particles present in the corona region. Corona
charging also generates a stream of ions, called an "ion
wind", from the point to the grounded plane. The corona
gun (Fig. 2) is an effective device to disperse particles and
generate highly charged particles. Powder is fed through a
vibrating feeder into a diffuser. Aregulated airflow through
the diffuser conveys powder through a region rich in ions
from a corona electrode, which is maintained at a high
voltage and generates highly charged particles. The
interparticle attachment force that holds the host and the
guest particles is a summation of the London- van der Waals
force, the electrostatic force, and the liquid bridge force
(Hinds, 1999a). The above forces are dependent upon
several factors including material, shape, surface roughness,
relative humidity, and temperature. The London-van der
Waals forces, which are short-range forces, are effective
when twoparticles are very close to each other. These forces
arise due to the random motion of electrons on the surface
of the particle forming dipoles, which in turn induce an
opposite polarity on the surface of another particle in close
proximity. The resultant adhesive force between the particle
and a plane surface can be estimated by the following
equation:

Fadh
= (AD) / (12X2) (1)

where A is the Hamaker constant, which depends on the
material involved and ranges from 6 x 10"^ to 150 x 10"^
J for common materials, D is the diameter of the particle,
and Xis the separation distance, that depends on the surface

roughness of the particle and the contact surface.
The electrostatic forces, which are long-range forces,

arise due to image forces induced by any particle carrying a
charge when it approaches any other surface. The attractive
coulombic force can be estimated from the following
equation:

FE
= (KE Q,2)/X2 (2)

where Kgis a constant of proportionality (9 x 109 N.C2/m2),

Q is the charge of the particle, and X is the separation

distance of opposite charges.
The capillary force between a surface and a particle is

created by the surface tension of the liquid drawn into the
capillary space at the point of contact. The force between a
particle and a plane surface at relative humidities higher
than 90 % can be estimated from the followingequation:

Fbridge
= 2^Yd (3)

where y is the surface tension of the liquid, and d is the
diameter of the particle. For low humidity, the liquid bridge
force is dependent on the curvature of the asperities at the
point of contact and not the particle diameter.

In addition to long-range forces, the interaction of
oppositely charged host and guest particles is dependent on
polydisperse coagulation (Hinds, 1999b). The rate of change
ofnumber concentration of host and guest particles or of the
rate of composite formation can be estimated from the
following equation:

dN/dt = -K12 P N2 (4)
where N is the number concentration of particles, K12 is the
coagulation coefficient (which is dependent upon particle
diameter), and P is a correction factor dependent on particle
charge and diameter. The coagulation coefficient for
interaction ofparticles of two different sizes, dj and d2

,can
also be estimated from the followingequation:

K12
=7i(d1D1 +d1D2

+ d1D1
+ djDj) (5)

where Dj and D2 are the diffusion coefficients of the two
particles respectively.

The correction factor P for thermal coagulation of
aerosols having charged particles -f-qj and -q2 was estimated
by Fuchs (1964) to be:

P = Xu / {exp(^12)
- 1} and A,12

=
qiq2 / (2rkT) (6)

where r is the radius of the particle, k is the coagulation
constant, and T is the absolute temperature. It can be
concluded that a high charge-to-mass ratio and lower
number concentration of host and guest particles would
improve the efficiency of electrostatic microencapsulation
technique. Works performed byBorra et al. (1999) show that
electrostatically induced bipolar coagulation is an efficient
process to generate 'tailored" particles by dispersing
oppositely charged droplets and micro-mixing of particles
inside the droplets.

Materials and Methods

Composite particles were generated using AG 1-X8
Resin (Catalogue No. 140-1441), manufactured by Bio-Rad
Laboratories (Richmond, CA), as the host particles and
Omega 4000 Red Toner, manufactured by AEG Olympia
(Somerville, NJ), as the guest particles. These host and guest
particles were chosen because of their ready availability and
low cost. Corona charging of particles was performed to
generate charged host and guest particles of opposite
polarity. A corona-charging device (Nordson® Versa
Spray®) was used, where the particles were exposed to

Fig. 2. A conventional corona gun (Bailey, 1998)
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positively or negatively charged ions for a few seconds (Fig.
3). The ions collide with the particles, sticks to them, and
cause the particles to attain the charge. The charged host
and guest particles were then transferred into a steel tumbler
for mixing. The charge decay characteristics of the particles
were studied using an electrostatic voltmeter held close to
the surface to monitor the surface potential. When the
particles were sprayed with positive ions, the electrostatic
voltmeter measured a positive surface potential and vice
versa when sprayed with negative ions. The charge-to-mass
ratio of the particles was measured.

Mixing of host and guest particles in different mass
ratios were investigated. The mixing was performed in a
stainless steel tumbler of 8 cm. diameter and 11 cm. long
rotated at approximately 50 - 60 rev / min (Fig. 3).
Experiments were performed using neutral host and guest
particles, only charged guest particles and uncharged host
particle, and oppositely charged host and guest particles. The
host and the guest particles were tumbled for 10 to 20
minutes to form a loosely bonded composite powder. The
mixture of loosely bonded composite particles were
transferred to a metal panel and placed in an oven
maintained at 100°C. The particles were then removed from
the oven after 1, 3, and 5 minutes and observed under an
optical microscope.

Results and Discussion

The particle size range of the as received resin and red
toner powders (Table 1) was measured using
MICROTRAC®. Both resin and red toner particles were
widely spread with d$Q of around 133 um and 15 urn
respectively. The MICROTRAC® was calibrated using

fluorescent particles of 10 |um size (Duke Scientific), which
showed a d$Q of 10.13 urn (cr2 = 2.28). As received
uncharged resin (AG 1-X8) and red toner (OMEGA)
particles were mixed at different mass ratios (95%-5%, 96%-
4%, and 97%-3%) and cured in an oven.

The objective was to find the mixing ratio that would
yield the lowest d50 of the cured composite to exclude the
effect of tribocharging with the stainless steel container. The
cured mixture of uncharged resin and toner powders of

Table 1. Particle size distribution ofresin and toner particles.

AG1X8 Red Toner (Omega)
Parameters

(pun) (|±m)

d10 55 43 9 94

da 13380 15 60

dso 180.05 21.17
I |

Table 2. Particle size distribution of mixtures of uncharged
resin and toner particles.

Conditions ofMixing du dn I.,,

(No Corona Charging) (|im) ijimi (|Un)

95% Resin. 5%Red Toner 2974 104 77 162 24

96% Resin, 4% Red Toner 42 50 138 07 176 95

97% Resin, 3% Red Toner 124 12 147 18 173 17

different mass ratios (95%-5%, 96%-4 o/o, and 97%-3%) were
dispersed in water and analyzed inMICROTRAC® (Table
2). Itwas found that a resin-red toner mass mixture of 95%-
5% yielded the lowest d50 (104.77 urn) and hence this ratio
was chosen to be the ratio for the charging studies.

Precharging of the resin and toner particles was done at
+70kV or -70 kV and charge decay measurements were
performed for approximately 360 seconds. The host and the
guest particles were found to retain their charge (Fig. 4)
while they are being transferred to the stainless steel tumbler
for mixing. The charge-to-mass of resin and red toner was
found to be + 0.5 uC/gm (corona charging at + 70 kV)and- 1.3 uC/gm (corona charging at

- 70 kV) respectively. The
mixing ofprecharged particles generated composites (Fig. 5)
with d5() of close to 145 urn. The precharged particles were
analyzed before (Table 3) and after (Table 4) being cured.
No significant variation in d50 was observed due to curing,
but significant change in d50 was observed between the
uncharged (104.77 urn) and precharged (145 urn)(g. 3. Preliminary experiments of electrostatic micro

(capsulation.
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formulations at 95% - 5% ratios. The resin particles were
found to be stable up to 150°C and did not melt or deform.
The toner particles melted at a few degrees above 100°C
resulting in coverage of the entire surface area of the resin
particle (Fig. 5).

Conclusions

The preliminary experiments conducted with particles
of d50 15um and 133 um respectively did generate
composite particles with a d50 close to 145um. The
composite particles had a single resin particle as the core
and a cluster of red toner particles encapsulating the core.

i,1000-.

1 iao
- I I'¦: | ¦ | : | :-

\ '¦ !: ! :'- M I : \ '¦ \ :-: \'' \ : \ '¦

\ "¦! 1 1 11

I111 1111111II111111
0 30 60 90 130 ISO 180 210 240 370 330 3(0

Tiinrl.n-.l ? IUJT Ol»,*70kV•
AG1X8,*70kV

DRW Ton-, -70 NV
? AC1X8,-70 kV

Fig. 4. Charge decay characteristics of red toner (OMEGA)
and Resin (AG 1X8) particles corona charged at +70 kV or
-70 kV

Fig. 5. Optical microscope pictures of AG 1X8 resin
particles and red toner particles.

Table 3. Particle size distribution of mixtures of corona
charged resin and toner particles before curing.

Conditions ofMixing ilm <im ilqo

(|lin) <|im) (Mm)

95% Resin. 5%Red Toner, Toner charged at -70kV 118 42 145 81 173.04

95% Resin, 5% Red Toner. Resin charged at +70kV.
10440 14257 178 27

Toner charged at -70kV

Table 4. Particle size distribution of mixtures of corona
charged resin and toner particles after curing in oven at
100°C for 5 minutes.

Conditions ofMixing <lin &n &m
(|im) (txm) (pun)

95% Resin. 5% Red Toner. Toner charged at -70kV 125 82 147 61 17175

95% Resin. 5% Red Toner, Resin charged at +70kV,
12328 14669 17378

Toner charged at -70kV

These composite particles were found to be stable when
dispersed in water. Based on these preliminary findings, an
electrostatic microencapsulation tower (Fig. 6) has been
constructed, where the host (100 to 500 urn) and guest (0.1
to 80um) particles can be used to generate composite
particles.

The electrostatic microencapsulation tower was
designed to simultaneously disperse and charge host and
guest particles using two corona guns (Nordson® Versa
Spray®) held at a high voltage (one at + 70 and the other at

Rotating Screen

Corona Corona Host powder
Guest powder -=-

q™Gun feed from
feed from <i^^

1 c=r3? I 1 vibratory
vibratory feeder - HV +HV

I 1 I | feeder

Diffuserwith I ,':•:
' ' ""*

p 1
Diffuserwith

compressed air "•
t> , .I compressed air"pplr * * »ppiy

t>
b

o
' °

Tower: 15" Diameter FVC Pipe, 5ft high

Fig. 6. Proposed electrostatic microencapsulation tower.
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- 70 kV). Negative and positive corona guns are used to

generate oppositely charged host and guest particles. A
grounded rotating screen was installed inside the tower at

the middle of two charging corona guns. A screen was used
to collect the composite particles at the bottom of the tower.

Ajet ofair was used to dislodge the particles from the screen
and the composite particles were cured to promote bonding.
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