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SCF-MO Conformational Analysis ofPolycroconaine

T.E. Ezell and J.A. Darsey
Department of Chemistry

University of Arkansas at Little Rock
Little Rock, Arkansas 72204

Abstract

Abinitio calculations at the STO-3G basis set level using GAUSSIAN 92 were conducted on the monomer unit of poly-
croconaine, a conducting polymer with conductive properties similar to several metals, in order to determine the most
probable conformation of the monomer. We also compared the energy difference between the highest occupied and low-
est unoccupied molecular orbitals. Successive calculations were performed at dihedral angle intervals of 30° around the
central bond of the monomer. Minimum energy was observed at 0° bond rotation, consistent with a theory that the poly-
mer owes many of its conductive properties toa planar configuration incombination with extensive conjugation of the C-
C double bonds in the structure.

Introduction

Polycroconaine is one of a series of recently prepared
organic polymers that are more like metals in their intrin-
sic electrical properties than any previously known poly-
mers. The polycroconaines and related polysquaraines
are more metal-like because they have some of the small-
est band gaps ever observed in organic polymers. The
band gap of a metal is the amount of energy needed to

promote an electron from the highest occupied energy
level (the valence band) to the empty band immediately
above it (the conductance band). This gap determines
the intrinsic electronic and optical properties of a materi-
al since a smaller band gap corresponds to an increase in
the material's electrical conductivity. Metals, which have
zero band gap, are excellent electrical conductors because
their electrons can readily be promoted to the conduc-
tance band. Insulators, on the other hand, have a very
large band gap which greatly restricts the flow of elec-
trons.

Conjugated organic polymers have currently found
jreat interest with respect to their potential conductive
aroperties. Several polymers have been prepared which
conduct electricity when doped with an oxidizing or a
reducing agent. The band gap in most of these doped
jolymers, which are semiconductors, generally ranges
Yom 1.5 to 4 eV. In recent years research has been
bcused in preparing polymers with increasingly smaller
energy gaps, so as to make an organic material with a
)and gap as close to zero as possible. These polymers
would not need doping in order to conduct in a similar
manner to metals.

A group of polymers whose band gap is as small as
).5 eV has recently been synthesized (Havinga et al.,
1992). These polymers, polycroconaine and poly-
squaraine, contain strong electron-donating and electron-

accepting moieties in a regular alternating pattern. Itis
believed this close alternation causes a broadening of the
energy bands which, in turn, leads to a smaller band gap.
The electron donor inpolycroconaine is a conjugated
heterocyclic ring system containing nitrogen and sulfur
atoms. The acceptor is croconic acid (4,5-dihydroxy-4-
cyclopentene-l,2,3-trione) in the case of polycroconaine,
or squaric acid (3,4-dihydroxy-3-cyclobutene-l,2-dione) for
polysquaraine. These polymers are stable in air at room
temperature and can be heated to 300°C in air without
degradation. The smallest band gap exists for polycro-
conaine, measured at 0.5 eV (Havinga et al., 1993).
Samples with this band gap were found to be up to seven
times more conductive (10~ 5 Siemens/cm) than other
undoped organic polymers, which are generally insula-
tors. While this is still far less conductive than a metal
such as copper (conductivity 106 Siemens/cm), samples
of polycroconaine which have been heavily doped with
iodine show conductivities between 10 s and 1
Siemens/cm, similar to that of undoped amorphous sili-
con (Havinga et al., 1993).

Materials and Methods

Because of the unique, semi-metallic electrical con-
ductivity of polycroconaine, it would be useful to know if
the polymer's properties are related to the extended con-
jugation offered by a planar structure for the monomer
and possibly for extended sections of the polymer chain.
Additionally, it would be useful to determine the energy
differential between the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) and compare this value to the reported band
gap for the polymer. In order to obtain these energy val-
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ues, ab initio self-consistent field molecular orbital calcula-
tions were performed on the monomer or repeating unit
of the polymer.

The segment of polycroconaine used for this research
is the repeating unit shown in Fig. 1. Each end of the
repeating unit was capped with a hydrogen atom in lieu
of a representation of the remainder of the polymer
chain. Itwas necessary to restrict this study to the single
monomer unit because of the molecular size restrictions
imposed by th ab initio program used. The procedure

ised
was to optimize the geometry of the monomer unit

sing the GAUSSIAN 92 (Frisch et al., 1992) ab initiopro-
ram, determine the potential energy function for rota-

on around the central bond of the monomer, and to

etermine the energy differential between the HOMO
and the LUMO. These calculations were carried out on
an IBM3090 at the Cornell National Supercomputer
Facility, a VAX7000, and a 386DX/40 Microcomputer.

Fig. 1. Structure of polycroconaine with atomic labels
used incalculations.

I
The geometry of the polycroconaine monomer had

be optimized before other calculations could be per-
rmed. An internal coordinate data set was created in
e Z-matrix format which included the three-dimension-

al orientation of the atoms, as well as bond lengths, bond
angles, and dihedral angles with respect to the appropri-
ate reference atoms (Hehre et al., 1986). The atomic
labels, initial geometric parameters and structure are
shown at Fig. 1. To insure the Z-matrix geometry was cor-
rect, the atomic coordinates derived from the matrix were
used to plot the atoms in three dimensions and visually
check the geometry. To optimize the initial geometry,
GAUSSIAN 92 was used to optimize first all bond
lengths, then allbond angles using the STO-3G basis set.

Once optimization was completed, the geometry was
again visually checked to insure the optimized parameters
appeared reasonable.

The rotational potential energy function was created
by rotating the croconic acid moiety around the central

backbone of the monomer in 30° increments until the
dihedral angle had been rotated through 360 \ Again,
each Z-matrix geometry was plotted and visually checked
to insure a reasonable structure. These rotations were
represented by a series of twelve rotation data sets used in
the specific calculations. Apoint calculation (holding all
parameters constant) was performed using GAUSSIAN
92 for each rotational increment. These calculations pro-
duced a set of12 rotations with their corresponding ener-
gies listed in hartrees, or atomic units. These energies
were converted to kilocalories per mole and plotted
against the corresponding dihedral angle to generate the
potential energy function.

A second point calculation was performed using
GAUSSIAN 86 (Hout et al., 1986) to obtain a molecular
orbital population analysis for the optimized molecule at

the geometry with the lowest potential energy.

Results and Discussion

The results for the optimized geometry of the poly-
croconaine monomer are given in Table 1. Allbond
lengths are listed inAngstroms; allbond angles are listed
in degrees. Itis interesting to note that these results pre-
dict that the two ring structures lie in the same plane,
allowing maximum through-conjugation for the aromatic
rings, the conjugated double bonds, and the nonbonding
electron pairs from the hetero atoms in the structure.

Once the optimized geometry was determined, total
energies were calculated at rotational intervals of 30°
around the bond linking the heterocyclic ring to the cro-
conic acid ring. The potential energy function created by
this rotation is shown at Fig. 2. Energy minima are seen
at 0° rotation with lesser local minima between 240° to

300°. Energy maxima occur between 30° to 90° rotation
and again near 120° to 210°. Minimum energy is
observed at 0° dihedral, where both rings lie in the same
plane and the negatively-charged oxygen of the croconic
acid ringis on the opposite side of the structure from the
neighboring sulfur atom and its two nonbonding electron
pairs. High rotational energies are observed between 30°
and 90° and near 330°, likely because of repulsion
between the electron pairs of the sulfur (S14) and the two

neighboring oxygens on croconic acid. The bond length
for the charged oxygen atom (C20-O34) is approximately
10% longer (1.360 A) than the carbon-oxygen bond
lengths for the carbonyl groups (C17-O32 and C18-O33;
1.215 A), increasing the interaction between O34 and the
sulfur electron pairs at these angles of rotation. Local
minima are observed at 240° and 300° as the electron
pairs on the oxygen rotate out of plane and away from
the sulfur; however, some stability may also be lost due to

loss of conjugation as the pi orbitals of the conjugated
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double bonds move out of same plane. This is evidenced
by the high energy observed at 270° where the croconic
acid ring is at right angles to the heterocyclic ring.
Finally, we calculated the energy differential between the
HOMO and LUMO for the monomer unit to be 0.17896
hartrees, or atomic units. This is equivalent to 112.65
kcal/mol, or 4.869 eV.

Table 1. Optimized geometry of polycroconaine.

Bond Lengths: (Angstroms)

N2-C1
-

1.49 S14-C13 ¦= 1.74 H26-C7
-

1.08
C3-N2

-
1.34 C15-C13

-
1.32 H27-C10

-
1.08

S4-C3
-

1.61 C16-C15
-

1.48 H28-C12
-

1.09
C5-S4

-
1.61 C17-C16

-
1.49 H29-C12

-
1.09

C6-N2
-

1.56 C18-C17
-

1.49 HS0-C12
-

1.09
C7-C6

-
1.38 C19-C18 -1.49 H31-C15

-
1.09

C8-C7
-

1.38 C20-C19
-

1.53 O32-C17 -1.22
C9-C8 =1.38 C21-C19 = 1.32 O33-C18

-
1.22

C10-C5
-

1.38 H22-C3
-

1.08 O34-C20 = 1.36
N11-C9

-
1.52 H23-C1

-
1.09 H35-C21

-
1.08

C12-N11 = 1.49 H24-C1 = 1.09 H36-C21 = 1.08
C13-N11

-
1.52 H25-C1

-
1.09

Interatomic Angles: (degrees)

C1-N2-C3
-

109.0 N2-C3-S4
-

109.0 C3-S4C5 -109.0
C1-N2C6

-
141.0 C3-N2-C2

-
110.0 N2-C6-C7

-
126.9

C6-C7-C8
-

120.0 C7-C8-C9
-

120.0 S4-C5-C 10 = 141.0
C8-C9-N11

-
108.0 C9-N11-C12

-
109.0 C9-N11-C13

-
109.0

C12-N11-C13- 142.0 N11-C13-S14- 109.0 N11-C13-C15
-

125.0
S14-C13-C15

-
126.0 C13-C15-C16

-
123.5 C15-C16-C17

-
110.0

C16-C17-C18 = 105.0 C17-C18-C19 = 110.0 C18-C19-C20 = 105.0
C18-C19-C21 ¦ 123.5 C20-C19-C21

-
131.5 N2-C3-H22 = 131.5

S4-C3-H22
-

119.5 N2-C1-H23 = 109.5 N2-C1-H24
-

109.5
H23-C1-H24

-
109.4 N2-C1-H25

-
109.5 H23-C1-H25

-
109.4

H24-C1-H25
-

109.4 C6-C7-H26 = 116.0 C8-C7-H26
-

124.0
C5-C10-H27

-
116.0 N11-C12-H28 = 109.5 N11-C12-H29

-
109.5

H28-C12-H29
-

109.4 N11-C12-H30
-

109.5 H28-C12-H30
-

109.4
H29-C12-H30

-
109.4 C13-C15-H31

-
119.5 C16-C15-H31

-
117.0

C16-C17-O32
-

121.0 C18-C17-O32
-

82.3 C17-C18-O33
-

121.0
C19-C18-O33

-
79.8 C19-C20-O34

-
128.6 C19-C21-H35

-
119.0

C19-C21-H36
-

119.0 H35-C21-H36
-

122.0

Polyoroconalne
-

Rotational Potential Energy
3400i r^_^—v
3200 / \ _
3000 / >w^ \2800 / \ /\
2600 : / \ / \2400: / \ /2200 i / \ \2000; / \
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Fig. 2. Two dimensional rotational potential energy func-
tion,rotational angle vs. total energy inkcal/mol.
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