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Derivation of Equations of Motion for a Four Link Robotic Leg for a
Walking Vehicle

Andrew B. Wright
Department of Applied Science
University of Arkansas at Little Rock
Little Rock, AR 72204

Abstract

A four degree of freedom leg for a walking robot has been modeled using Newton's method. Unlike robot manipulators,
which have a fixed base, a leg model must include inertial forces due to base motion. These forces have been included in the
formulation. These equations can be used for design, simulation, and control. The inverse kinematics for this leg are also pre-
sented. This allows the joint angles to be computed from a desired foot-hold position.

Introduction

Walking robots have been a topic of research and imag-
ination since antiquity (Raibert, 1986). In the nineteenth
century, mechanisms to achieve a repetitious gait were
developed. These ‘walking horses’ suffered from the disad-
vantage that they could not automatically compensate for
uneven terrain. Developments in automatic control theory
and electronics have generated a resurgence in research into
walking vehicles.

Applications of walking vehicles include interplanetary
or off-road exploration, nuclear power-plant clean-up, and
transportation for the handicapped (a walking “wheel”
chair). These applications require a vehicle which can pro-
pel a payload while isolating that payload from the effects of
uneven terrain.

Although a walking vehicle has many advantages over
a wheeled vehicle, it suffers from technical disadvantages.
Since the vehicle’s legs, or active suspension, have many
degrees of freedom, design, construction, and control are
more difficult and expensive tasks. Studies of the Robotics
Vehicles Group at the Jet Propulsion Laboratory (Private
communication with Dr. Eddie Tunstel) have indicated that
wheeled vehicles are more energy efficient than legged vehi-
cles, a key disadvantage when energy resources are limited.
Legs must also be light-weight and strong, since they must
carry their own weight as well as the vehicle’s payload (Eltze
and Pfeiffer, 1995).

Initial control strategies focussed on quasi-static
approaches (Klein et al., 1983). This involves updating the
control signals to the legs so that a subset of the legs forms a
static, stable platform (Klein and Chung, 1987; Liu and
Wen, 1997). The drawbacks to this strategy include intensive
inverse kinematic calculations and slow vehicle speed. This
limitation comes partly from the force distribution problem,
which requires a quasi-static formulation to avoid foot force
discontinuity through the transition between ground-con-

tacting legs (Gardner, 1991).

Modern control strategies eliminate some of these draw-
backs. The dynamically stable controller (Raibert, 1990)
converts the set of legs into an equivalent single leg which
dynamically balances the center of mass of the vehicle. This
vehicle is always falling in the right direction to achieve the
desired motion. Several single- and multi-leg vehicles which
use this strategy have been developed and demonstrated
successfully.

New developments involve biologically inspired control
strategies (Bems et al., 1999). These strategies use a para-
digm derived from the nervous system of cockroaches or
cats to generate nonlinear coupled oscillators which gener-
ate the control signals. This approach is simple to imple-
ment; however, it suffers the drawback of unpredictability.
The controller is adaptive and requires some heuristic
refinement to perform properly.

Another control approach is to use state-space based
adaptive or nonlinear controllers. One example uses a
model reference adaptive controller (Lee and Shih, 1986).
State space controllers need model information governing
how the actuators interact with the system they are control-
ling. In the case of a walking robot, this involves modeling
the leg dynamics. A similar task occurs in the development
of manipulator control systems (Asada and Slotine, 1986).
However, the manipulator base is fixed, and the dynamics
of the body do not influence the control or modeling of the
manipulator. The controller presented by Lee and Shih
(1986) does not include body motion in the model of the leg
accelerations. This presents a severe drawback in the sys-
tem'’s performance.

Regardless of the control strategy employed, it is desir-
able to test the controller in simulation prior to building and
testing hardware. Consequently, equations of motion for a
new configuration, including body dynamics, must be
derived and simulated.

The work presented in this paper involves a new leg
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configuration. The equations of motion are derived using
Newton’s method. The inverse kinematics for this leg con-
figuration are also presented.

Derivation of the Leg Equations of Motion

The basic design for this project uses four-link, bottom-
mounted legs, similar to insect legs, where the fourth link is
a flexible foot containing both a restoring spring and a force
sensor system (see Fig. 1). This design has three controlled
degrees of freedom, which allow the foot to be positioned
arbitrarily within the limits of the link lengths. The foot-
spring stores energy during foot placement and releases it
when the foot leaves contact with the ground. This
compliance is similar to the ankle in most mammals and has
been used in shoe design to increase walking efficiency.

hould
or?:ueﬁ'om servol

-
jointl
<~ servol

torsion spring

foor
Fd
— —~— .

Fig. 1. Tendon Based Articulated Leg

requires knowledge and experience to apply i, it is more
efficient than Lagrange’s method for this complicated case.

A Free-Body-Diagrarn (FBD) of each link and of the
foot is shown in Fig. 2. The foot is subject to ground forces,
F@g, gravity, G4, a constraint force, Fy, and a constraint
torque, T4, exerted by the preceding link. On each link other
than the foot, the forces acting are the negative of the con-
straint exerted by the following link, -F; ; |, and -1; , |,
gravity, Gy, and the forces exerted by the preceding link, F;
and 7;. The inertial terms are the rate of change of linear

momentum for the link, , and the rate of

dip) _ d(my;) dy;
change of angular moni@niuni doout "Wat link's center of
mass, . Here, v; is the velocity of the link’s center of
d(L = '!'1) . - s . Y s
mass, Togrs «he link’s mass, ; is the link’s angular velocity,

and I; is the link’s moment of inertia tensor.

F; i Fq 7] jointy,)

0y 5‘!. e g‘

“Ti41 Fg
“Fiq G

FBD of Link i FBD of Foot

Fig. 2. Free Body Diagram of Link and Foot

The development of the Equations of Motion (EOM) is
a time-consuming, effor-prone task (Asada and Slotine,
1986), especially when the six degrees of freedom (DOF) for
body motion are included. Newton’s method is used to
determine the equations of motion. Although this method

A vector sum of the forces and moments about the cen-
ter of mass acting on each FBD is performed and generates
four sets of two vector equations.

d
Eq“fc*glnm"c';{ti “)
d(ly» 0,) G
T Boa X Eg +(34—%ca) xEg = L‘dt@‘ @

dy .
Ei_fl,l+0£=mi—d-f =123 (3)
d(l."@)
=T+ 1~So ¥ B @ —%c) x B4y = TI i=123. {4)

In Equations 1 through 4, x; is the location of the cen-
ter of mass of link i with respect to joint i-1, and x; is the
location of joint i with respect to joint i-1.

Equations | through 4 contain constraint forces, Fy, Fy,
Fg, Fy, which must be eliminated. Later, if these forces are
required for design work, they can be explicitly determined.
When the four vector contraint forces are eliminated, the
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eight vector equations become four vector equations, con-
taining only the constraint torques, gravity forces, and iner-
tial terms.

d(l, = dy
R e G (5)
d(ly ey +tlie@,) dy dy
. M_’d‘]‘.—w'.+k,n[m,d—:—qi]+(§’ "5(‘4]“['“!4_:"01] (h)
(5 + 1) xEg
- +1,* d d\_f
!==d(l¢-@;+lgdl?s L W)*‘lcz"[mz‘ag{!'cx}*(lz*!cﬂ’[""1]‘5'93]‘ (7)
dy
(5;+;,+sc.lx[m.-a?-(h]-(u;*sﬂmxfg
d(l, v, + +livmy+ L ew,) dy
s (I *0, l:'@:mh @yt Livw, “&:"["‘1'&,“'91]*
d dy :
(51+’.h::)’"[mzj?'@:]*(!l*iz*!ci)‘["‘;d—:'gl]' (8)

dy,
(€ 32+ 5+ xe) % [megt =0 -3+ 4 5y + 1) xEg

So far, these equations are general. Any leg composed
of four separate links will follow these equations. The details
of a particular configuration depend on the evaluation of the
time derivatives.

To proceed further, the accelerations of the centers of
mass (CM) are required. The positions of the link CMs are
(Fig. 3)

i-1

Rei = Ro+Xo+ 2 %+ %
j=1

i=1,234, 9)

where Ry is the location of the vehicle’s center of mass, and
X is the location of the shoulder joint with respect to the
vehicle's center of mass.

Fig. 3. Inertial Coordinate System and Euler Angles

In order to evaluate derivatives, it is necessary to define
coordinate systems in which to express the joint and CM
positions. The first, inertial coordinate system is fixed to the
ground at some convenient reference point. The unit vec-
tors for this system are (E|, Eg, E3), where E| is initially
aligned with the vehicle's direction of travel, Eg is aligned
with gravity, and Ej is orthogonal to both E; and Eg in a
right hand sense. This coordinate system will be thrown
away once velocities are evaluated.

The second coordinate system is affixed to the vehicle
body's CM and has unit vectors, (e}, €9, €3), which are
initially aligned with (E{, Eg, Eg). The lower case e's for the
unit vectors indicate that this system is rotating and not iner-
tial. The coordinate transformation between the inertial sys-
tem and the body fixed coordinate system is expressed in
terms of Euler angles (Greenwood, 1965)

1 0 0 |[|cos® 0 —sin@| | cosy siny 0
[Alor = |0 cos¢ sing|| 0 1 0 ||-siny cosy 0> (11)
0 —sing cosd|[sin® 0 cos® 0 0 1

where the angular velocity for this transformation is
@y = (b- rsin@)gy, + (Bcosd + Ysingcos)gy, + (1 cospeosd - Bsing)eyy. (12)

The next coordinate system, (e, €19, e}3), is located at
the shoulder joint and rotates relative to the body with angle
q (see Fig. 4). The coordinate transformation between the
(en1» 02> €03) system and the (e, e9, e|3) system is

0 0o 1
[A]yjg = |-sing, cosq; 0. (13)
—c0sq, —sinql 0

Body €13

ey €12
» €2

€01
en3-€11 €01

N

Fig. 4. Definition of Shoulder Joint Angles (Link !)

The angular velocity of the (e, ej9, e}3) system with
respect to the (eqy, €9, ep3) system is

Q= 4,8 (14)
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The next three coordinate systems are similarly defined
(see Fig. 5). The unit vector, e;;, points from the i-1*" joint to
the i-h joint through the center of mass. The unit vector,
is aligned with the motor torque. The final unit vector, e;y,
is orthogonal to e;;, and e;3. The joint angle, q;, is the angle
between e;) and €; 4 | ;.

2
€it1.2 41,12

joint; il

link;, 12

Jointjy

Fig. 5. Defition of Hip, Knee, and Ankle Joint Angles (Links
2,3,4)

The coordinate transformation tensor for each of these
systems is

cosq; sing; 0

[A)ii-1 = |-sing; cosq; 0 i=234, (15)

0 0 1

and the angular velocity of system i with respect to system i-
lis

Q= q4g i=234. (16)

Since each coordinate system is chained to the previous
one, angular velocities of the joint-based reference frames
are

@ =0._,+Q  i=1234, (17)

The accelerations for use in equations 5 through 8
are determined by taking two derivatives of equation 9. This
is a tedious process which results in the accelerations as a
function of the Euler angles and the joint angles.

Only four components of the vector equations 5
through 8 contain information which is useful. The other
eight contain information about the eight constraint torques
in the pin joints. The torque provided by the motor (or tor-
sion spring) at the joint is the component in the e, direc-
tion. Otherwise the joint is free to move in that direction.
The torques, 1, = 1,e;, and t; = t;e;4 for i=2,3,4, are the inde-
pendent variables in these equations. The joint accelerations
are the dependent variables.

The EOM for this leg configuration are

h
4,4; 4

ql 44 o

193 cosq, 8ind - sing, singcosd Fay d

[H) :‘ + 18] dids vsla}[ ousfoca = AFgl + [+ 2 |- (18)
; Foy |,

a5 sing, sin@ + cosq, singcosd
dady
4]

Ay

The matrices, [H], [B], [G], and [A] can be written by defin-
ing the following constants

The damping@ntatsin(abl], is C, = cos(qy)
8,y = sin(g, +q3) Cyy  cus(qy+q3)
)34 = sin(gy +q3+qy) Cypay = €08(Q; + 43+ 4y)

where %y = Xc2S; @y = %c2Cs

% AcsSzn un = 5c3Ca
e s o 1)

P = LSy By = L,Cy

Piz = L3Sy Bz = 14Cx3

The forcPrrants¥2sion matrix, [AP2s™ L4Cas

Y = L3S, T2 = L3C,

T2 = L2834 1 = L2Cay

Y13 = LaS; Y2 = LGy

Tis = Ly Y A3Ciy

2
Jy = Iy 33t myxey
2
Iy = 1) +13 33+ maXes
r |
Iy = I+ 1y 55+ mpXe, (20)
Ky = 2(1 1y =15, 22)8,C
K; = 215,11~ 15,22)823Cas
K; = 2(I4 1~ 15, 22)8234Ca34

The mass matrix, [H], is

hy 0 0 0
0 hy hyy by,
0 hyy by, by

WHETE by, = 1y 4y + 1y €3 #1185+ mya]) # 1y 1Ol # by sy # oyt * gl 1 o * D Shut mngD Dy v my)’

Mg = By #my(Lh+ ngyr) * mglL] # L) # 2Lyns # nealse * 1)l
i
By = By = Iy # LY * (mytgy = mylgimg * myncalny )y by = Byt mylly Tagamy) s B = By = ;g = by

by = Bye = 1y S mRegTyy s and = 1 g o mag,

Journal of the Arkansas Academy of Science, Vol. 53, 1999

141



Journal of the ArkansaSAdadenny Bf.Si¥migivol. 53 [1999], Art. 24

The damping matrix, |B], is

0 bbby 0 0 0

b,y 0 0 0 0 byh
[B] = 21 26 Y17 . (22)

by 0 0 0 by bys by
where by, = K, + Ky 4 Ky + Imgayay, + 2my(By; 4 a0y + agg) + 2my(0), * Byg * @)Dy, + Py * y)

by = Kyt Ky # 2yl + agag # 2m(Byy + By ¢ ap)iyg tag), by = Ky $2m () 4 Bis * aplty,
by = im, Ky * Kb = mgmg oy = my(ilyy * By * aghomy(Py ¢ By a)By * Py *agnds

By = -AmyNey Ty * MukeaTin) s By = ~(MaBeyTin * ke Tiad s

by, - il": Ky =yl * @gghagy —my Py * Big * 0 )Py * @)y by = (mykey * Mylyiry * BkeyTi

and

b %K,-m.(llu Pt alan s By = Mot Tin * fedds Bu = 20Nelr Tt el

by = myxey(Yy * Y * Aed -

The force transmission matrix, [A], is

0 0 a

] = 2% 0, (23)
a, a5 0

0 ag 0
where a, = By, =Py =Py s l;‘!u"rm'.'Ta:"h:'*u-N'Tllr's'hl“'u-md""u'

The gravity matrix, [G], is
g, 00
[G] = 088 : (24)
0 8384
0 g5 86
where g, = mya, » my By * ay) $m(By Dyt apds

By = =ty =yl # )= By By * ) oy =y (g $ap) 4 0 ° =mygy = My (Pyy * Gga) s Wy = My

and g, = -mysy .

In order to evaluate the inertial term, the following
terms are defined

G = (25)
&’R, o
a '?"'%"Ka*‘?o"(@o*xﬂ) (26)

Py = &+ Qo X ¥ey + @ % (09 X X)) + 200 X (@) x%ey)  (27)

Py = 8+ o (g + Xpp) + @ x (@ % (Ly +¥c)) + (28)
2'90 » (nl * UEI * &.:3) + 0: x ;C!J

Py = 8 * QX (L +La+¥e) * Qg X (o (L + Lyt X)) *

29
2090 % (@) 2 (L + Ly #x09) + Oy % (Ly + X55) + O X ¥ey) (Z )

By = g x (L ot tEc) Yo x (@ x (L Hla t ly P ¥ ) * (30)
leea{{hu(hi-lrz*L,*!C.)‘%*(LJ“L]*!c‘]‘*gj"”t)"'!cﬂ*'@."!ca)

Q, = Lo (@p+ @ x Q)+ [(wgx 1) =, x@p)] * (@ * Q)+ (3”
[y x L)~ (L, =) » 0,

Q, = Ly (g + 0 % (@) + Q1)) # [(@p % L) - (I ¥ @p)] # (@ + By + ) + (32)
(D, + Q) x Ip) = (1 x (@, + D] 2 @y "

Qy = 1+ (G + @0 (B +© + Q)+ [@ox 1) - (s X @0)] * (2 + B+ %+ Q) + (33
[+ Dy + Q) x ) - Uy x (R + R+ QN 2

Q= L+ @+ @ X (D, + Q3+ @y + Q) +

(@0 X L)~ (s X @p)] * (0 +@, + @3+ 0, + B + (34)
[0, + Oy + Q5+ Q) x [3) - Ly x (@ + Q; + 2y + Q)] » @y
The vector disturbance terms are
¢ = =Q, =0, Qy-Q-myxc, xp, ~malky T 2c) X P, i
(35)

—my(ky * kg F3cp) %Py - MLy Ly F Ly T E) X By

dy = -Q,-Qy~Q, ~my¥cy X py-Mylly + ¥ca) Xy —Mylly + Ly * 8o 20y (369
dy = -Qy-Q,-my¥cy % Py~ Myl * Xea) X, (37)

d, = —Q,-m¥ci ¥ Py (38)
Only the component from each vector which is aligned
with the joint motor torque is required. The resulting vector

of inertial torques is

d, dyeey,

dyf _ [d2®e2s| (39)
dy dyees
dy dyeey

Inverse Kinematics of Leg

Given the desired foot position, Ry = Ry 1E| + RyoE9
+ Ry3Eg, the inverse kinematic problem involves deter-
mining what joint angles, q1, q9, q3, q4, generate that posi-
tion. This can be expressed mathematically as (see Fig. 6)

Xttty = Ry-Bo-Xg = Xy (40)
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Fig. 6. Leg Vectors for Inverse Kinematics

It is sufficient to specify Xy, the desired foot position
relative to the shoulder position. The foot-hold equation
becomes

Lygy + Lagy + Lyes; + Lagyy = Xyi8oy + Xgoon + Xasos.  (41)

This equation can be written entirely in the (eq, ego,
e()3) coordinate system

7| [F r |4 T T oo T |24 Xa
[Aligf | 0| *[Aln] 0| * [Aln[Als:| o |+ [AlulAlalAls| o || = [Xg|- (42)
0 0 0 o)) |[Xg

Since the leg is a four degree of freedom system, one
more foot position quantity can be specified. This is the
cosine of the global angle of the foot with respect to the
ground, nyq3. In order to determine the desired joint angles
that give a foot position in global cartesian coordinates, the
kinematics of the manipulator must be inverted, yielding

X4
tan(q,) = --)
1 {x‘
cos(qy + g3+ qy) = ngy
Py = Xg3—L; —Ljcos(q;+q5+qy)
Py = JXay+ Xig-Lysin(q + a5 + ) - (43)

2 2 1 1
_Pitpa-la-l;
cos(9) AL,

(Lycos(qs) + Ly)p; — Lysin(qy)p,
(Lyc0s(qy) + Ly)p; + Lysin(a;)p,

tan(q,) =

Conclusions

Equations of motion for a four link manipulator have
been derived. These equations include terms resulting from
base motion. The equations can be used for simulation to
test controllers, for state space controller formulations, and
for optimization of the leg parameters.

Inverse kinematics for this leg configuration have been
derived. These equations can be used to calculate joint
angles to achieve desired foot position.

Further work needs to be done in the basic leg design
and the total vehicle design. In particular, the correct opti-
mization criteria need to be chosen and the significant inde-
pendent variables identified.
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