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effective applied stress due to surface oxidation [156, 228, 229]. In addition to the evolution of the 

precipitation state and a decrease in dislocation density, rate of coarsening of laths and subgrains is 

also faster. But, a clear description of these various microstructural changes is still under 

investigation and not yet quantified clearly [161]. Microstructural coarsening that occurs under cyclic 

loading is also shown to severely degrade the creep resistance properties of grade P91 steel [161, 

230]. These results show that average creep deformation rate is significantly higher during hold times 

under cyclic loading than seen in pure creep tests at the same stress levels and it rises significantly 

starting from the very first cycle. 

 

Although Wood et al. [231] observed no obvious effect of increasing hold times on the C-F 

endurance of grade P91 steels at 525°C, a large number of other researchers have observed reduced 

C-F endurances with increasing hold times while conducting tests at 525-600°C [232, 233, 234, 235]. 

Notably, Fournier et al. [161, 224, 225, 230, 236, 237, 238] have extensively researched the influence 

of hold times at either of the maximum tensile or compressive stress or strain under C-F loading 

conditions. Figure 2.11 shows the loading cycles used in those studies. It was shown from their 

research that the fatigue life and micromechanisms responsible for C-F crack formation and growth 

endurances are significantly influenced by introducing hold times, with compressive holds tending to 

be much more deleterious than tensile holds. It was also noted that fatigue lives were comparatively 

shorter with hold times than that observed for pure LCF tests with no hold time. The presence of 

hold times during C-F loading is shown to significantly accelerate the microstructural coarsening 

(and cyclic softening) with more equiaxed cells tending to evolve at low dislocation densities [16]. 

 

Fournier et al. [237] attributed the mean stress effects – where mean stresses of opposite 

sense are developed during cyclic deformation with the introduction of a given type of hold – as the 
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Figure 5.6. Test specimen configurations for C-F testing as recommended by the ASTM 
C-F test standard, E2714-09 [31]. 
 

5.1.4. Statistical analyses of reported test data 

To formulate the precision and bias statements needed for supporting the C-F test standard, 

statistical analyses of the reported RR data were also performed. These analyses provide a measure 

of the inter- and intra-laboratory variability also termed as reproducibility and repeatability, 

respectively. Statistical analyses are performed as per the guidelines prescribed in the ASTM standard 

E691-09 [289].  

 

5.2. Round-robin contribution 

As part of characterizing the RR test material, University of Arkansas (UA) volunteered to 

conduct creep deformation and rupture tests, and monotonic tensile tests on grade P91 steel. They 

also performed the metallographic evaluation of the failed test coupons from these tests and of test 
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specimens forwarded by other RR participants. Transmission electron microscopy (TEM) analysis of 

grade P91 steel material behavior under different loading conditions is already well documented 

(referenced in Chapter 4) and hence is not deemed necessary in this work. 

5.2.1. Creep deformation and rupture testing 

Creep tests were conducted on smooth round specimens with a gage length and diameter of 

25.4 mm and 5.08 mm, respectively that were designed as per ASTM E139 standard (see Figure 5.7). 

Tests were carried out at 625oC (898 K) under uniaxial static (constant load and temperature) loading 

conditions in a lab-controlled atmosphere (20 ± 2oC and 50% relative humidity) using dead weights. 

A calibrated LVDT (linear variable differential transformer) transducer with a repeatability of 0.1 µm 

was employed to measure specimen elongation during the tests. The test temperature was monitored 

continuously to be within ± 2oC of the test temperature during the tests using two K-type 

thermocouples wound mechanically at the top and bottom ends of the specimen gage length. 

 

 
 

Figure 5.7. Drawing of specimen used for the creep deformation and rupture testing of 
grade P91 steel (all dimensions in inches). 

 

The test durations varied from as low as few days to as high as few months (see Table 5.3). 

The test parameters were finalized using a model based on the Larson Miller parameter (LMP), one 
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of the well-established time-temperature parameters (TTP). This parameter provides an analytical 

relation between the absolute temperature ( ) and expected rupture time (  ) in hours. Figure 5.8 

shows such a plot for grade P91 steel wherein stress is plotted against the LMP, with the constant C 

being equal to 30 [290]. All tests were continued until final rupture except the one at 117.5 MPa 

stress condition that was deliberately stopped at expected mid-life to understand the microstructural 

evolution under creep loading conditions. 

 

Table 5.3. Test parameter matrix for the creep deformation and rupture testing 
conducted by University of Arkansas on grade P91 steel. 
 

Type of Testing Test Temperature, °C 
Expected Life, 

hours 
Stress Required, 

MPa 

Creep deformation 
and rupture 

625 

5000 101.5 

2000 117.5 

1000 130.0 

750 136.8 

500 138.3 

300 142.7 

150 151.5 

 
 

 
 

Figure 5.8. A plot of stress versus Larson Miller Parameter (LMP), that is commonly used 
for estimating the creep rupture test parameters, for grade P91 steel [290]. 

LMP = T (C + log(t r )) 
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5.2.2. Monotonic tensile testing 

Uniaxial monotonic tensile tests were conducted (on-site at BiSS, India) on cylindrically 

threaded dogbone specimens with a gage length and diameter of 12.7 mm and 5.08 mm, respectively 

as per ASTM E8 standard [284]. These tests were performed both at room temperature (24 C) and 

at 625oC at a quasi-static strain-rate of 0.00192 s-1 in a lab controlled atmosphere (20 ± 2oC and 50% 

relative humidity). A high temperature ceramic extensometer was used to measure the specimen 

elongation during testing.  

 

5.2.3. Post-test inspection 

Before the tested specimens were mechanically sectioned for metallography and further 

optical microscopic examination, high resolution digital photographs of the as-tested specimens 

were obtained for the records. All these photographic images were obtained from a Nikon digital 

single-lens reflex (DSLR) camera. Visual inspection of these specimens was carried out and 

prominent characteristics of the specimen morphology and the presence of any geometric instability 

(or bulging) were carefully noted. Metallographic specimens from the failed test coupons were then 

prepared by standard practices to facilitate in further microstructural investigation. After mounting 

in transparent holders, the established routine of 2 steps of grinding and polishing – coarse and fine 

– each using SiC (silicon carbide) papers of different grit sizes and abrasives is followed in this 

regard. In order to reveal the fine microstructural features like grain and lath boundaries, the 

specimens were chemically etched using either Vilella’s reagent (1 gram picric acid, 5 ml hydrochloric 

acid and 100 ml ethanol) or Nital (3% nitric acid and 97% methanol). In this context, few RR 

participants did complete some aspects of post-test inspection studies at their respective facilities 

and the results from such work will be referenced accordingly in Chapter 7. These results are also 

intermingled with UA’s metallographic studies. 
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CChhaapptteerr  66::  CONSTITUTIVE MODELING METHODS AND DETAILS 

 

 

6.1. Introduction 

Constitutive modeling plays a vital role in characterizing a material’s response under long-

term in-service conditions with required input from short-term laboratory test data. Sound analytical 

models can thus greatly assist in minimizing the extensive resources required for conventional 

laboratory testing. Factors such as the amount of available and required computational resources, 

number of fitting constants or indices etc., effectively dictate the applicability and degree of 

robustness of such models for a given objective. Besides interpolative simulations, demonstration of 

extrapolative predictive capabilities of such constitutive models is also considered important. With 

all these considerations in mind, the physical basis and formulation of constitutive models employed 

in this work for simulating and predicting the creep, fatigue and C-F behavior of grade P91 steels 

will be descriptively outlined in this chapter. 

 

6.2. Modeling creep deformation and rupture behavior 

 
The effectiveness of a creep model to represent a material’s characteristic curve shape can 

depend on the relative proportions of the three creep regimes as fractions of strain and time at 

rupture, and the way in which they vary over ( ,  ) of interest. Such analytical models are essential 

and play an integral role for subsequent data- and structural- analysis. Since the existing literature on 

P91 steel indicates the relative importance of all three distinct creep regimes, the focus of this 

exercise was on choosing a single expression model that is capable of representing these regimes all 

by itself. Furthermore, this model should also analytically account for changes in deformation 

kinetics as a function of stress and temperature. A comprehensive compilation of existing 
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constitutive models as applicable to any elevated temperature candidate material and specifically 

grade P91 is already provided in Table 4.3 and [219, 220], respectively. After carefully evaluating all 

of these models, the logarithmic creep strain prediction (LCSP) model was found to be most suitable 

for the available creep data [220]. This model has the least number of fitting constants and its 

mathematical form has the natural shape of a creep curve at nominally constant stress and 

temperature. However it was found that in its current form, this model suffers from two obvious 

shortcomings: 

 
1) The model does not reduce to the correct form (or provide expected value) when the 

boundary conditions at the start and end of a typical creep rupture test (i.e., as one 

asymptotically approaches time   = 0 and   =   ) are applied. 

2) The model does not take full advantage of parameters that can be obtained from actual 

experiments to reduce the number of fitting constants for further robustness.  

 

Hence, a modified LCSP model is proposed here by addressing the above shortcomings of the 

original model (see Equation (6.1)). As per the modified model, at any time   in a creep rupture test 

beyond 1 hour, engineering creep strain    is given as 

 

                                    (  )    [   (
    (  )   

    (   )   
   )     ]

 
 ⁄

              ……..……………. (6.1) 

 
where,  
 

     
 

   (  )
[(   (  )    )   (   (   )    ) ];        (   (   )    )  

   

  (    )             ( )   [  (      )⁄ ] and        are fitting parameters 

 

   = test temperature ( C);    = applied external stress (MPa) 
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     engineering creep strain at time   

    = time to failure by creep rupture (hours) 

    = time to given engineering creep strain (hours) 

        =    at time   = 1 hour and uniform strain at rupture, respectively 

 

                 

As discussed earlier, typically from 95% of    and beyond, macro-cracking starts to appear 

because of localized necking and results in an unstable specimen response thereafter. We also know 

that the reduction in area varies significantly based on the necking characteristics. Hence, the 

engineering creep strain at rupture (   at time     ) is taken to be the measured uniform strain at 

rupture,     (i.e., strain generated in the specimen’s gage length before the onset of necking in a 

localized region). This strain can be empirically obtained by evaluating the reduction in area (    ) in 

the specimen gage length at regions away from that of necking. Rather than using the conventional 

ductility equation for     , an analytical form as shown in Equation (6.2) is employed in this work. 

As shown in Figure 6.1, the cross-sectional diameter of the specimen at locations 1, 2 and 3 is 

measured and averaged to obtain        and this value is used to compute       . 

 

                    

                                                         
            

     
                             ........................................... (6.2) 

 

                 where        = Original cross-sectional area in the specimen gage length 

      = Uniform cross-sectional area obtained by using       (the average of    
diameters at regions away from the necked region) 

 

Minimizing human measurement errors and the effect of complex strain profiles across the 

specimen gage length were the primary reasons to compute       rather than using a single diameter 

value in the unnecked region. The choice of position of locations to compute       does not seem 
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to play a significant role, as long as they are chosen to be approximately equidistant (to capture the 

diameter variation across the specimen gage length of the creep ruptured specimen) away from the 

necked region to the edge of the gage length markers. Also, it was observed in this work that a 

choice of 3 such locations is optimal and more number of locations do not make a considerable 

difference to the averaged       value. 

 

 
 

Figure 6.1. Pictorial representation for the empirical measurement of uniform strain at 

rupture,
 
   . Vertical lines numbered 1, 2 and 3 indicate locations where diameter is 

measured to compute       . Untested specimen in the top is kept as a reference for the 
creep ruptured specimen below. 

 

6.3. Modeling fatigue and creep-fatigue behavior 

A novel constitutive model for simulating and predicting the fatigue and C-F behavior of 

grade P91 steel is proposed in this work for reasons discussed earlier in section 4.2.3. The physical 

basis of this equation-of-state relation is based on a thermodynamically consistent perspective of 

crystal plasticity and will be discussed first for uniaxial monotonic behavior. Based on the proposed 
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mechanism, a constitutive relation based on dislocation densities and their interaction is formulated. 

The underlying mechanism will then be extended for cyclic behavior followed by the formulation of 

the cyclic version of the constitutive model. 

6.3.1. Need for an advanced plasticity framework 

Plasticity is the ability of a material to deform irreversibly in response to an external load and 

is a critical consideration to minimize the unexpected catastrophic failures of in-service structural 

components. Plasticity in crystalline solids is classically interpreted as an incompressible and 

dissipative mechanism of shearing interatomic bonds sequentially through the component crystal 

lattices. In polycrystalline materials, plasticity is mediated either through slip of dislocations – 

ubiquitous atomistic scale linear defects – that continuously nucleate from Frank-Read sources and 

partial dislocations (i.e., stacking faults) or perfect dislocations that emit from stress concentrations. 

The plastic shear rate or strain-rate – as expressed quantitatively by Orowan – is directly 

proportional to the Burgers vector | ⃗ | of a mobile dislocation and averaged quantities of their 

densities and velocities along active slip systems [291]. The Orowan relation thereby implicitly 

projects crystal plasticity to be macroscopically smooth and steady and suitable for a mean-field 

analysis.  

 

Recent technological advancements have enabled researchers to report experimental 

observations that increasingly challenge these conventional descriptions of crystal plasticity. Rather 

interestingly, crystal plasticity is shown to be temporospatially heterogeneous [292, 293] originating 

either from dislocations that cannot be currently observed [294] or even remarkably in the absence 

of sustained dislocation motion [295]. So, fundamental questions still remain unresolved about the 

existence, origin and nature of dislocations. These results also inarguably suggest a pressing need for 
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o It is observed that when induction heating method is used for testing magnetic 

ferritic materials like grade P91 steel, unusually high C-F lives are obtained in 

comparison with that from resistance heating method for comparable tests. This 

brings to question whether induction heating method should be permitted for testing 

magnetic materials. 

 

8.1.2. Constitutive modeling 

 
A modified version of an existing model (LCSP) is proposed in this work and shown to 

closely simulate the creep deformation and rupture response of grade P91 steel under various stress 

levels at 625 C. A thermodynamically consistent atomistic scale framework on crystal plasticity is 

also discussed in this work by considering the thermodynamic plastic instabilities due to localized 

entropy fluctuations. Specifically a probabilistic interatomic shearing process – founded on statistical 

thermodynamics – is proposed based on transitory structural ordering events that result in localized 

entropy fluctuations. Such localized entropy losses drive the system towards global entropy gains in 

the form of enhanced plastic deformation during loading. Global plasticity for crystalline materials is 

proposed to be mediated by the cumulative interaction tendencies of two different types of 

dislocation densities that nucleate and operate at two different length scales. Short-range dislocation 

densities grow exponentially and induce continuous heterogeneous localized plasticity whereas long-

range dislocation densities grow as per a power-law distribution characterizing time and scale 

invariance. Moreover, the latter induces nominally homogeneous macroscopic plasticity in the form 

of temporospatially intermittent dynamic avalanches or bursts. The proposed framework also has 

the potential to describe the deformation behavior of nanostructured materials and the influence of 

temperature and strain-rate on crystal plasticity is also elucidated. A constitutive relation based on 
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the proposed dislocation mechanics is formulated and shown to closely simulate the uniaxial 

monotonic tensile behavior of grade P91 steel, along with a qualitative demonstration of other 

predictive capabilities. Since dislocations mediate plasticity under any loading condition, the 

formulated constitutive relation is also extended to simulate and predict the uniaxial cyclic behavior 

without hold time effects in this work. 

 

The complex LCF and C-F response of grade P91 steels at 625 C is accurately predicted by 

just considering the evolution and cumulative interaction characteristics of two different types of 

dislocation densities that induce plasticity at two distinct microstructural states. By employing just 2 

evolutionary indices each for describing the loading and unloading components of a typical LCF 

cycle and gradually varying strain-rate for describing C-F hold time effects, the proposed constitutive 

relation has demonstrated excellent robustness with very minimal degrees of freedom. Once the 

evolutionary trends of these indices are established, the model can be conveniently employed for 

extrapolation with experimental data from just 10 LCF or C-F cycles to account for microstructural 

variability among nominally homogeneous materials. Successful implementation and demonstration 

of the proposed model has also ensured that the presumed underlying mechanics of dislocation 

behavior and its analytical formulation are valid. Most importantly, this work has shown that 

macroscopic plasticity is characterized by a power-law relation with loading cycles indicating its time 

and scale invariance during deformation. 
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