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Abstract

This experiment was designed to study the effects of intensity of exercise onbone adaptations inovariectomized and sham
operated 12 week old rats. Eighty Sprague Dawley rats were divided by mass into two equal groups (mean =197 g). One group
was ovariectomized (OVX); the other sham (S) operated. Each surgery group was then subdivided by mass into four exercise
intensity groups. The exercise intensity groups were created by loading additional mass (percent of animals body mass, 0%,
3%, 6% and 9%) on each animal in combination with treadmill running (10 m/min.; 30 min./day; 4 days/wk.; for 7 weeks).
Intensity of exercise and OVXhad a significant effect on bone integrity (BI) (P<.001), a construct that consisted ofbone break-
ing strength, apparent bone density and °/o ash wt. OVX seemed to influence BImore than intensity of exercise. Breaking
strength was significantly affected by OVX (P<.001). Upon further analysis, OVXhad the most significant effect onbreaking
strength and ASH°/o (P= .023; P= .000; respectively) whereas intensity of exercise did not have a significant effect on any of
the construct variables. When the construct variables were compared between groups, bone breaking strength was significant-
ly greater in the OVXthan the S (P= .024). There was no effect on bone density between the groups, and ASH°/o was signif-
icantly less in the OVX than the S.

Introduction

The magnitude of the effects of involutional or osteo-

porotic bone loss inpostmenopausal women is devastating.
Osteoporosis affects half the female population over age 45.
By age 75, nine out of ten women are afflicted. Bone loss
compromises the integrity of the skeletal structure leaving it
most vulnerable to spontaneous fractures of the vertebrae,
wrist and hip. In 1992 the U.S. estimated annual cost of hip
fractures was 7.3 billion dollars in direct costs witha total of
12 billion when indirect costs were included (Clark, 1992).
The monetary costs are exorbitant, but they pale when com-
pared to the personal cost of this disease.

There is a 12-20% mortality rate among the 250,000 hip
fractures annually (Levin, 1991). Of those patients who sur-
vive,about 50% willdramatically change their lifestyles as a
result of loss of mobility. The ability to live independently
often ends, and they become nursing home bound (Levin,
1991). Despair and a loss of the willto live may develop as
a result of diminished quality of life. Mortality, morbidity,
and monetary loss, coupled with psycho-social issues as a
result of osteoporosis, are devastating.

Reaching peak bone mass with as much bone as
possible and maintaining that mass can help prevent early
onset of osteoporosis. According to Papazian (1994), estro-

gen in combination with a growth hormone is responsible
for bone growth in young women during puberty, and it is
irrefutable that estrogen deficiency inwomen results inbone
loss. The need for estrogen to maintain bone mineral densi-
ty cannot be completely abated by exercise. Substantial
research, however, supports exercise as a means of increas-
ing bone integrity. According to Frost (1997) and Skerry,
(1997) bone strain magnitude and rate of change in strain
magnitude are the two most important exercise factors.
Frost (1997) quantifies the strain magnitude necessary to
elicit bone modeling (adults 800-1200 microstrains; youth
2000-4000 microstrains). Bone modeling dictates bone
strength because it influences the amount of tissue and its
architecture. Decreased estrogen levels increase the thresh-
old for bone modeling to occur (Westerlind et al., 1997). The
definition of an exercise protocol that best promotes bone
modeling so that individuals reach peak bone mass and
maintain that mass could help facilitate the reduction of
osteoporotic injuries.

Materials and Methods

Eighty female Sprague Dawley rats witha mean mass of
197 grams (approximately 12 weeks of age) were used to
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conduct this seven week exercise intervention study. The
animals were massed and divided into two groups of equal
mean mass. One group was ovariectomised (O) the other
sham (S) operated.

After surgery, the animals were given a 10-day recovery
period. Thereafter, all animals started treadmill training at a

speed of 10 meters per minute for 5 minutes. Appropriate
additional mass was added to each animal (extra mass
pouch with lead shot) to correspond with their intensity
grouping. The four levels of intensity groupings were
accomplished by adding 0%, 3%, 6% and 9% of the animals'
body mass. The initial training run was 5 minutes. The dura-
tion of subsequent exercise bouts was increased by two min-
utes until the animals could run for 15 minutes. Exercise
period length was then increased by 5 minutes after each
two bouts until the animals could run for 30 minutes. The
animals were weighed once a week, and the incremental
mass gain of the animal was reflected by additional mass
being placed in the extra mass pouch. This additional mass
corresponded to the appropriate exercise intensity percent-
age. The animals exercised 4 days per week, 2 consecutive
days with one or two days between bouts for 7 weeks.
Throughout the study the animals were allowed to eat and
drink ad libitum.

At the end of the seven week training period, the ani-
mals were euthanised and the right femur was resected.
Bone density (d=m/v), anthropometric measurements
(femur length, epiphyseal plate width, mid-shaft width,
beginning body mass, ending body mass, mass gain), break-
ing strength (810 Material Test System (MTS) actuator
descent rate .1 mm per sec) and bone mineral ash (ashing
protocol: Association of Official Analytical Chemists) were
collected.

The experimental design was a 2X4 factorial with the
two groups being ovariectomized (OVX) and sham (S) oper-
ated Sprague Dawley female rats. The factor was intensity of
training, altered by adding one of four levels of additional
mass (0%, 3%, 6% and 9% of animals body mass). The
groups are differentiated as OVX0, OVX3, OVX6 or
OVX9 and SO, S3, S6 or S9 to indicate intensity levels.

Results

Bone Integrity Construct-A bone integrity construct
(BI) was developed by grouping bone breaking strength,
bone density and ASH%. The three variables were massed
equally. The BIwas analyzed using SPSS Multiple Analysis
of Covariance (MANCOVA)withfinal body mass being the
covariate. Individual analyses of variance (ANOVA) were
calculated for bone breaking strength, ASH% and bone
density with respect to surgery and intensity of exercise.
Descriptive statistics and correlations were calculated for the

dependent variables.
When BI and intensity of exercise and surgery were

compared, Wilks multivariate test yielded a value of .61989
which was significant (/><.001). Surgery had more influence
on BIthan exercise intensity although in combination they
significantly affected BI. Further analysis suggested that
ovariectomy significantly influenced BI and two of the
dependent variables, breaking strength and ASH°/o (P =

.023; P<.001 respectively). Intensity ofexercise had no sig-
nificant influence on BIor the variables individually.

Individual Bone Variables.-The results of the statistical
analyses are shown in Tables 1, 2 and 3. Bone density for S
rats when compared by intensity of exercise (0%, 3%, 6%,
9%) was not significantly different. Mean bone density of the
S rats exhibited a numerically curvilinear trend to exercise
intensity (SO, 1.62g; S3, 1.64g; S6, 1.70g and S9, 1.54 g).
Bone density within the OVX group did not differ. When
bone density was compared between the S and OVX
groups, the OVXbone density was 3.9% less than that of the
S animals (1.55g and 1.6'lg, respectively) but was not statis-
tically different. An ANOVA was computed inorder to fur-
ther clarify the effects ofintensity of exercise and surgery on
bone density (Table 3). Neither intensity of exercise nor
surgery influenced bone density.

Inboth the S and OVX groups, bone breaking strength
did not follow a linear path relative to intensity of exercise.
Bone breaking strength in the OVX animals was signifi-
cantly higher than that of the S animals (157.5 n and 146.3 n,
respectively; P = .024). The correlations suggest that bone
anthropometric measures and animal mass were variables
that affected bone breaking strength (Table 1 and 2). The
combined effects of intensity of exercise and surgery or
intensity alone did not influence bone breaking strength
(Table 3).

ASH°/o was significantly influenced by the main effects
of intensity and surgery. When considered individually,
surgery produced a significant effect and intensity of exer-
cise had no effect (Table 3). ASH % of the femur was signif-
icantly greater in the S than OVX group (.6918 gand .6722
g, respectively; P<.001). The .0196 gdifference in Ash rep-
resents a 2.9% greater bone mineral content in the S group
when compared to the OVX group.

Bone Anthropometric Measurements. -Femoral length,
mass and volume further define bone characteristics with
respect to exercise intensity and ovariectomy. Femoral
length was significantly greater in the OVXgroup than the
S group, a difference of 2.89% (36.66 mm vs. 35.63 mm; P
<.001). Femoral length had a significant positive correlation
to bone breaking strength inboth the OVX and S groups
(Tables 1and 2). Mass had a greater relationship to femoral
length for the S group than the OVX group (Table 1and 2).
ASH% also had a significant positive correlation to femoral
length for the S group but not the OVXgroup.
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Table 1. Correlation matrix for breaking strength, body mass plus mass, femur volume, femur mass, initialmass, femur length
ash%, final mass and mass gain inS rats

Breaking Body mass Femur Femur Initial femur Ash % Final Mass gain
Strength plus mass volume mass mass length mass
(n/m2) (g) (ml) (g) (9g) (mm) (g) (g) (g)

Breaking 1.00 .62 .29 .81 .54 .58 .38 .70 .60
strength P=.000 i*=.123 P=.000 P=.003 P=.00l P=.O48 P=.000 £=.001

Body mass .62 1.00 .48 .56 .60 .61 .46 .91 .82
plus mass £=.000 £=.007 P=.00\ P=.000 £=.000 £=.015 £=.000 £=.000

Femur .29 .48 1.00 .51 .28 .12 .33 .40 .35
volume £=. 123 B=.007 /U004 P=A35 B=.53\ i^.091 i^.028 Z^.058

Femur 81 .56 .51 1.00 .47 .60 .41 .55 .39
mass /U000 /M)01 P=.OO4 P=.OO9 P=.00l P=.O29 fi=.003 P=.O33

Initial .54 .60 .28 .47 1.00 .59 .24 .69 .26
mass P=.OO3 P=.000 B=.l35 P=.OO9 P=.00l P=.2\7 P=.OOO B=.\§7

Femur .58 .61 .12 .60 .59 1.00 .41 .60 .42
length B=.001 /^.000 P=.53\ /*=.001 P=.00l P=.O33 B=.00l P=.O24

Ash°/o .38 .46 .33 .42 .24 .41 1.00 .46 .47
/K048 P=.O15 P=.O91 P=.O29 P=.2\7 P=.Q33 P=.Q\4 P=.0\3

Final .70 .91 .40 .53 .69 .60 .46 1.00 .88
mass .P=.000 /^.000 ZK028 i^.003 A=.000 P=.00\ /*=.O14 i^=.000

Mass gain .60 .82 .35 .39 .26 .42 .47 .88 1.00
P=.00l P=.000 P=.O58 P=.O33 P=\67 B=.O24 P=.O13 P=.000

Table 2. Correlation matrix for bone density, breaking strength, femur volume, femur mass, femur length and initial mass in
OVXrats.

Bone Density Bone Strength Femur Volume Femur Mass Femur Length InitialMass
(wt/vol) (n/m2) (ml) (g) (ml) (g)

Bone Density 1.00 .04 /*=.820 -.77 B=.000 .06 P=.748 .29 A=.134 -.11 P=.575

Bone Strength .04 P=.82O 1.00 .43 P=.O18 .78 P=.000 .48 P=.OIO .53 P=.OO3

Femur Volume -.77 /M)00 .43 /M)18 1.00 .58 /M)01 .11 P=.5S0 .39 B=.O33

Femur Mass .06 i*=.748 .78 B=.000 .58 /K001 1.00 .67 P=.000 .49 B=.OO6

Femur Length .29 P=.134 .48 P=.0l0 .11 P=.5S0 .67 P=.000 1.00 .11 ,P=.597

InitialMass -.13 P=.575 .53 £=.003 .39 P=.O33 .49 /M)06 .11 P=.597 1.00
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Table 3. The effects of exercise intensity and ovariectomy onbone density, ash %, and breaking strength

Bone Density Ash% Breaking Strength
(wt./vol.) (g) (n/m2)

Main Effect F = .97 P= .431 F = 11.81 P= .000 F =1.30 P= .284

Intensity of Exercise ¥ = .25 P= .856 F =2.48 P= .072 F=.13 P= .943

Surgery F =3.03 P= .088 F =37.69 P=. 000 F =4.89 P= .032

Interactions Intensity F =.61 P= .613 F =1.96 P= .131 F= .25 P= .864
Surgery

F =ratio of the mean square regression to the mean square residual

Discussion and Conclusions
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Trabecular and cortical bone respond differently to
estrogen deficiency. Most studies indicate that trabecular
bone decreases in mineral and matrix and mechanical
integrity more rapidly than cortical bone (Iwamoto et al.,
1998; Tamaki et al., 1998; Westerlind et al., Gilsanz et al.,
1995; Hodgskinson and Currey, 1993; Riggs et al., 1986).
More specifically the absence of ovarian hormones can
cause a decrease in crossbracing trabeculae, which subse-
quently willresult in decreased breaking strength (Aloia,
1989). The effect of estrogen deficiency on cortical bone is
much less severe. Extensive metabolic changes in cortical
bone which decrease breaking strength are observed only
after long term deficiency, 18 to 26 weeks (Yamazaki and
Yamaguchi, 1989; Jee et al., 1991); however, changes occur
in trabecular bone between 3 and 4 weeks after ovariectomy
(Yamazaki and Yamaguchi, 1989; Jee et al., 1991).

The age of a rat at the time of ovariectomy influences
body size and other anthropometric characteristics. Femur
length and volume are significantly increased in rats that are
ovariectomized at 4 and 10 weeks of age compared to rats

ovariectomized at 52 weeks of age (Yamazaki and
Yamaguchi, 1989). The rats within this study were ovariec-
tomized at 13 weeks. Similar to findings by Yamazaki (1989)
the ovariectomized rats in this study were significantly larg-
er than the sham rats not only in mass but femoral length
and volume. This could elucidate the significantly higher
femoral breaking strength in the OVX rats when compared
to the Sham rats. The continued physiologic bone growth of
the younger rats in the absence of ovarian hormones seems
to be the stimulus for enhanced femoral growth (Yamazaki
and Yamaguchi, 1989; Turner et al., 1987; Jee et al., 1991).

Bone Density.-When bone density was compared
between OVX and S groups, the OVXgroup was numeri-
cally less but there was no significant difference. This was
contradictory to findings by Iwamoto et al. (1998), Tamaki
et al. (1998) and Westerlind et al. (1997). The previously
mentioned studies all found significant reduction in trabec-
ular bone area specifically within certain regions of long
bone. They found reduction of bone area inboth the prox-
imal and distal regions with most loss occuring in the central
region of the cancellous metaphysis. The difference found in
BMD in this study could possibly be explained by differ-
ences in BMD measurements (calculated vs histomorpho-
metric)

Although exercise intensity had no significant effect on
BMD within this study, numerical differences were
observed. Because the degree to which an increase/decrease
in BMD affects structural integrity is not known, a statisti-
cally non-significant increase may very well have physio-
logical pertinence. For this reason, the numerical trends will
be discussed. Mean bone density within the S groups
increased from SO through S6 with a decrease from S6 to S9.
Exercise has been demonstrated by some researchers to

augment bone mass (Iwamoto et al., 1998; Tamaki et al.,
1998; Westerlind et al., 1997; Dalsky et al. 1988; Grove and

Londeree, 1992; Ayalon et al., 1987), while other
researchers have observed loss of bone as one of the conse-
quences of over-training ( Iwamoto et al., 1998; Drinkwater
et al., 1984; Michel et al., 1989). Iwamoto et al. (1998) found
that duration of a moderate intensity exercise had a signifi-
cant effect on BMD. Iwamoto, compared 30 minutes of
treadmill running to 60 minutes of running (same intensity
16 m/min) inOVX rats. He found a significant increase in
bone area in both trabecular and cortical bone within the
exercising 30 minute group but not in the exercising 60
minute group. Such findings substantiate an overtraining
effect and indicate that certain ranges of intensity and dura-
tion create an osteogenic effect.

The OVXgroup did not respond to intensity ofexercise
in the same manner as the Sham group. Between OVX0 and
OVX3 there was a decrease inbone density, but an increase
occurred from OVX3 through OVX9. The increase inbone
density between the OVX3 and OVX9 groups was signifi-
cant. The animals comprising the OVX3 group were lighter
than the animals in the OVX0 group. The OVX0 animals
had a larger bone density than OVX3 animals. This may be
due to body mass and its direct effect on the level of
mechanical strain when the heavier animals exercised.
Westerlind et al. (1997) postulated that estrogen deficiency
would increase the threshold at which bone cells would
respond to mechanical strain. If that hypothesis is correct

then bone cells subjected to the lowest mechanical strain are
at the greatest risk of being resorbed. Low strain level could
explain the differences found between OVX0 and OVX3.
The numerically linear increase in bone density observed
from 3% to 9% intensity may suggest that without the bene-
fitof estrogen, the greater mechanical strain placed on the
bone did promote bone modeling. Bone density did not cor-
relate to breaking strength for either group. Because in this
study bone density is a calculated value, it does not reveal
the way in which mineral/matrix is specifically distributed
throughout the bone. More sensitive measures which depict
bone architecture (histological determination of trabecular
bone volume and trabeculae arrangement) might have
revealed differences due to exercise intensity. Some
researchers have reported differences in trabecular bone
morphology as a result of OVX in as little as 3 to 4 weeks
(Yamazaki and Yamaguchi, 1989), while others have
observed differences as a result of exercise at six weeks
(Peng et al., 1994).

Percent Ash.--Ovariectomy had a significant effect on
ASH% (P<001) with the OVXgroup having significantly
less bone ash than the S group. This is in accordance with
findings by Yamazaki and Yamaguchi (1989), who observed
that bone ash in 10 week old rats was significantly affected
by ovariectomy. Intensity of exercise did not significantly
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affect ASH% but approached significance in both groups.
Within the S group, bone ash was significantly correlated to

breaking strength, a relationship not observed in the OVX
group. Within the OVX group, initial body mass was the
only variable that had a relationship tobone ash. Other vari-
ables that related to ASH°/o within the S group were femur
mass and length. A deficiency of ovarian hormone appar-
ently results in complex alterations of bone metabolism.
This appears to be substantiated by the relationship of such
variables as breaking strength, bone ash, femur mass and
length observed inS but not OVX rats.

Final body mass plus the final added mass is a variable
that reflects intensity of exercise. Within the S group, there
was a significant positive correlation between body mass
plus mass added and ASH°/o (P=.O15). Because ASH°/o sig-
nificantly correlated with breaking strength within the S
group, intensity of exercise apparently made a positive con-
tribution to bone adaptation within this group.

Bone integrity was significantly affected by both
ovariectomy and exercise intensity, with ovariectomy hav-
ng the most profound influence. Because of the confound-
ng influence of ovariectomy on bone architecture, it was

not possible to determine whether exercise intensity caused
any of the differences (numerical or statistical) observed.
Further, the construct of BI was also less informative

fecause
of this interaction. Therefore, future investigations

lould focus on minimizing the effects of growth and
variectomy ondata, while pursuing the level of intensity at

'hich bone integrity is optimized.
Although there was no significant effect of intensity of

xercise onbone breaking strength, bone density or ASH°/o,
ata observed within this study suggest adaptations associat-
d withexercise intensity. For example, ASH% approached
lgnificance (P =.072) with respect to exercise intensity in
)oth the S and OVX groups. While bone density in the S
jroup followed a curvilinear path. At the highest level of
ntensity, decreases inboth ASH% and bone density were
oted. These findings may indicate a training effect with the
rop corresponding to a detrimental over-training effect as

ndicated previously by others (Iwamoto et al., 1998; Frost,
997; Michel et al., 1989; Drinkwater et al., 1984).
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